High Performance Parallel Tucker Decomposition of Sparse Tensors

Oguz Kaya

INRIA and LIP, ENS Lyon, France

SIAM PP'16, April 14, 2016, Paris, France

Joint work with:

Bora Uçar, CNRS and LIP, ENS Lyon, France

- Tucker decomposition

 - provides a rank-(R₁,..., R_N) approximation of a tensor.
 consists of a core tensor G ∈ ℝ^{R₁×···×R_N} and N matrices having R₁,..., R_N columns.
- We are interested in the case when \mathcal{X} is **big**. sparse, and is of low rank.
 - Example: Google web queries, Netflix movie ratings, Amazon product reviews, etc.

2/16

- Tucker decomposition

 - provides a rank-(R₁,..., R_N) approximation of a tensor.
 consists of a core tensor G ∈ ℝ^{R₁×···×R_N} and N matrices having R₁,..., R_N columns.
- We are interested in the case when \mathcal{X} is **big**. sparse, and is of low rank.
 - Example: Google web queries, Netflix movie ratings, Amazon product reviews, etc.

• Related Work:

- Matlab Tensor Toolbox by Kolda et al.
- Efficient and scalable computations with sparse tensors (Baskaran et al., '12)
- Parallel Tensor Compression for Large-Scale Scientific Data (Austin et al., '15)
- Haten2: Billion-scale tensor decompositions (Jung et al., '15)
- Applications (in data mining):
 - CubeSVD: A Novel Approach to Personalized Web Search (Sun et al., '05)
 - Tag Recommendations Based on Tensor Dimensionality Reduction (Symeonidis et al., '08)
 - Extended feature combination model for recommendations in location-based mobile services (Sattari et al. '15)
- Goal: To compute sparse Tucker decomposition in parallel (shared/distributed memory).

• Related Work:

- Matlab Tensor Toolbox by Kolda et al.
- Efficient and scalable computations with sparse tensors (Baskaran et al., '12)
- Parallel Tensor Compression for Large-Scale Scientific Data (Austin et al., '15)
- Haten2: Billion-scale tensor decompositions (Jung et al., '15)
- Applications (in data mining):
 - CubeSVD: A Novel Approach to Personalized Web Search (Sun et al., '05)
 - Tag Recommendations Based on Tensor Dimensionality Reduction (Symeonidis et al., '08)
 - Extended feature combination model for recommendations in location-based mobile services (Sattari et al. '15)

• Goal: To compute sparse Tucker decomposition in parallel (shared/distributed memory).

• Related Work:

- Matlab Tensor Toolbox by Kolda et al.
- Efficient and scalable computations with sparse tensors (Baskaran et al., '12)
- Parallel Tensor Compression for Large-Scale Scientific Data (Austin et al., '15)
- Haten2: Billion-scale tensor decompositions (Jung et al., '15)
- Applications (in data mining):
 - CubeSVD: A Novel Approach to Personalized Web Search (Sun et al., '05)
 - Tag Recommendations Based on Tensor Dimensionality Reduction (Symeonidis et al., '08)
 - Extended feature combination model for recommendations in location-based mobile services (Sattari et al. '15)
- Goal: To compute sparse Tucker decomposition in parallel (shared/distributed memory).

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

- We discuss the case where $R_1 = R_2 = \cdots = R_N = R$ and N = 3.
- $\mathbf{A} \in \mathbb{R}^{I imes R}$, $\mathbf{B} \in \mathbb{R}^{J imes R}$, and $\mathbf{C} \in \mathbb{R}^{K imes R}$ are dense.
- $\hat{\mathbf{A}} \leftarrow [\mathcal{X} \times_2 \mathbf{B} \times_3 \mathbf{C}]_{(1)} \in \mathbb{R}^{l \times R^2}$ is called tensor-times-matrix multiply (TTM).
- $\hat{\mathbf{A}} \in \mathbb{R}^{I \times R^{N-1}}, \hat{\mathbf{B}} \in \mathbb{R}^{J \times R^{N-1}}$, and $\hat{\mathbf{C}} \in \mathbb{R}^{K \times R^{N-1}}$ are dense. $(R^2$ columns for N = 3)

