Exceptional service in the national interest

Efficient Parallel Software for Tucker Decompositions of Dense Tensors

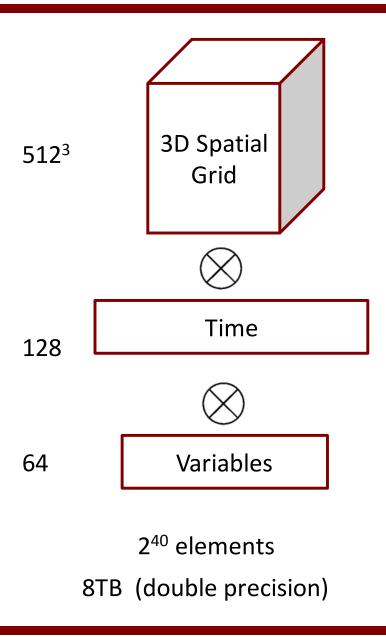
Alicia Klinvex¹, Grey Ballard², Tamara G. Kolda¹, Hemanth Kolla¹

¹Sandia National Laboratories ²Wake Forest University

SIAM CSE '17, Atlanta, March 2, 2017

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO SAND2017-2236C

Motivation: Advanced Simulations and Experiments Deluged by Data

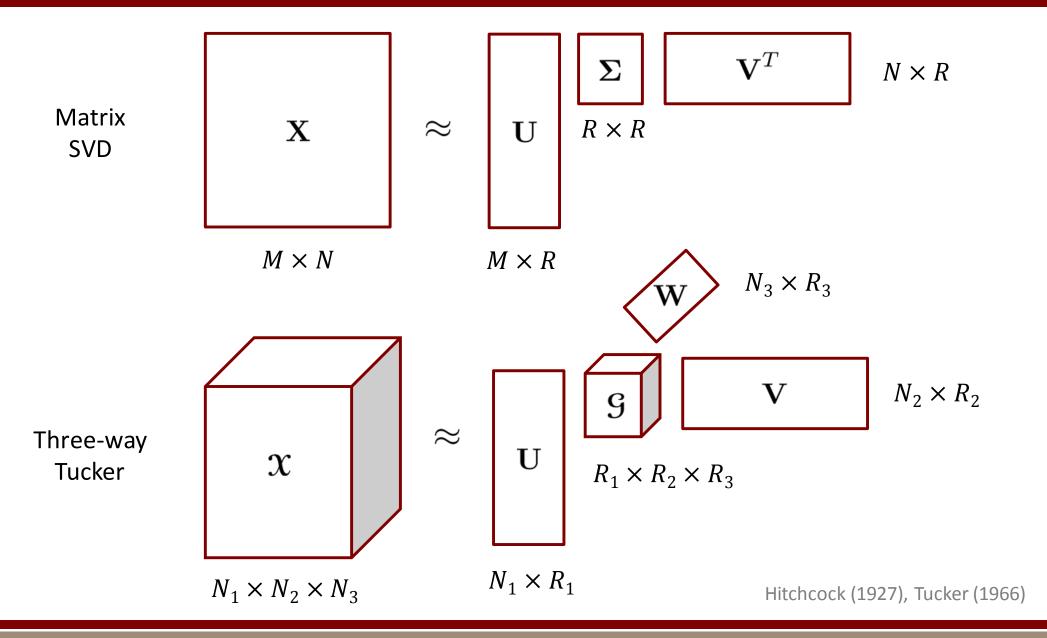


- Combustion simulations
 - S3D code uses direct numerical simulation
 - Gold standard for comparisons, but...
 - Single experiment produces terabytes of data
 - Storage limits spatial, temporal resolutions
 - Difficult to analyze or transfer data
- Goal: to compress this data using math

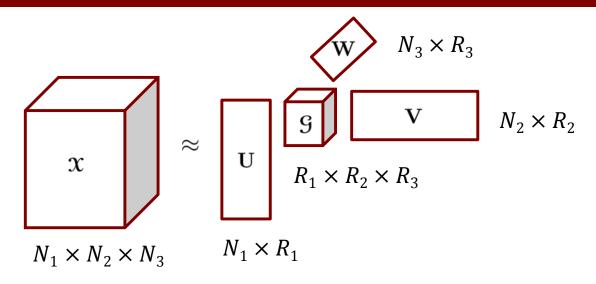
Outline

- Tucker decomposition definition
- ST-HOSVD algorithm
- TuckerMPI implementation
- Combustion simulation results

