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Motivation: Advanced Simulations @
and Experiments Deluged by Data

= Combustion simulations

= S3D code uses direct numerical
c193 3D Spatial simulation
Grid " Gold standard for comparisons,
but...
X = Single experiment produces
- terabytes of data
iIme
128 = Storage limits spatial, temporal
® resolutions
= Difficult to analyze or transfer
64 Variables data

= Goal: to compress this data
using math

20 gelements

8TB (double precision)
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Outline ) 5.

" Tucker decomposition definition
= ST-HOSVD algorithm

" TuckerMPI implementation

= Combustion simulation results

e
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Tucker Compression: Extends the Wi
Matrix SVD to Multiway Arrays

> vt N X R
Matrix
~ R XR
SVD X U
M X N M X R
N; X R,
G VvV N, X R,
Three-way ~ U
Tucker X Ry X R, X R4
N; X N, X Nj Ny X Ry Hitchcock (1927), Tucker (1966)
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Tucker Compression (3-way)

@ N, X R,

G \4 N, X R,

R, X R, X R,

N, X N, X N, Ny X Ry

:XMSXlUXQVXgW
G =“Core Tensor” = Reduced representation, determined by factor matrices

U,V, W - “Factor Matrices” = Orthogonal matrices spanning high-variance subspaces

Xk =Tensor-times-matrix in mode k
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Tucker Compression (d-way)

X S S xp UM 5o UP ooy U@
—— ~ ——— —~—— ——
N1><N2“'XNd R1XR2“'XRd N1 X Ry No X Ro NdXRd

S =“Core Tensor” = Reduced representation, determined by factor matrices
U®) = kth “Factor Matrix” = Orthogonal matrix spanning high-variance subspaces

Xk =Tensor-times-matrix in mode k

d .
Ny Does not include
. . —
Compression Ratio: C ~ I I _R factor matrices
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Choosing Tucker Ranks Wi
to Retain Accuracy

@ Har R; X N
5] v N; X R;

X T v R, % Ry X Ry
N; X N, X N, Ny X R, — U’ AVA
3 X
Find orthogonal matrices U, V, W R, X R, X R, Ry X Ny
that reduce the size of tensor but R, XN,
retain its “mass” Ny X Ny X Ny

For a given relative error €, choose projection ranks R, RR,, and R; such that:

IX = (G x1 U x2 V x3 W) < €] X]

Core tensor satisfies: G =X x; U’ x5 V' x5 W/’

1|12 — [|G]1? < €2[|X||> «—— Mass retention |
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Matricization/Unfolding: Wi
Rearranging a Tensor as a Matrix

N, N, N
Ny N, N,
N, N, N,
mode-1 fibers mode-2 fibers mode-3 fibers
N,N, NN, NN,
JE1 A
X (1) X (2) X (3)

Mathematically convenient expression, but do not want to explicitly form the
unfolded matrix due to the expense of the data movement.
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No Data Movement in Local Ok
Unfolding — Block Structure

Laboratories

* Assume local data is stored so that mode-1 unfolding is in
column major order

* All unfoldings are blocked, with different block sizes

* Rather than rearrange data (standard practice), exploit
structure with block operations

Local Layout: 2 x 2 x 2 x 2 (4-way Tensor)

W. Austin, G. Ballard,and T. G. Kolda, Parallel Tensor Compression for Large-Scale Scientific Data, IPDPS’16 (arXiv:1510.06689)
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Algorithm: ST-HOSVD (3-way) @)=,

Vannieuwenhoven, Vandebril, Meerbergen (SISC 2012)

1. Choose U with projection rank R, such that: [|[Xy[|* — [[U'Xy[|* < €*[|X|*/3
a) Compute gram matrix: X ;)X 4’ | Mass retention |
b) Use eigendecomposition of IV; x IN; matrix to choGse 3
c) Set U= R, leading eigenvectors of gram matrix

2. Shrink tosize Ry x Ny x N;: Y =X x,; U’

3. Choose V with projection rank R, such that: [[Y o[> — [|[V'Y o * < €)1X|?/3
a) Compute gram matrix: Y Y 5
b) Use eigendecomposition of IV, x IV, matrix to choose R,
c) SetV = R, leading eigenvectors of gram matrix

4. Shrink tosize Ry x R, x N3 Z=Y xa V'

5. Choose W with projection rank R;such that: ||Z)||° — [|[W'Z)||* < €2[1X|*/3
a) Compute gram matrix: Z3 2/
b) Use eigendecomposition of N; x N; matrix to choose R,
c) Set W = R; leading eigenvectors of gram matrix

6. Shrink tosize Ry x R, x R;: G =2 x5 W'
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Key Kernels

= Three main steps for mode k

= GRAM - Compute matrix product of unfolded tensor with itself.
= Unfolded matrix size is N X (R - Ry 1 Np1---INy).
= Resultis N, x N,

= EVECS — Compute eigenvalues and eigenvectors of N, x N, gram
matrix. Use this to determine R,

= Call LAPACK, since matrix is small

* TTM - Tensor-times-matrix to shrink mode k£ from size N, to size R,.
" Inputissize Ry X - X N X Ny X -+ X N,
= Resultissize Ry x -+ X R X Ny X -+ X Ny

= These can be viewed as matrix operations
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Parallel Tucker Decomposition ) 5.