(D) (A) (A) (A) (A)

- We discuss the case where $R_1 = R_2 = \cdots = R_N = R$ and N = 3.
- $\mathbf{A} \in \mathbb{R}^{I \times R}$, $\mathbf{B} \in \mathbb{R}^{J \times R}$, and $\mathbf{C} \in \mathbb{R}^{K \times R}$ are dense.
- $\hat{A} \leftarrow [X \times_2 B \times_3 C]_{(1)} \in \mathbb{R}^{l \times R^2}$ is called tensor-times-matrix multiply (TTM).
- $\hat{\mathbf{A}} \in \mathbb{R}^{I \times R^{N-1}}, \hat{\mathbf{B}} \in \mathbb{R}^{J \times R^{N-1}}$, and $\hat{\mathbf{C}} \in \mathbb{R}^{K \times R^{N-1}}$ are dense. $(R^2 \text{ columns for } N = 3)$

 Algorithm: HOOI for 3rd order tensors

 repeat

 1
 $\hat{A} \leftarrow [\mathcal{X} \times_2 B \times_3 C]_{(1)}$

 2
 $A \leftarrow TRSVD(\hat{A}, R_1) //R_1$ leading left singular vectors

 3
 $\hat{B} \leftarrow [\mathcal{X} \times_1 A \times_3 C]_{(2)}$

 4
 $B \leftarrow TRSVD(\hat{B}, R_2)$

 5
 $\hat{C} \leftarrow [\mathcal{X} \times_1 A \times_2 B]_{(2)}$

 6
 $C \leftarrow TRSVD(\hat{C}, R_3)$

 until no more improvement or maximum iterations reached

 7
 $\mathcal{G} \leftarrow \mathcal{X} \times_1 A \times_2 B \times_3 C$

 8
 return [\mathcal{G}; A, B, C]

(D) (A) (A) (A) (A)

- We discuss the case where $R_1 = R_2 = \cdots = R_N = R$ and N = 3.
- $\mathbf{A} \in \mathbb{R}^{I \times R}$, $\mathbf{B} \in \mathbb{R}^{J \times R}$, and $\mathbf{C} \in \mathbb{R}^{K \times R}$ are dense.
- $\hat{\mathbf{A}} \leftarrow [\mathcal{X} \times_2 \mathbf{B} \times_3 \mathbf{C}]_{(1)} \in \mathbb{R}^{I \times R^2}$ is called tensor-times-matrix multiply (TTM).
- $\hat{\mathbf{A}} \in \mathbb{R}^{I \times \mathbb{R}^{N-1}}, \hat{\mathbf{B}} \in \mathbb{R}^{J \times \mathbb{R}^{N-1}}$, and $\hat{\mathbf{C}} \in \mathbb{R}^{K \times \mathbb{R}^{N-1}}$ are dense. (\mathbb{R}^2 columns for N = 3)

 Algorithm: HOOI for 3rd order tensors

 repeat

 1
 $\hat{A} \leftarrow [\mathcal{X} \times_2 B \times_3 C]_{(1)}$

 2
 $A \leftarrow TRSVD(\hat{A}, R_1) //R_1$ leading left singular vectors

 3
 $\hat{B} \leftarrow [\mathcal{X} \times_1 A \times_3 C]_{(2)}$

 4
 $B \leftarrow TRSVD(\hat{B}, R_2)$

 5
 $\hat{C} \leftarrow [\mathcal{X} \times_1 A \times_2 B]_{(2)}$

 6
 $C \leftarrow TRSVD(\hat{C}, R_3)$

 until no more improvement or maximum iterations reached

 7
 $\mathcal{G} \leftarrow \mathcal{X} \times_1 A \times_2 B \times_3 C$

 8
 return [\mathcal{G}; A, B, C]

(D) (A) (A) (A) (A)