Tucker Compression: Extends the Matrix SVD to Multiway Arrays



Tucker Compression (3-way)



$$\mathbf{X} \approx \mathbf{G} \times_1 \mathbf{U} \times_2 \mathbf{V} \times_3 \mathbf{W}$$

9 = "Core Tensor" = Reduced representation, determined by factor matrices

$$\mathbf{U}, \mathbf{V}, \mathbf{W}$$
 = "Factor Matrices" = Orthogonal matrices spanning high-variance subspaces

 $\times k$ = Tensor-times-matrix in mode k

Tucker Compression (d-way)

$$\underbrace{\mathfrak{X}}_{N_1 \times N_2 \cdots \times N_d} \approx \underbrace{\mathfrak{G}}_{R_1 \times R_2 \cdots \times R_d} \times_1 \underbrace{\mathbf{U}^{(1)}}_{N_1 \times R_1} \times_2 \underbrace{\mathbf{U}^{(2)}}_{N_2 \times R_2} \cdots \times_d \underbrace{\mathbf{U}^{(d)}}_{N_d \times R_d}$$

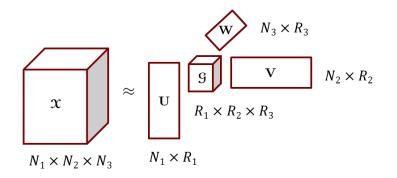
9 = "Core Tensor" = Reduced representation, determined by factor matrices

 $\mathbf{U}^{(k)}$ = kth "Factor Matrix" = Orthogonal matrix spanning high-variance subspaces

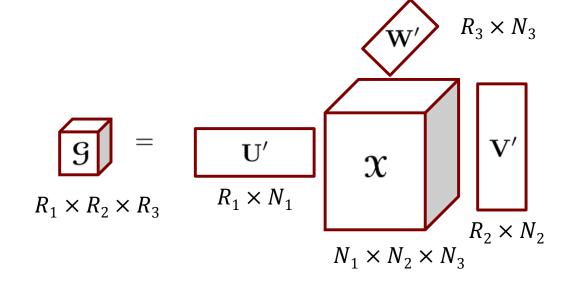
 \times_k = Tensor-times-matrix in mode k

Compression Ratio: $C pprox \prod_{k=1}^d \frac{N_k}{R_k}$ Does not include factor matrices

Choosing Tucker Ranks to Retain Accuracy



Find orthogonal matrices U, V, W that reduce the size of tensor but retain its "mass"

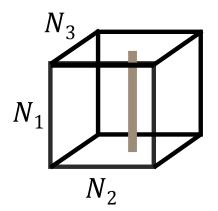


For a given relative error ϵ , choose projection ranks $R_{\rm 1}$, $R_{\rm 2}$, and $R_{\rm 3}$ such that:

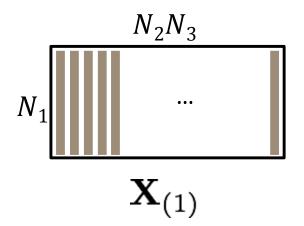
$$\|\mathbf{X} - (\mathbf{G} \times_1 \mathbf{U} \times_2 \mathbf{V} \times_3 \mathbf{W})\| \le \epsilon \|\mathbf{X}\|$$

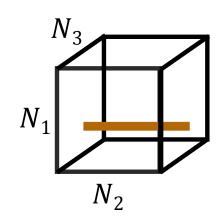
Core tensor satisfies: $\mathbf{g} = \mathbf{X} \times_1 \mathbf{U}' \times_2 \mathbf{V}' \times_3 \mathbf{W}'$

