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Tucker Tensor Decomposition
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Tucker decomposition

provides a rank-(R1, . . . ,RN) approximation of a tensor.
consists of a core tensor G ∈ RR1×···×RN and N matrices having R1, . . . ,RN columns.

We are interested in the case when X is big, sparse, and is of low rank.

Example: Google web queries, Netflix movie ratings, Amazon product reviews, etc.
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Tucker Tensor Decomposition

Related Work:

Matlab Tensor Toolbox by Kolda et al.
Efficient and scalable computations with sparse tensors (Baskaran et al., ’12)
Parallel Tensor Compression for Large-Scale Scientific Data (Austin et al., ’15)
Haten2: Billion-scale tensor decompositions (Jung et al., ’15)

Applications (in data mining):

CubeSVD: A Novel Approach to Personalized Web Search (Sun et al., ’05)
Tag Recommendations Based on Tensor Dimensionality Reduction (Symeonidis et al., ’08)
Extended feature combination model for recommendations in location-based mobile
services (Sattari et al. ’15)

Goal: To compute sparse Tucker decomposition in parallel (shared/distributed memory).

3/ 16 Parallel Sparse Tucker Decompositions



Introduction Parallel HOOI Results Conclusion

Tucker Tensor Decomposition

Related Work:

Matlab Tensor Toolbox by Kolda et al.
Efficient and scalable computations with sparse tensors (Baskaran et al., ’12)
Parallel Tensor Compression for Large-Scale Scientific Data (Austin et al., ’15)
Haten2: Billion-scale tensor decompositions (Jung et al., ’15)

Applications (in data mining):

CubeSVD: A Novel Approach to Personalized Web Search (Sun et al., ’05)
Tag Recommendations Based on Tensor Dimensionality Reduction (Symeonidis et al., ’08)
Extended feature combination model for recommendations in location-based mobile
services (Sattari et al. ’15)

Goal: To compute sparse Tucker decomposition in parallel (shared/distributed memory).

3/ 16 Parallel Sparse Tucker Decompositions



Introduction Parallel HOOI Results Conclusion

Tucker Tensor Decomposition

Related Work:

Matlab Tensor Toolbox by Kolda et al.
Efficient and scalable computations with sparse tensors (Baskaran et al., ’12)
Parallel Tensor Compression for Large-Scale Scientific Data (Austin et al., ’15)
Haten2: Billion-scale tensor decompositions (Jung et al., ’15)

Applications (in data mining):

CubeSVD: A Novel Approach to Personalized Web Search (Sun et al., ’05)
Tag Recommendations Based on Tensor Dimensionality Reduction (Symeonidis et al., ’08)
Extended feature combination model for recommendations in location-based mobile
services (Sattari et al. ’15)

Goal: To compute sparse Tucker decomposition in parallel (shared/distributed memory).

3/ 16 Parallel Sparse Tucker Decompositions



Introduction Parallel HOOI Results Conclusion

Higher Order Orthogonal Iteration (HOOI) Algorithm
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Algorithm: HOOI for 3rd order tensors

repeat

1 Â← [X ×2 B×3 C](1)
2 A← TRSVD(Â,R1) //R1 leading left singular vectors

3 B̂← [X ×1 A×3 C](2)
4 B← TRSVD(B̂,R2)

5 Ĉ← [X ×1 A×2 B](2)
6 C← TRSVD(Ĉ,R3)

until no more improvement or maximum iterations reached
7 G ← X ×1 A×2 B×3 C
8 return [G; A,B,C]

We discuss the case where R1 = R2 = · · · = RN = R and N = 3.

A ∈ RI×R ,B ∈ RJ×R , and C ∈ RK×R are dense.

Â← [X ×2 B×3 C](1) ∈ RI×R2

is called tensor-times-matrix multiply (TTM).

Â ∈ RI×RN−1

,B̂ ∈ RJ×RN−1

, and Ĉ ∈ RK×RN−1

are dense. (R2 columns for N = 3)
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Tensor-Times-Matrix Multiply

Â← [X ×2 B×3 C](1), Â ∈ RI×R2

B(j , :)⊗ C(k, :) ∈ RR2

is a Kronecker product.

For each nonzero xi,j,k ;

Â(i , :) receives the update xi,j,k [B(j , :)⊗ C(k, :)].

Algorithm: Â← [X ×2 B×3 C](1)

1 Â← zeros(I ,R2)
foreach xi,j,k ∈ X do

2 Â(i , :)← Â(i , :) + xi,j,k [B(j , :)⊗ C(k, :)]
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(Bad) Fine-Grain Parallel TTM within Tucker-ALS

A and Â are rowwise distributed

Process p owns and computes A(Ip, :) and Â(Ip, :).

Tensor nonzeros are partitioned (arbitrarily)

Process p owns the subset of nonzeros X p

Performing xi,j,k [B(j , :)⊗ C(k, :)] and generating a partial
result for Â(i , :) is a fine-grain task
We use post-communication scheme at each iteration:
→ at the beginning, rows of A, B, and C are available.
→ at the end, only A is updated and communicated.

Partial row results of Â are sent/received (fold).

Rows of A(Ip, :) are sent/received (expand).

Algorithm: Computing A in fine-grain HOOI
at process p

foreach xi,j,k ∈ X p do

1 Â(i , :)← Â(i , :) + xi,j,k [B(j , :)⊗ C(k, :)]

2 Send/Receive and sum up “partial” rows of Â

3 A(Ip, :)← TRSVD(Â,R)
4 Send/Receive rows of A
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Each communication unit of fold has size RN−1.
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Computing TRSVD
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Gram matrix ÂÂT ?