- We discuss the case where $R_1 = R_2 = \cdots = R_N = R$ and N = 3.
- $\mathbf{A} \in \mathbb{R}^{I \times R}$, $\mathbf{B} \in \mathbb{R}^{J \times R}$, and $\mathbf{C} \in \mathbb{R}^{K \times R}$ are dense.
- $\mathbf{\hat{A}} \leftarrow [\mathbf{X} \times_2 \mathbf{B} \times_3 \mathbf{C}]_{(1)} \in \mathbb{R}^{I \times R^2}$ is called tensor-times-matrix multiply (TTM).
- $\hat{\mathbf{A}} \in \mathbb{R}^{I \times R^{N-1}}, \hat{\mathbf{B}} \in \mathbb{R}^{J \times R^{N-1}}$, and $\hat{\mathbf{C}} \in \mathbb{R}^{K \times R^{N-1}}$ are dense. (R^2 columns for N = 3)

・ロト ・ 同ト ・ ヨト ・ ヨト

• We discuss the case where $R_1 = R_2 = \cdots = R_N = R$ and N = 3.

•
$$\mathbf{A} \in \mathbb{R}^{I imes R}$$
, $\mathbf{B} \in \mathbb{R}^{J imes R}$, and $\mathbf{C} \in \mathbb{R}^{K imes R}$ are dense

- $\mathbf{\hat{A}} \leftarrow [\mathbf{X} \times_2 \mathbf{B} \times_3 \mathbf{C}]_{(1)} \in \mathbb{R}^{l \times R^2}$ is called tensor-times-matrix multiply (TTM).
- $\hat{\mathbf{A}} \in \mathbb{R}^{I \times R^{N-1}}, \hat{\mathbf{B}} \in \mathbb{R}^{J \times R^{N-1}}$, and $\hat{\mathbf{C}} \in \mathbb{R}^{K \times R^{N-1}}$ are dense. (R^2 columns for N = 3)

Results

Tensor-Times-Matrix Multiply

- $\mathbf{\hat{A}} \leftarrow [\mathbf{\mathcal{X}} \times_2 \mathbf{B} \times_3 \mathbf{C}]_{(1)}$, $\mathbf{\hat{A}} \in \mathbb{R}^{I \times R^2}$
- $\mathbf{B}(j,:)\otimes \mathbf{C}(k,:)\in \mathbb{R}^{R^2}$ is a Kronecker product.
- For each nonzero x_{i,j,k};

 $\hat{\mathbf{A}}(i,:)$ receives the update $x_{i,j,k}[\mathbf{B}(j,:) \otimes \mathbf{C}(k,:)]$.

Algorithm: $\mathbf{\hat{A}} \leftarrow [\mathbf{\mathcal{X}} \times_2 \mathbf{B} \times_3 \mathbf{C}]_{(1)}$

 $\begin{array}{l} \mathbf{\hat{A}} \leftarrow zeros(I, R^2) \\ \mathbf{foreach} \times_{i,j,k} \in \boldsymbol{\mathcal{X}} \ \mathbf{do} \\ \mathbf{2} \quad \left\lfloor \quad \hat{\mathbf{A}}(i,:) \leftarrow \hat{\mathbf{A}}(i,:) + x_{i,j,k} [\mathbf{B}(j,:) \otimes \mathbf{C}(k,:)] \end{array} \right.$

(Bad) Fine-Grain Parallel TTM within Tucker-ALS

- A and are rowwise distributed
 - Process p owns and computes $\mathbf{A}(I_p, :)$ and $\hat{\mathbf{A}}(I_p, :)$.
- Tensor nonzeros are partitioned (arbitrarily)
 - Process p owns the subset of nonzeros \mathcal{X}_p
 - Performing $x_{i,j,k}[\mathbf{B}(j,:)\otimes \mathbf{C}(k,:)]$ and generating a partial result for $\hat{\mathbf{A}}(i,:)$ is a fine-grain task
 - We use post-communication scheme at each iteration: \rightarrow at the beginning, rows of $\textbf{A},\,\textbf{B},\,\text{and}\,\,\textbf{C}$ are available.
 - \rightarrow at the end, only $\boldsymbol{\mathsf{A}}$ is updated and communicated.
- Partial row results of are sent/received (fold).
- Rows of $A(I_p, :)$ are sent/received (expand).