Matricization/Unfolding: Rearranging a Tensor as a Matrix

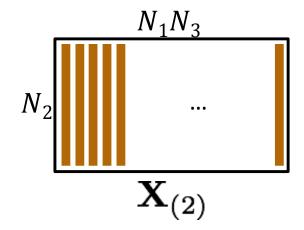


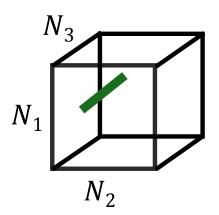
mode-1 fibers



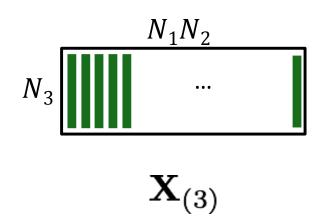


mode-2 fibers





mode-3 fibers

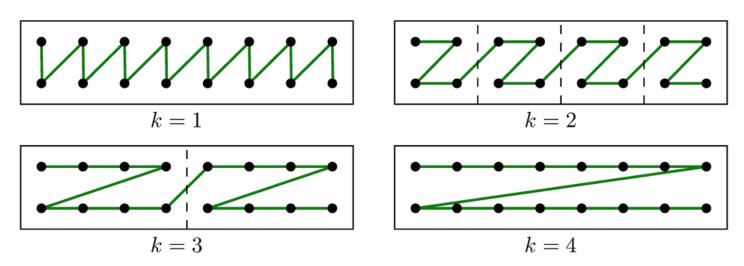


Mathematically convenient expression, but do not want to explicitly form the unfolded matrix due to the expense of the *data movement*.

No Data Movement in Local Unfolding – Block Structure

- Assume local data is stored so that mode-1 unfolding is in column major order
- All unfoldings are blocked, with different block sizes
- Rather than rearrange data (standard practice), exploit structure with block operations

Local Layout: 2 x 2 x 2 x 2 (4-way Tensor)



W. Austin, G. Ballard, and T. G. Kolda, Parallel Tensor Compression for Large-Scale Scientific Data, IPDPS'16 (arXiv:1510.06689)

Algorithm: ST-HOSVD (3-way)

Vannieuwenhoven, Vandebril, Meerbergen (SISC 2012)

- 1. Choose \mathbf{U} with projection rank R_1 such that: $\|\mathbf{X}_{(1)}\|^2 \|\mathbf{U}'\mathbf{X}_{(1)}\|^2 \le \epsilon^2 \|\mathbf{X}\|^2 / 3$
 - a) Compute gram matrix: $X_{(1)}X_{(1)}$

Mass retention

- b) Use eigendecomposition of N_1 x N_1 matrix to choose R_1
- c) Set $U = R_1$ leading eigenvectors of gram matrix
- 2. Shrink to size $R_1 \times N_2 \times N_3$: $y = x \times U'$
- 3. Choose V with projection rank R_2 such that: $\|\mathbf{Y}_{(2)}\|^2 \|\mathbf{V}'\mathbf{Y}_{(2)}\|^2 \le \epsilon^2 \|\mathbf{X}\|^2 / 3$
 - a) Compute gram matrix: $Y_{(2)}Y_{(2)}$
 - b) Use eigendecomposition of $N_{\rm 2}$ x $N_{\rm 2}$ matrix to choose $R_{\rm 2}$
 - c) Set $V = R_2$ leading eigenvectors of gram matrix
- 4. Shrink to size $R_1 \times R_2 \times N_3$: $\mathfrak{Z} = \mathfrak{Y} \times_2 \mathbf{V}'$
- 5. Choose $\mathbf W$ with projection rank R_3 such that: $\|\mathbf Z_{(3)}\|^2 \|\mathbf W'\mathbf Z_{(3)}\|^2 \le \epsilon^2 \|\mathbf X\|^2/3$
 - a) Compute gram matrix: $\mathbf{Z}_{(3)}\mathbf{Z}_{(3)}$
 - b) Use eigendecomposition of $N_{\rm 3}$ x $N_{\rm 3}$ matrix to choose $R_{\rm 3}$
 - c) Set $W = R_3$ leading eigenvectors of gram matrix
- 6. Shrink to size $R_1 \times R_2 \times R_3$: $\mathfrak{G} = \mathfrak{Z} \times_3 \mathbf{W}'$

