An Exploration of Optimization Algorithms for High
Performance Tensor Completion

Shaden Smith!, Jongsoo Park?, and George Karypis®

LUniversity of Minnesota

2Parallel Computing Lab, Intel Corporation

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 1/23

Table of Contents

@ Introduction

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 1/23

Tensor Introduction

CPD (or: CANDECOMP /PARAFAC)

o Given: tensor R/*/*K and desired rank F
e Compute: low-rank matrices A/*F B/*F cK*F
o Element-wise: R(i,j, k) ~ S F_, A(i, f)B(j, f)C(k, f)

V74 V4

1
!
T —— ——
|
|

SN

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 2/23

Tensor Storage - Compressed Sparse Fiber (CSF)

(Smith & Karypis '15)

@ Values are stored in the leaves (not shown).
@ Modes are recursively compressed.
Compression naturally exposes opportunities for operation savings.

N NN R R = |-

N DD DNDNDNDN e

N == N == =X

N W W WN e
= [

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 3/23

Tensor Completion: Optimization

Objective
@ We only want to model observed entries (non-zeros).
A least-squares objective would predict zeros!

@ The objective is a combination of the predicition ability (the /oss) and
regularization terms (to prevent overfitting).

Regularization is controlled by A, a user-specified parameter.

minimize £(R,A,B,C)+)\ (|IAll} + B} + ||C||3)
o L;;s Regularization

F 2
E(R,A,B,C):% > (i,j, k ZA)C(k,f))

nnz(R) =1

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 4/23

Challenges

Optimization Algorithms
@ Optimization algorithms for matrix completion are relatively mature
How do they adapt to tensors?
@ We must consider multiple properties when comparing algorithms:

@ Number of operations
@ Convergence rate

© Computational intensity
Q@ Parallelism

Tensor Properties
@ Most matrix optimization algorithms parallelize over the many rows
and columns (e.g., users and items).
@ Many domains have a mix of short and long modes.

Context-aware recommender systems will have orders of magnitude
fewer contexts than users or items.

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 5/23

Table of Contents

© Alternating Least Squares

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 5/23

Alternating Least Squares (ALS)

Problem Formation
@ Hold B and C constant, solving for A convex.
@ Each row of A is a linear least squares problem.
H; is an |R(i,:,:)|x F matrix:
R(i,j, k) = B(j,:) * C(k,:). (element-wise multiplication)
A(i,2) < (HTH; + A1) " HT vec(R (i, 0))

O(F?) work per non-zero.

EEEEEEEEEE -

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 6 /23

Alternating Least Squares (ALS)
Shao '12, Karlsson '15

@ Normal equations N; = H,TH,- are formed one non-zero at a time.

o H/ vec(R(i,:,:)) is similarly accumulated into a vector g;.

Algorithm 1 ALS: updating A(i,:)

Ni . OFXF

. gj <_0F><1

: for (i,j, k) € R(i,:,:) do
x < B(j,:) x C(k,:)
N; <+ N; +xTx
qi < qi‘"R(iajv k)XT

end for

A(i,:) « (N; + M) g;

N aA R h

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 7/23

ALS - Parallelism

Shared-Memory (Shao '12)
@ Least squares problems are solved in batches of size B = (0(100).
@ Each core independently accumulates the B sets of N; and g;.
@ Corresponding N; and g; are aggregated.
°

Finally, the B inversions and updates are performed in parallel.

Distributed-Memory (Karlsson '15)

@ Non-zeros can be distributed in any fashion.
@ All N; and g; aggregated (MPI_Allreduce).
O(IF?) data communicated per process.

@ Processes evenly divide the inversions and then exchange updates
(MPI_Allgather).

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 8 /23

Contributions - Shared Memory

Tensor Representations

@ Storing multiple representations of R allows us to parallelize over
rows of A, B, and C.
No parallel reductions or synchronization required.
Each core only requires O(F?) intermediate storage.
@ If mode is short, use method of (Shao '12) with a single batch of size
equal to the dimension of that mode.

BLAS-3 Formulation

o Element-wise computation is an outer product formulation.
F? work with F? data per non-zero.

o Instead, we store (B(j,:) * C(k,:)) into rows of a thread-local buffer
Z

When Z is full, do a rank-k update: N; < N; + z2'z.

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 9/23

Contributions - Distributed Memory

Coarse-Grained Decomposition (following Shin & Kang '14)

@ Avoid communicating normal equations by using separate 1D
decompositions of A, B, and C.

@ Each process owns all necessary non-zeros and only needs to exchange
the updated factor rows.

o If mode is short, use method of (Karlsson '15) with MPI_Allreduce.

v

A

o

B[BN |

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 10 / 23

Table of Contents

© Stochastic Gradient Descent

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 10 / 23

Stochastic Gradient Descent (SGD)

Problem Formulation

e Randomly select entry R(i,j, k) and update rows of A, B, and C.
O(F) work per non-zero.

e 7 is the step size; typically O(1073).