Algorithm: Computing **A** in fine-grain HOOI at process p

foreach $x_{i,j,k} \in \mathcal{X}_{\rho}$ do 1 $\begin{bmatrix} \hat{A}(i,:) \leftarrow \hat{A}(i,:) + x_{i,j,k} [B(j,:) \otimes C(k,:)] \\ 2 \text{ Send/Receive and sum up "partial" rows of <math>\hat{A}$ 3 $A(I_{\rho}:) \leftarrow \text{TRSVD}(\hat{A}, R) \\ 4 \text{ Send/Receive rows of } A$

(Bad) Fine-Grain Parallel TTM within Tucker-ALS

- Number of rows sent/received in fold/expand are equal.
 - Each communication unit of expand has size *R*.
 - Each communication unit of fold has size R^{N-1} .
- We want to avoid assembling $\hat{\mathbf{A}}$ in **fold** communication.
- We need to compute TRSVD(\hat{A} , R).

Algorithm: Computing **A** in fine-grain HOOI at process p

イロト イポト イヨト イヨト

3

foreach $x_{i,j,k} \in \mathcal{X}_p$ do 1 $| \hat{\mathbf{A}}(i,:) \leftarrow \hat{\mathbf{A}}(i,:) + x_{i,j,k} [\mathbf{B}(j,:) \otimes \mathbf{C}(k,:)]$

- 2 Send/Receive and sum up "partial" rows of Â
- 3 $\mathbf{A}(I_p, :) \leftarrow \text{TRSVD}(\hat{\mathbf{A}}, R)$
- 4 Send/Receive rows of A

(Bad) Fine-Grain Parallel TTM within Tucker-ALS

- Number of rows sent/received in fold/expand are equal.
 - Each communication unit of expand has size *R*.
 - Each communication unit of fold has size R^{N-1} .
- We want to avoid assembling $\hat{\mathbf{A}}$ in **fold** communication.
- We need to compute TRSVD(\hat{A} , R).

Algorithm: Computing **A** in fine-grain HOOI at process p

イロト イポト イヨト イヨト

3

 $\begin{array}{c} \text{foreach } x_{i,j,k} \in \boldsymbol{\mathcal{X}}_p \text{ do} \\ \mathbf{1} \quad \left[\quad \mathbf{\hat{A}}(i,:) \leftarrow \mathbf{\hat{A}}(i,:) + x_{i,j,k} [\mathbf{B}(j,:) \otimes \mathbf{C}(k,:)] \right] \end{array}$

- 2 Send/Receive and sum up "partial" rows of \hat{A}
- 3 $\mathbf{A}(I_p, :) \leftarrow \text{TRSVD}(\mathbf{\hat{A}}, R)$
- 4 Send/Receive rows of ${\bf A}$

Computing TRSVD

- Gram matrix **ÂÂ**^T?
- Iterative solvers?
 - Need to perform $\hat{\mathbf{A}}_{X}$ and $\hat{\mathbf{A}}^{T}_{X}$ efficiently.

Image: A math a math

э

Computing TRSVD

• Gram matrix $\hat{\mathbf{A}}\hat{\mathbf{A}}^{T}$?

- Iterative solvers?
 - Need to perform $\hat{\mathbf{A}} \times$ and $\hat{\mathbf{A}}^T \times$ efficiently.

Image: A math a math

Computing TRSVD

- Gram matrix $\mathbf{\hat{A}}\mathbf{\hat{A}}^{T}$?
- Iterative solvers?
 - Need to perform $\hat{\mathbf{A}} \times$ and $\hat{\mathbf{A}}^T \times$ efficiently.