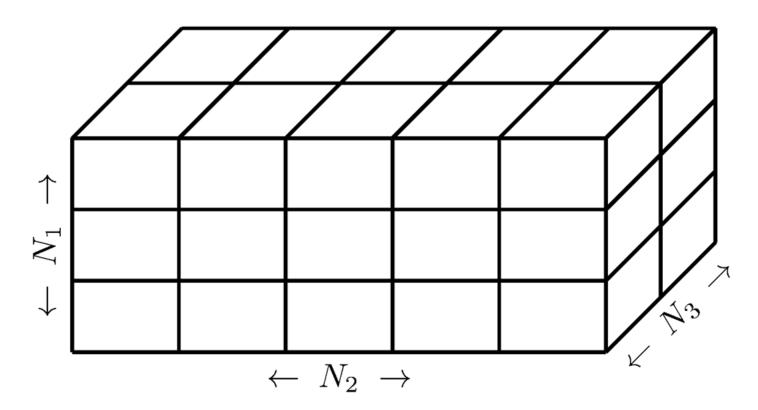
Key Kernels

- Three main steps for mode k
 - GRAM Compute matrix product of unfolded tensor with itself.
 - Unfolded matrix size is N_k x ($R_1 \cdots R_{k-1} N_{k+1} \cdots N_d$).
 - Result is $N_k \times N_k$
 - EVECS Compute eigenvalues and eigenvectors of N_k x N_k grammatrix. Use this to determine R_k
 - Call LAPACK, since matrix is small
 - TTM Tensor-times-matrix to shrink mode k from size N_k to size R_k .
 - $\blacksquare \ \ \text{Input is size} \ R_{\mathbf{1}} \ \mathbf{x} \ \cdots \ \mathbf{x} \ \frac{N_k}{N_k} \ \mathbf{x} \ N_{k+1} \ \mathbf{x} \ \cdots \ \mathbf{x} \ N_d$
 - $\blacksquare \ \, \text{Result is size} \,\, R_{\mathbf{1}} \, \mathbf{x} \, \cdots \, \mathbf{x} \, \frac{R_{k}}{R_{k}} \, \mathbf{x} \, N_{k+1} \, \mathbf{x} \, \cdots \, \mathbf{x} \, N_{d}$
- These can be viewed as matrix operations

Parallel Tucker Decomposition

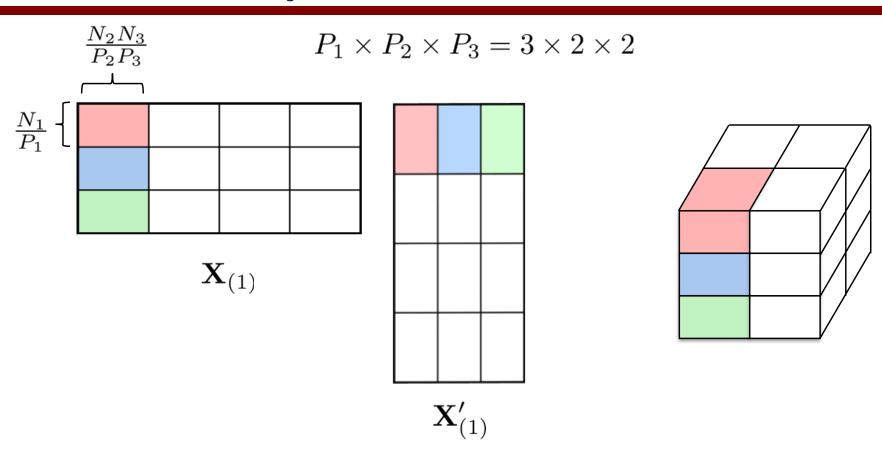
For N-way tensor, Cartesian block distribution on N-way processor grid

