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� Combustion simulations
� S3D code uses direct numerical 

simulation
� Gold standard for comparisons, 

but…
� Single experiment produces 

terabytes of data
� Storage limits spatial, temporal 

resolutions
� Difficult to analyze or transfer 

data

� Goal: to compress this data 
using math

Motivation: Advanced Simulations 
and Experiments Deluged by Data
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Outline

� Tucker decomposition definition
� ST-HOSVD algorithm
� TuckerMPI implementation
� Combustion simulation results
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Tucker Compression: Extends the 
Matrix SVD to Multiway Arrays

Matrix
SVD

Three-way
Tucker

𝑀× 𝑁 𝑀 × 𝑅

𝑅 × 𝑅

𝑁 × 𝑅

𝑁1 × 𝑁2 ×𝑁3

𝑅1 × 𝑅2 × 𝑅3

𝑁1 × 𝑅1

𝑁2 × 𝑅2

𝑁3 × 𝑅3

Hitchcock (1927), Tucker (1966)
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Tucker Compression (3-way)

= “Core Tensor” = Reduced representation, determined by factor matrices

= “Factor Matrices” = Orthogonal matrices spanning high-variance subspaces

= Tensor-times-matrix in mode k

𝑁1 × 𝑁2 × 𝑁3

𝑅1 × 𝑅2 × 𝑅3

𝑁1 × 𝑅1

𝑁2 × 𝑅2

𝑁3 × 𝑅3
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Tucker Compression (d-way)

= “Core Tensor” = Reduced representation, determined by factor matrices

= kth “Factor Matrix” = Orthogonal matrix spanning high-variance subspaces

= Tensor-times-matrix in mode k

Compression Ratio: 
Does not include 
factor matrices
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Choosing Tucker Ranks 
to Retain Accuracy

𝑅1 × 𝑅2 × 𝑅3

𝑁1 × 𝑁2 × 𝑁3

𝑅1 × 𝑁1

𝑅2 × 𝑁2

𝑅3 × 𝑁3

Find orthogonal matrices U, V, W
that reduce the size of  tensor but 

retain its “mass”

For a given relative error ², choose projection ranks R1, R2, and R3 such that:

Core tensor satisfies:

Mass retention
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Matricization/Unfolding: 
Rearranging a Tensor as a Matrix

𝑁1

mode-3 fibersmode-1 fibers mode-2 fibers

Mathematically convenient expression, but do not want to explicitly form the 
unfolded matrix due to the expense of the data movement.

𝑁2

𝑁3

𝑁1

𝑁2

𝑁3

𝑁1

𝑁2

𝑁3

…𝑁1

𝑁2𝑁3

…𝑁2

𝑁1𝑁3

…𝑁3

𝑁1𝑁2
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No Data Movement in Local 
Unfolding – Block Structure

Local Layout: 2 x 2 x 2 x 2 (4-way Tensor)

• Assume local data is stored so that mode-1 unfolding is in 
column major order

• All unfoldings are blocked, with different block sizes
• Rather than rearrange data (standard practice), exploit 

structure with block operations

W. Austin, G. Ballard, and T. G. Kolda, Parallel Tensor Compression for Large-Scale Scientific Data, IPDPS’16 (arXiv:1510.06689)
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1. Choose U with projection rank R1 such that:
a) Compute gram matrix: X(1)X(1)’
b) Use eigendecomposition of N1 x N1 matrix to choose R1

c) Set U = R1 leading eigenvectors of gram matrix
2. Shrink to size R1 x N2 x N3: 
3. Choose V with projection rank R2 such that:

a) Compute gram matrix: Y(2)Y(2)’
b) Use eigendecomposition of N2 x N2 matrix to choose R2

c) Set V = R2 leading eigenvectors of gram matrix
4. Shrink to size R1 x R2 x N3: 
5. Choose W with projection rank R3 such that:

a) Compute gram matrix: Z(3)Z(3)’
b) Use eigendecomposition of N3 x N3 matrix to choose R3

c) Set W = R3 leading eigenvectors of gram matrix
6. Shrink to size R1 x R2 x R3: 

Algorithm: ST-HOSVD (3-way)
Vannieuwenhoven, Vandebril, Meerbergen (SISC 2012)

Mass retention
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Key Kernels
� Three main steps for mode k
� GRAM – Compute matrix product of  unfolded tensor with itself. 