< < >> < <</>

Computing $y \leftarrow \mathbf{\hat{A}} x$

◆□> ◆□> ◆目> ◆目> ●目 ● のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ● 目 ● の Q @ >

Computing $y \leftarrow \mathbf{\hat{A}} x$

8/16

Computing $y \leftarrow \hat{\mathbf{A}}x$

• For each unit of communication, we perform extra work in MxV.

Computing $y \leftarrow \hat{\mathbf{A}}x$

• Instead of communicating R^{N-1} entries, we communicate 1! (per SVD iteration)

Computing $y \leftarrow \mathbf{\hat{A}} x$

- $y \leftarrow \hat{\mathbf{A}}^T x$ works in reverse with the same communication cost.
- $\bullet\,$ Row distribution of y and left-singular vectors are the same as \hat{A}
 - A gets the same row distribution as $\hat{\mathbf{A}}.$

(Good) Fine-Grain Parallel TTM within Tucker-ALS

Algorithm: Computing **A** in fine-grain HOOI at process p

foreach $x_{i,j,k} \in \mathcal{X}_{\rho}$ do 1 $\begin{bmatrix} \hat{\mathbf{A}}(i,:) \leftarrow \hat{\mathbf{A}}(i,:) + x_{i,j,k} [\mathbf{B}(j,:) \otimes \mathbf{C}(k,:)] \\ 2 \mathbf{A}(I_{\rho},:) \leftarrow \text{TRSVD}(\hat{\mathbf{A}}, R, \mathsf{M} \times \mathsf{V}(\dots), \mathsf{MT} \times \mathsf{V}(\dots)) \\ 3 \text{ Send/Receive rows of } \mathbf{A} \end{bmatrix}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Results

Hypergraph Model for Parallel HOOI

- Multi-constraint hypergraph partitioning
 - We balance computation and memory costs.
- By minimizing the **cutsize** of the hypergraph, we minimize:
 - the total communication volume of MtV/MTxV,
 - the total extra $M{\times}V/MT{\times}V$ work,
 - and the total volume of communication for TTM.
- Ideally, should minimize the maximum, not total

Experimental Setup

- HyperTensor
 - Hybrid OpenMP/MPI code in C++
 - $\bullet\,$ Dependencies to BLAS, LAPACK, and C++11 STL
 - SLEPc/PETSc for distributed memory TRSVD computations
- IBM BlueGene/Q Machine
 - 16GB memory and 16 cores (at 1.6GHz) per node
 - Experiments using up to 4096 cores (256 nodes)
- R_i is set to 5/10 for 4/3-dimensional tensors.

Tensor	<i>I</i> ₁	I_2	<i>I</i> 3	I 4	#nonzeros
Netflix	480K	17K	2K	-	100M
NELL	3.2M	301	638K	-	78M
Delicious	1K	530K	17M	2.4M	140M
Flickr	713	319K	28M	1.6M	112M

Tensor sizes

Results

Results - Flickr/Delicious

#podoc×#coros	Delicious			Flickr				
#Houes × #cores	fine-hp	fine-rd	coarse-hp	coarse-bl	fine-hp	fine-rd	coarse-hp	coarse-bl
1 imes 16	-	-	-	-	-	-	-	-
2 imes 16	-	-	-	-	-	-	-	-
4 imes 16	-	-	-	-	-	-	-	-
8 imes 16	164.9	-	235.3	400.5	206.2	-	287.5	308.5
16 imes 16	85.2	162.0	197.5	302.4	115.6	221.8	210.5	230.1
32 imes 16	47.6	96.2	155.6	206.5	64.6	124.5	166.3	190.1
64 imes16	27.2	57.8	98.9	159.6	36.8	69.9	124.1	129.0
128 imes16	18.2	34.7	80.8	96.4	22.6	42.9	87.9	102.3
256 imes16	12.2	22.1	65.1	77.1	20.0	29.2	73.8	86.3

Per iteration runtime of the parallel HOOI (in seconds)

- Coarse-grain kernel is slow due to load imbalance and communication.
- On Delicious, fine-hp is 1.8x/5.4x/6.4x faster than fine-rd/coarse-hp/coarse-bl.
- On Flickr, fine-hp is 1.5x/3.7x/4.3x faster than fine-rd/coarse-hp/coarse-bl.
- All instances achieve scalability to 4096 cores.