$$P_1 \times P_2 \times P_3 = 3 \times 5 \times 2$$



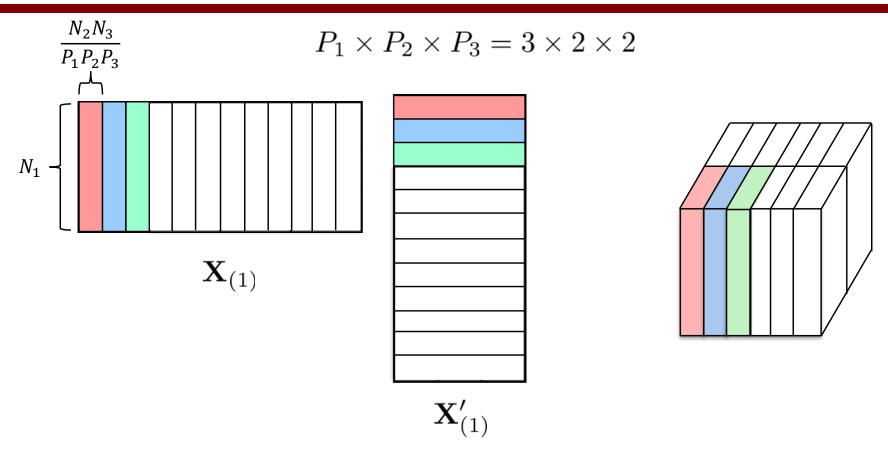
Local block size:
$$\frac{N_1}{P_1} imes \frac{N_2}{P_2} imes \frac{N_3}{P_3}$$

A New Gram Matrix Kernel: Parallel Computation



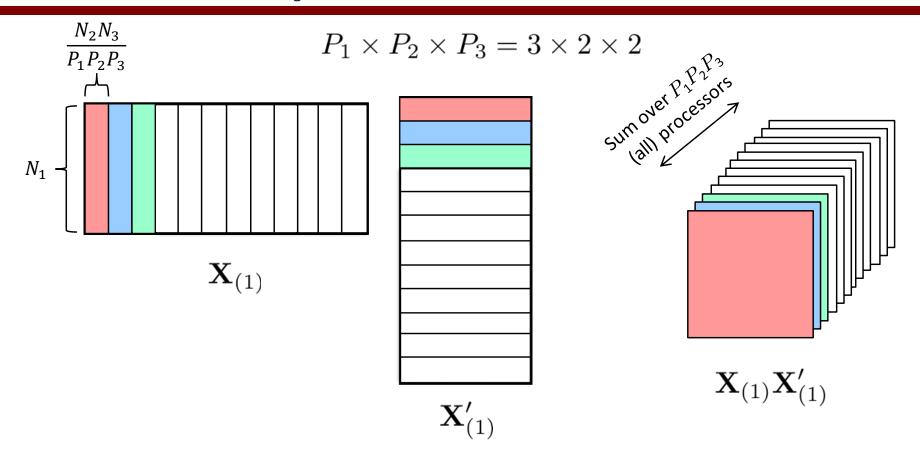
Rearrange data to be block column format

Gram Matrix Kernel:Parallel Computation



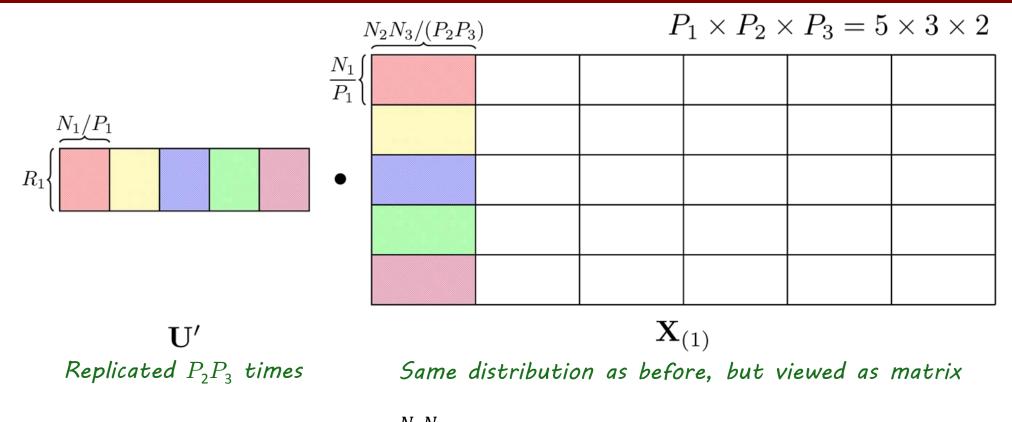
• Each processor column rearranges its data (with P_1 nodes)