£
8+ R(i,j, k) = Y _A(i, F)B(, f)C(k, f)

f=1
A(iy2) < A7) + 010 (BU, :) * C(k,) = AA(,)]
B(j.:) « B(.:) + n[6 (A(i,:) * C(k,:)) — AB(j,:)].
C(k,:) < C(k,:) + [0 (A(i,:) * B(j,:)) — AC(k,:)].

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 11 /23

SGD - Stratification

Beutel '14
o Strata identify independent blocks of non-zeros.

@ Each stratum is processed in parallel.

s
N [

@ There is only as much parallelism as the smallest dimension.

Limitation of Stratification

@ Sparsely populated strata are communication bound.

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 12 /23

Contributions - SGD

Problem Relaxation: Cheat!
@ Shared-memory: go Hogwild! and allow race conditions.

@ Distributed-memory: limit the number of strata to reduce
communication and handle short modes.

@ Assign multiple processes to the same stratum (called a team).
@ Each performs updates on its own versions of the factors.

@ At the end, the updates are exchanged among the team.

i
/4
|

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 13 /23

Table of Contents

@ Coordinate Descent

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 13 /23

Coordinate Descent (CCD++)

e O(F) work per non-zero (same as SGD).

= (9 T
1 s 2 []

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 14 / 23

@ Rank-1 factors are updated in sequence. J

CCD+++ - Parallelism

Distributed-Memory (Karlsson '15, Shin '15)

@ Each entry of A(:, f) is computed in parallel.

Distributing non-zeros requires «; and [3; to be aggregated.
Communication volume is O(IF) per process.

@ All 6 can be maintained in a residual tensor.
All updates are totally parallel - no communication needed.

F
5Uk — R 7./7 ZA(I B(J: (kv f)

aie > Gk B(j,f C(k, 1))

R(iy:1)
R(i,:,:)

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion

Contributions - Shared Memory

CSF Formulation
@ Column-wise methods require F passes over the sparse tensor.
CCD++ requires a high memory bandwidth.

@ CSF shrinks the memory footprint of the tensor and structures
memory accesses.

Fewer operations and a reduced memory bandwidth.

@ One example is during residual computation:

v A(i,:) «B(j,),

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion

Contributions - Distributed Memory

Medium-Grained Decomposition (Smith & Karypis '16)
@ Distributing non-zeros over a grid limits communication to the grid
layer.

@ For short modes, we use a grid dimension of one and fully replicate
the factor.

Non-zeros are still distributed and processed in parallel.

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 17 /23

Table of Contents

© Experiments

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 17 /23

Experimental Setup

Tensor Dataset
@ We use Yahoo! Music ratings from the 2011 KDD Cup.
@ 1M users x 625K songs x 133 months with 210M ratings.
o More datasets in paper (5C'16)

Computing Environment
@ All experiments performed on the Cori supercomputer at NERSC.

@ Nodes have two sixteen-core Intel processors (Haswell).
@ Implemented as part of open source library SPLATT.
Written in C with hybrid MPI+OpenMP parallelism.

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 18 /23

Strong Scaling - Rank 10

4.00
Bl ALS
o e @ ® SGD
2.00" ol A-A CCD++

Iy
°
°

Time per epoch (s)
o
]
=)

2 64 128 256 512 1024
Number of cores

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 19 /23

Benchmarking - Rank 10

@ base-ALS and base-CCD++ from Karlsson '15 (C++ and MPI).

512.00
A--A base-ALS
A
256.00 B8 splatt-ALS
128.00; . A X-X base-CCD++
64.00 e splatt-CCD++

32.00
16.00
8.00
4.00
2.00

Time per epoch (s)

1.00
0.50
0.25

0.12

0.06— 7 8 16 32 64 128 256 5iz 1024
Number of cores

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 20 /23

Convergence @ 1 core

o Convergence is detected if the RMSE was not improved after 20
epochs.

!

F10 ALS
F40 ALS
F10 CCD++
F40 CCD++
~— F10 SGD

--+ F40 SGD

30f |

1]

»
>

N
0o

Validation RMSE
N
[=)]

N
N

22

0 2000 4000 6000 8000 10000
Time (seconds)

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 21 /23

Convergence @ 1024 cores

o Convergence is detected if the RMSE was not improved after 20

epochs.
=—a F10 ALS
i u-u F40 ALS
ElUIHE +—4 F10 CCD++
: +-2 F40 CCD++
~— F10 SGD
: --- F40 SGD
w28
=
©
c
2
%26
2
d
>
24
22
0 10 20 30 40 50 60

Time (seconds)

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 22/23

Table of Contents

@ Conclusions

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 22/23

Conclusions

Optimization Algorithms
@ We scale ALS, SGD, and CCD++ to (past?) 1024 cores.
@ SGD is best for small-scale systems.

@ ALS is more expensive but shows fastest convergence at scale.

o CCD-++ strong scales best.
Maybe overtake ALS convergence at larger scale?

Release
@ Paper to appear in SC'16

@ Pre-print and source code to come next month:
http://cs.umn.edu/~splatt/

George Karypis, karypis@cs.umn.edu High Performance Tensor Completion 23 /23

http://cs.umn.edu/~splatt/

	Introduction
	Alternating Least Squares
	Stochastic Gradient Descent
	Coordinate Descent
	Experiments
	Conclusions