� Unfolded matrix size is Nk x (R1�Rk-1Nk+1�Nd). 
� Result is Nk x Nk

� EVECS – Compute eigenvalues and eigenvectors of Nk x Nk gram 
matrix. Use this to determine Rk

� Call LAPACK, since matrix is small
� TTM – Tensor-times-matrix to shrink mode k from size Nk to size Rk. 
� Input is size R1 x � x Nk x Nk+1 x � x Nd

� Result is size R1 x � x Rk x Nk+1 x � x Nd

� These can be viewed as matrix operations



3/2/2017 Klinvex @  SIAM CSE17 12

Parallel Tucker Decomposition
For N-way tensor, Cartesian block distribution on N-way processor grid

Local block size:
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A New Gram Matrix Kernel: 
Parallel Computation

Rearrange data to be block 
column format
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Gram Matrix Kernel: 
Parallel Computation

𝑁2𝑁3
𝑃1𝑃2𝑃3

𝑁1

• Each processor column rearranges its data (with P1 nodes)
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Gram Matrix Kernel: 
Parallel Computation

• Each processor column rearranges its data (with P1 nodes)
• Then computes local outer product
• Sum across all P1P2P3 groups with all-reduce

𝑁2𝑁3
𝑃1𝑃2𝑃3

𝑁1
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Tensor-Times-Matrix Kernel: 
Parallel Computation

Replicated P2P3 times Same distribution as before, but viewed as matrix

𝑁2𝑁3
𝑃2𝑃3

𝑅1
𝑃1=
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Tensor-Times-Matrix Kernel: 
Parallel Computation

Replicated P2P3 times Same distribution as before, but viewed as matrix

• Each node locally computes product of its part of U with its part of X(1)
• Communication is a reduce-scatter on the result within set of P1 nodes
• Output is distributed same as X(1) but with a smaller first dimension, i.e., size R1/P1
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Convenient Implementation 
Assumption: Small Dimensions 
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Combustion results
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Original vs reconstructed

200,000X

Temperature of 4 TB (SP) dataset at a single timestep
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Original

𝝐 = 𝟏𝟎−𝟒
(110X)

𝝐 = 𝟏𝟎−𝟐
(40,000X)

Original vs reconstructed
Temperature OH concentration

• 6 TB (JICF) 
dataset 

• single timestep
• slice along z 

direction
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Parallel TuckerMPI performance
� Total of 55s; 1100 cores. 
� 4.4TB -> 10GB (410X).
� Bulk of time is in first 

mode (GRAM 
computation).
� Time for I/O is order of 

magnitude greater 
(~450s)
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Key Feature: Need Only Do Partial 
Reconstruction on Laptops, etc.

Reconstruction requires as much space 
as the original data!

But we can just reconstruct the portion that 
we need at the moment:

Pick single 
variableDownsample

Pick single 
time step

T T T
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Partial reconstruction of JICF 
dataset

Error 1e-2 1e-4

Core tensor size 156 MB 57 GB

Read .1 s 139 s

Reconstruct .1 s 21 s

Write 6 s .02 s

Required memory 185 MB 58 GB

� Size of original data: 6 TB
� Reconstructing a single variable at a single timestep along a 

slice of the z axis (24 MB)
� Ran on a single node with 128 GB of RAM
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Software: TuckerMPI

� Open source code for computing Tucker compression
� MPI/BLAS/LAPACK/C++11 
� Still in development but available for testing
� Looking for new applications and users
� Interested in partnering

git@gitlab.com:tensors/TuckerMPI.git
Alicia Klinvex, Woody Austin, Grey Ballard, Hemanth Kolla, Tammy Kolda
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Tensor Tucker Decomposition for 
Compression for Scientific Data
� First parallel implementation of Tucker 

decomposition
� 5-way data using regular grid
� Process 4TB data in < 1 min

� Up to 200,000X compression on real-world data 
� Specify desired relative RMSE
� Discovers latent multi-linear structure
� Enables “smart” compression rather than 

discarding data that may be useful
� More work to do…

� In situ computations
� Real-time visualization for computational 

steering, etc.
� Adaptive and non-uniform grids
� Experimental data
� Randomization
� Extensive testing

W. Austin, G. Ballard, and T. G. Kolda, Parallel Tensor Compression for Large-Scale 
Scientific Data, IPDPS’16 (arXiv:1510.06689)

http://www.analyticbridge.com/profiles/blogs/ho
w-much-is-big-data-compressible-an-interesting-
theorem

Alicia Klinvex
amklinv@sandia.gov