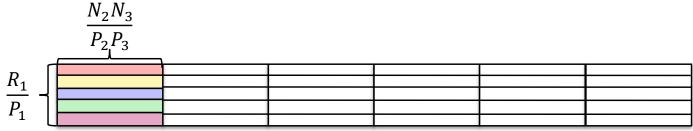
Gram Matrix Kernel:Parallel Computation



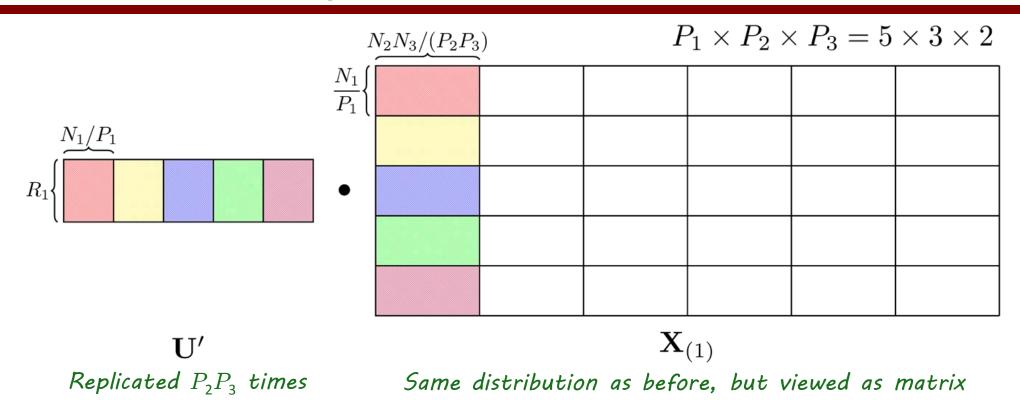
- Each processor column rearranges its data (with P_1 nodes)
- Then computes local outer product
- Sum across all $P_1P_2P_3$ groups with all-reduce

Tensor-Times-Matrix Kernel: Parallel Computation





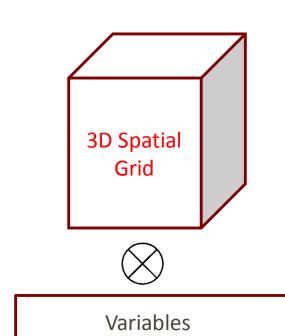
Tensor-Times-Matrix Kernel: Parallel Computation



- Each node locally computes product of its part of U with its part of $X_{(1)}$
- Communication is a reduce-scatter on the result within set of P_1 nodes
- Output is distributed same as ${f X}_{(1)}$ but with a smaller first dimension, i.e., size R_{1}/P_{1}