Results - NELL/Netflix

#nodes × #cores		NELL				Netflix				
$\#$ iloues $\wedge \#$ cores	fine-hp	fine-rd	coarse-hp	coarse-bl	fine-hp	fine-rd	coarse-hp	coarse-bl		
1 imes 16	222.1	222.1	240.1	240.1	-	-	-	-		
2 imes 16	151.6	137.6	198.5	164.4	-	-	-	-		
4 imes 16	87.7	75.9	180.6	131.4	33.7	39.2	46.0	42.8		
8 imes 16	67.8	46.9	172.5	109.7	18.6	26.1	30.6	33.4		
16 imes 16	54.9	28.3	112.4	94.1	10.3	18.3	32.2	27.8		
32 imes 16	43.9	17.2	73.8	68.2	5.7	13.9	26.2	26.7		
64 imes16	35.4	11.9	67.1	54.5	3.9	10.9	26.2	21.7		
128 imes 16	26.7	8.4	50.3	48.5	2.9	8.7	19.8	18.7		
256 imes16	14.8	7.7	48.1	44.9	3.8	8.3	14.7	16.1		

Per iteration runtime of the parallel HOOI (in seconds)

• On Netflix, fine-hp is 2.8x/5x/5.5x faster than fine-rd/coarse-hp/coarse-bl.

13/16

• On NELL, fine-rd is faster than fine-hp (5x less total comm. but 2x more max comm.)

・ロト ・同ト ・ヨト ・ヨト

Outline

2 Parallel HOOI

Conclusion

- We provide
 - the first high performance shared/distributed memory parallel algorithm/implementation for the Tucker decomposition of sparse tensors
 - hypergraph partitioning models of these computations for better scalability.

14/16

- We achieve scalability up to 4096 cores even with random partitioning.
- We enable Tucker-based tensor analysis of very big sparse data

Conclusion

- We provide
 - the first high performance shared/distributed memory parallel algorithm/implementation for the Tucker decomposition of sparse tensors
 - hypergraph partitioning models of these computations for better scalability.

14/16

- We achieve scalability up to 4096 cores even with random partitioning.
- We enable Tucker-based tensor analysis of very big sparse data.

イロト イポト イヨト イヨト

Conclusion

- We provide
 - the first high performance shared/distributed memory parallel algorithm/implementation for the Tucker decomposition of sparse tensors
 - hypergraph partitioning models of these computations for better scalability.
- We achieve scalability up to 4096 cores even with random partitioning.
- We enable Tucker-based tensor analysis of very big sparse data.

イロト イポト イヨト イヨト

			t i	

Parallel HOO

Results

Conclusion

-

References

- O. Kaya and B. Uçar, "High-performance parallel algorithms for the Tucker decomposition of higher order sparse tensors," Tech. Rep. RR-8801, Inria, Grenoble – Rhône-Alpes, Oct 2015.
- [2] W. Austin, G. Ballard, and T. G. Kolda, "Parallel tensor compression for large-scale scientific data," tech. rep., arXiv, 2015.
- [3] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, "Haten2: Billion-scale tensor decompositions," in *IEEE 31st International Conference on Data Engineering (ICDE)*, pp. 1047–1058, 2015.
- [4] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, "Efficient and scalable computations with sparse tensors," in *IEEE Conference on High Performance Extreme Computing* (HPEC), pp. 1–6, Sept 2012.
- [5] J. Sun, H. Zeng, H. Liu, Y. Lu, and Z. Chen, "CubeSVD: A novel approach to personalized web search," in *Proceedings of the 14th International Conference on World Wide Web*, WWW '05, (New York, NY, USA), pp. 382–390, ACM, 2005.

æ

Contact

oguz.kaya@ens-lyon.fr www.oguzkaya.com

bora.ucar@ens-lyon.fr perso.ens-lyon.fr/bora.ucar

16/16