Iterative solvers?

Need to perform Âx and ÂT x efficiently.
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Computing y ← Âx
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=

A2

~
A1

~
A3

~

++

A
~

x x x x

8/ 16 Parallel Sparse Tucker Decompositions



Introduction Parallel HOOI Results Conclusion

Computing y ← Âx
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For each unit of communication, we perform extra work in MxV.
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Computing y ← Âx

= ++

y 2y 3y1yy

Instead of communicating RN−1 entries, we communicate 1! (per SVD iteration)
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Computing y ← Âx

= ++

y 2y 3y1y

y ← ÂT x works in reverse with the same communication cost.

Row distribution of y and left-singular vectors are the same as Â

A gets the same row distribution as Â.
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(Good) Fine-Grain Parallel TTM within Tucker-ALS

Algorithm: Computing A in fine-grain HOOI
at process p

foreach xi,j,k ∈ X p do

1 Â(i , :)← Â(i , :) + xi,j,k [B(j , :)⊗ C(k, :)]

2 A(Ip, :)← TRSVD(Â,R,MxV(. . . ),MTxV(. . . ))
3 Send/Receive rows of A

9/ 16 Parallel Sparse Tucker Decompositions



Introduction Parallel HOOI Results Conclusion

Hypergraph Model for Parallel HOOI

Multi-constraint hypergraph partitioning

We balance computation and memory costs.

By minimizing the cutsize of the hypergraph,
we minimize:

the total communication volume of MtV/MTxV,
the total extra MxV/MTxV work,
and the total volume of communication for TTM.

Ideally, should minimize the maximum, not total

X = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}

x1,2,3 x3,1,2

x2,3,1
a2

a1

b1

c1

b2 c2

c3

b3

a3
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Experimental Setup

HyperTensor

Hybrid OpenMP/MPI code in C++
Dependencies to BLAS, LAPACK, and C++11 STL
SLEPc/PETSc for distributed memory TRSVD computations

IBM BlueGene/Q Machine

16GB memory and 16 cores (at 1.6GHz) per node
Experiments using up to 4096 cores (256 nodes)

Ri is set to 5/10 for 4/3-dimensional tensors.

Tensor sizes

Tensor I1 I2 I3 I4 #nonzeros

Netflix 480K 17K 2K - 100M

NELL 3.2M 301 638K - 78M

Delicious 1K 530K 17M 2.4M 140M

Flickr 713 319K 28M 1.6M 112M
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Results - Flickr/Delicious

Per iteration runtime of the parallel HOOI (in seconds)

#nodes×#cores
Delicious Flickr

fine-hp fine-rd coarse-hp coarse-bl fine-hp fine-rd coarse-hp coarse-bl
1× 16 - - - - - - - -
2× 16 - - - - - - - -
4× 16 - - - - - - - -
8× 16 164.9 - 235.3 400.5 206.2 - 287.5 308.5

16× 16 85.2 162.0 197.5 302.4 115.6 221.8 210.5 230.1
32× 16 47.6 96.2 155.6 206.5 64.6 124.5 166.3 190.1
64× 16 27.2 57.8 98.9 159.6 36.8 69.9 124.1 129.0

128× 16 18.2 34.7 80.8 96.4 22.6 42.9 87.9 102.3
256× 16 12.2 22.1 65.1 77.1 20.0 29.2 73.8 86.3

Coarse-grain kernel is slow due to load imbalance and communication.

On Delicious, fine-hp is 1.8x/5.4x/6.4x faster than fine-rd/coarse-hp/coarse-bl.

On Flickr, fine-hp is 1.5x/3.7x/4.3x faster than fine-rd/coarse-hp/coarse-bl.

All instances achieve scalability to 4096 cores.
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Results - NELL/Netflix

Per iteration runtime of the parallel HOOI (in seconds)

#nodes×#cores
NELL Netflix

fine-hp fine-rd coarse-hp coarse-bl fine-hp fine-rd coarse-hp coarse-bl
1× 16 222.1 222.1 240.1 240.1 - - - -
2× 16 151.6 137.6 198.5 164.4 - - - -
4× 16 87.7 75.9 180.6 131.4 33.7 39.2 46.0 42.8
8× 16 67.8 46.9 172.5 109.7 18.6 26.1 30.6 33.4

16× 16 54.9 28.3 112.4 94.1 10.3 18.3 32.2 27.8
32× 16 43.9 17.2 73.8 68.2 5.7 13.9 26.2 26.7
64× 16 35.4 11.9 67.1 54.5 3.9 10.9 26.2 21.7

128× 16 26.7 8.4 50.3 48.5 2.9 8.7 19.8 18.7
256× 16 14.8 7.7 48.1 44.9 3.8 8.3 14.7 16.1

On Netflix, fine-hp is 2.8x/5x/5.5x faster than fine-rd/coarse-hp/coarse-bl.

On NELL, fine-rd is faster than fine-hp (5x less total comm. but 2x more max comm.)
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Conclusion

We provide

the first high performance shared/distributed memory parallel algorithm/implementation
for the Tucker decomposition of sparse tensors
hypergraph partitioning models of these computations for better scalability.

We achieve scalability up to 4096 cores even with random partitioning.

We enable Tucker-based tensor analysis of very big sparse data.
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