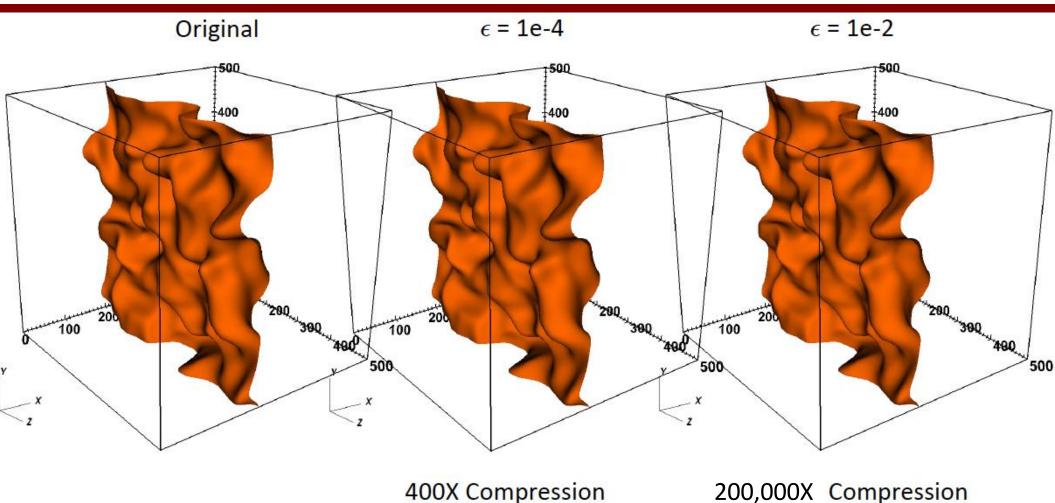
Results

Combustion results



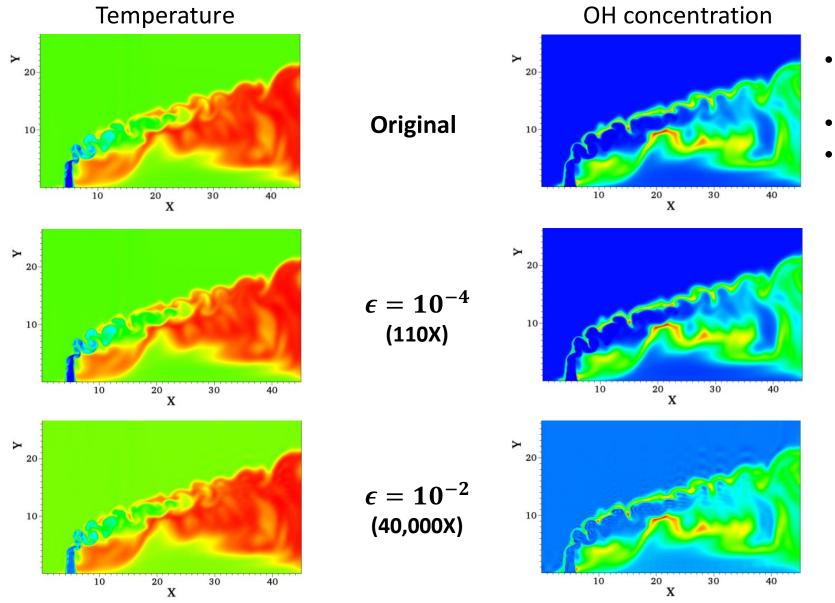
	Original	$\epsilon=10^{-4}$	$\epsilon=10^{-2}$
HCCI	672 x 672	330 x 310	111 x 105
	Х	Χ	Х
	32	31	22
	Х	X	Х
	626	199	46
	67 GB	(14 X)	(760 X)
SP	500 x 500 x 500	95 x 129 x 125	30 x 38 x 35
	Х	Х	Х
	11	7	6
	Х	X	Х
	400	125	11
	4 TB	(410 X)	(200,000 X)
JICF	1500 x 2080 x 1500	424 x 387 x 261	90 x 61 x 48
	Х	Х	Х
	18	18	13
	Х	X	х
	10	10	6
	6 TB	(110 X)	(40,000 X)

Original vs reconstructed



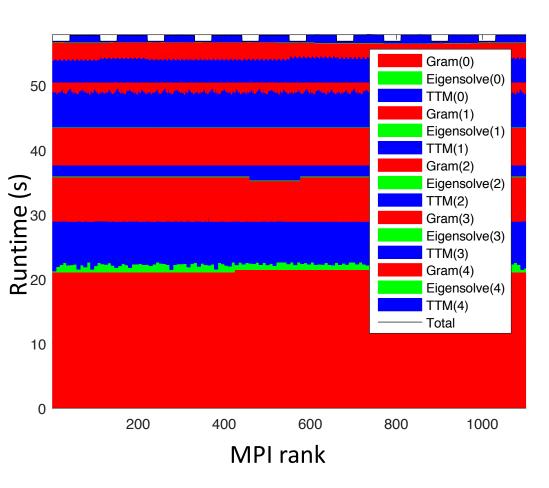
Temperature of 4 TB (SP) dataset at a single timestep

Original vs reconstructed



- 6 TB (JICF) dataset
- single timestep
- slice along z direction

Parallel TuckerMPI performance



- Total of 55s; 1100 cores.
- 4.4TB -> 10GB (410X).
- Bulk of time is in first mode (GRAM computation).
- Time for I/O is order of magnitude greater (~450s)

Key Feature: Need Only Do Partial Reconstruction on Laptops, etc.