For N-way tensor, Cartesian block distribution on N-way processor grid

Py X PoxP3=3x%x5X2

— Ny —

— Nog —

Ny y No 9 N3
PP P

Local block size:
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A New Gram Matrix Kernel: OES
Parallel Computation

11%11%% P, X Po x Py =3 %x2x?2

I

SO

!
X

Rearrange data to be block
column format
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Gram Matrix Kernel: s
Parallel Computation

N> N3
P, P, Py

Pl X PoxP3=3x%x2x2

e

N, - i

* Each processor column rearranges its data (with P, nodes)
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Gram Matrix Kernel: s
Parallel Computation

Nals P, x Pox Ps=3x%x2x2
P,P,P; o
(‘L\ ‘Q'\, 60&"
[ OAQ/ O('e(9 [
%°‘°\\\‘/. :
N, N s
X () I
!
XX

!
X

* Each processor column rearranges its data (with P, nodes)
 Then computes local outer product
* Sum across all P, P, P; groups with all-reduce
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Tensor-Times-Matrix Kernel: OES
Parallel Computation

NoN3/(PyPs) Py X Py, xP3=5x3x2
N
Py
Ny /P,
R, o
U’ X ()
Replicated P,P, times Same distribution as before, but viewed as matrix
N, N3
P, Ps
— P,
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Tensor-Times-Matrix Kernel: OES
Parallel Computation

NoN3/(PyPs) Py X Py, xP3=5x3x2
N
Py
N1 /Py
R, o
U’ X ()
Replicated P,P, times Same distribution as before, but viewed as matrix

* Each node locally computes product of its part of U with its part of X,
* Communication is a reduce-scatter on the result within set of P, nodes
* Output is distributed same as X ;) but with a smaller first dimension, i.e., size R,/P,
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Results
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Combustion results
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3D Spatial
Grid

=

Variables

X

Time

3/2/2017

Original e=10"% €=10"2
672 x 672 330 x 310 111 x 105
X X X
2 1 22
HCCl 3 3
X X X
626 199 46
67 GB (14 X) (760 X)

500 x 500 x 500 95 x 129 x 125 30x 38 x 35
X X X
11 7 6

sp

X X X
400 125 11

4TB (410 X) (200,000 X)

1500 x 2080 x 1500 424 x 387 x 261 90 x 61 x48
X X X

1 1 1

JICF 8 8 3
X X X
10 10 6

6 TB (110 X) (40,000 X)

Klinvex @ SIAM CSE17
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Original vs reconstructed

Original e=1le-4 €=1le-2

400X Compression 200,000X Compression

Temperature of 4 TB (SP) dataset at a single timestep

_
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Original vs reconstructed

Temperature

3/2/2017

OH concentration

Original

e=10"1%
(110X)

€ =102
(40,000X)
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6 TB (JICF)
dataset

single timestep
slice along z
direction
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Parallel TuckerMPI performance

= Total of 55s; 1100 cores.
— = 44TB -> 10GB (410X).

50 I Eigensolve(0)
I TTV(0) . . . .
B o = Bulk of time is in first
I Eigensolve(1)

40 I V(1)

B Gram(2) mOde (GRAM

= E_i?,\(jlnzsolve(Z) ]
3% — e computation).

I Eigensolve(3)
I TTMV(3)

2 E()“ * Time for 1/O is order of
TTM(4)

magnitude greater
(~450s)

(s)

Runtime

200 400 600 800 1000

MPI rank
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Key Feature: Need Only Do Partial =~ g
Reconstruction on Laptops, etc.

Z-Axis 08 80
04 06 . & '
0 e U S22 g X

— - e ——
udocolor "
:her s |
<K % )-
3.00+09 o :
p J o L ( |
A
W o b
) l !

Xi
:i = 9 X1 U(l) X9 U(Z) X3 U(S) X4 U(4) X5 U(5) I
-

Reconstruction requires as much space
as the original data!

Nl XNQXN3XN4 XN5

But we can just reconstruct the portion that
we need at the moment: |

. R
X = G x, U@ X o Uu®@ X 3 Cc®uBd X 4 cOy® X C(5)TU(5)
N1><N2><%><1><1 /20 0 0 0]
/2 0 -+ 0 : )
cB |0 1/2 0 @ _ 1 ct) _ 1
9 1/2 0 0 \ 0 \
! _ ] pick single H Pi.ck single
Downsample variable time step
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Partial reconstruction of JICF OE
dataset

= Size of original data: 6 TB

= Reconstructing a single variable at a single timestep along a
slice of the z axis (24 MB)

= Ran on asingle node with 128 GB of RAM

le-2 le-4
Core tensor size 156 MB 57 GB
Read 1s 139 s
1s 21s
6s .02s
Required memory 185 MB 58 GB

_
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SOftwa re : Tu c ke rM P I @ Laboratories

TUCKERMP!

git@gitlab.com:tensors/TuckerMPI.git
Alicia Klinvex, Woody Austin, Grey Ballard, Hemanth Kolla, Tammy Kolda

= Open source code for computing Tucker compression
= MPI/BLAS/LAPACK/C++11

= Still in development but available for testing

= Looking for new applications and users

= |nterested in partnering
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Tensor Tucker Decomposition for OES
Compression for Scientific Data

= First parallel implementation of Tucker
decomposition

= 5-way data using regular grid
®= Process 4TB datain < 1 min
= Up to 200,000X compression on real-world data
= Specify desired relative RMSE
= Discovers latent multi-linear structure

= Enables “smart” compression rather than
discarding data that may be useful

= More workto do...
= |n situ computations
" Real-time visualization for computational http://www.analyticbridge.com/profiles/blogs/ho

steering, etc. w-much-is-big-data-compressible-an-interesting-
= Adaptive and non-uniform grids theorem

= Experimental data
= Randomization Alicia Klinvex
= Extensive testing amklinv@sandia.gov

W. Austin, G. Ballard, and T. G. Kolda, Parallel Tensor Compression for Large-Scale
Scientific Data, IPDPS’16 (arXiv:1510.06689)

_
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