Z-Axis 0.0 0.2 0.4 0.6 0.8 190 0.2 X-Axis

Reconstruction requires as much space as the original data!

$$\mathbf{\hat{X}} = \mathbf{\mathcal{G}} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{U}^{(3)} \times_4 \mathbf{U}^{(4)} \times_5 \mathbf{U}^{(5)}$$

$$N_1 \times N_2 \times N_3 \times N_4 \times N_5$$

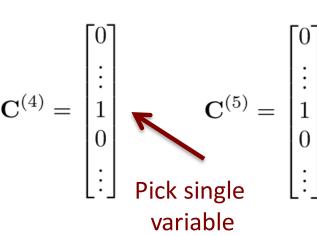
But we can just reconstruct the portion that we need at the moment:

$$\bar{\mathbf{X}} = \mathbf{S} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{C}^{(3)} \mathbf{U}^{(3)} \times_4 \mathbf{C}^{(4)} \mathbf{U}^{(4)} \times_5 \mathbf{C}^{(5)} \mathbf{U}^{(5)}$$

$$N_1 \times N_2 \times \frac{N_3}{2} \times 1 \times 1$$

$$\mathbf{C}^{(3)} = \begin{bmatrix} 1/2 & 0 & \cdots & 0 \\ 1/2 & 0 & \cdots & 0 \\ 0 & 1/2 & \cdots & 0 \\ 0 & 1/2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} \quad \mathbf{C}^{(4)} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{bmatrix} \quad \mathbf{C}^{(5)} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \end{bmatrix} \quad \mathbf{Pick single}$$
Downsample

Downsample



Partial reconstruction of JICF dataset

- Size of original data: 6 TB
- Reconstructing a single variable at a single timestep along a slice of the z axis (24 MB)
- Ran on a single node with 128 GB of RAM

Error	1e-2	1e-4
Core tensor size	156 MB	57 GB
Read	.1 s	139 s
Reconstruct	.1 s	21 s
Write	6 s	.02 s
Required memory	185 MB	58 GB

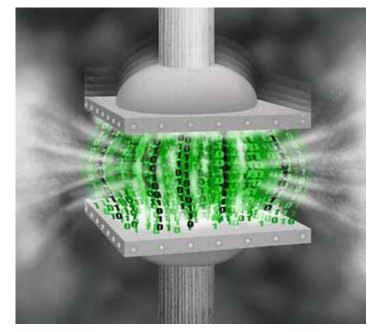
Software: TuckerMPI

git@gitlab.com:tensors/TuckerMPI.git
Alicia Klinvex, Woody Austin, Grey Ballard, Hemanth Kolla, Tammy Kolda

- Open source code for computing Tucker compression
- MPI/BLAS/LAPACK/C++11
- Still in development but available for testing
- Looking for new applications and users
- Interested in partnering

Tensor Tucker Decomposition for Compression for Scientific Data

- First parallel implementation of Tucker decomposition
 - 5-way data using regular grid
 - Process 4TB data in < 1 min
- Up to 200,000X compression on real-world data
 - Specify desired relative RMSE
 - Discovers latent multi-linear structure
 - Enables "smart" compression rather than discarding data that may be useful
- More work to do...
 - In situ computations
 - Real-time visualization for computational steering, etc.
 - Adaptive and non-uniform grids
 - Experimental data
 - Randomization
 - Extensive testing



http://www.analyticbridge.com/profiles/blogs/how-much-is-big-data-compressible-an-interesting-theorem

Alicia Klinvex amklinv@sandia.gov

W. Austin, G. Ballard, and T. G. Kolda, *Parallel Tensor Compression for Large-Scale Scientific Data*, IPDPS'16 (arXiv:1510.06689)