High Performance Parallel Tucker Decomposition
of Sparse Tensors

Oguz Kaya

INRIA and LIP, ENS Lyon, France

SIAM PP'16, April 14, 2016, Paris, France

Joint work with:

Bora Ugar, CNRS and LIP, ENS Lyon, France

1/ 16 Parallel Sparse Tucker Decompositions

Introduction

Tucker Tensor Decomposition

& I|A
J
R,
@ Tucker decomposition
o provides a rank-(Ry, ..., Ry) approximation of a tensor.
o consists of a core tensor G € R ¥ *Rv and N matrices having Ri, ..., Ry columns.

2/ 16 Parallel Sparse Tucker Decompositions

Introduction

Tucker Tensor Decomposition

& I|A
J
R,
@ Tucker decomposition
o provides a rank-(Ry, ..., Ry) approximation of a tensor.
o consists of a core tensor G € R ¥ *Rv and N matrices having Ri, ..., Ry columns.

@ We are interested in the case when X is big, sparse, and is of low rank.

o Example: Google web queries, Netflix movie ratings, Amazon product reviews, etc.

2/ 16 Parallel Sparse Tucker Decompositions

Introduction

Tucker Tensor Decomposition

@ Related Work:

o Matlab Tensor Toolbox by Kolda et al.

o Efficient and scalable computations with sparse tensors (Baskaran et al., '12)
o Parallel Tensor Compression for Large-Scale Scientific Data (Austin et al., '15)
o Haten2: Billion-scale tensor decompositions (Jung et al., '15)

3/ 16 Parallel Sparse Tucker Decompositions

Introduction

Tucker Tensor Decomposition

o Related Work:
o Matlab Tensor Toolbox by Kolda et al.
o Efficient and scalable computations with sparse tensors (Baskaran et al., '12)
o Parallel Tensor Compression for Large-Scale Scientific Data (Austin et al., '15)
o Haten2: Billion-scale tensor decompositions (Jung et al., '15)
@ Applications (in data mining):
o CubeSVD: A Novel Approach to Personalized Web Search (Sun et al., '05)
e Tag Recommendations Based on Tensor Dimensionality Reduction (Symeonidis et al., '08)
o Extended feature combination model for recommendations in location-based mobile
services (Sattari et al. '15)

3/ 16 Parallel Sparse Tucker Decompositions

Introduction

Tucker Tensor Decomposition

@ Related Work:

o Matlab Tensor Toolbox by Kolda et al.
o Efficient and scalable computations with sparse tensors (Baskaran et al., '12)
o Parallel Tensor Compression for Large-Scale Scientific Data (Austin et al., '15)
o Haten2: Billion-scale tensor decompositions (Jung et al., '15)
@ Applications (in data mining):
o CubeSVD: A Novel Approach to Personalized Web Search (Sun et al., '05)
e Tag Recommendations Based on Tensor Dimensionality Reduction (Symeonidis et al., '08)
o Extended feature combination model for recommendations in location-based mobile
services (Sattari et al. '15)

@ Goal: To compute sparse Tucker decomposition in parallel (shared/distributed memory).

3/ 16 Parallel Sparse Tucker Decompositions

Introduction

Higher Order Orthogonal Iteration (HOOI) Algorithm

Algorithm: HOOI for 3rd order tensors

repeat

A« [X %2 B x3 C]m

A « TRSVD(A, R\) //R: leading left singular vectors
B« [X x1 A x3C)p
)
(

B + TRSVD(B, R,
€« [X x1 A x2 By
C + TRSVD(E, R3)
until no more improvement or maximum iterations reached
R 7G+ X x1Ax2Bx3C
! 8 return [G; A, B, C]

o g A W N o=

%

4/ 16 Parallel Sparse Tucker Decompositions

Introduction

Higher Order Orthogonal Iteration (HOOI) Algorithm

Algorithm: HOOI for 3rd order tensors
repeat

A [X x2B x3 C]m

A « TRSVD(A, R\) //R: leading left singular vectors
B« [X x1 A x3C)p
)
(

B + TRSVD(B, R,
€« [X x1 A x2 By
C + TRSVD(E, R3)
until no more improvement or maximum iterations reached
R1 7G+ X x1Ax2Bx3C
8 return [G; A, B, C]

o g A W N o=

%

@ We discuss the case where Ry = R, =--- =Ry =R and N = 3.

4/ 16 Parallel Sparse Tucker Decompositions

Introduction

Higher Order Orthogonal Iteration (HOOI) Algorithm

Algorithm: HOOI for 3rd order tensors
repeat

A [X x2B x3 C]m

A « TRSVD(A, R\) //R: leading left singular vectors
B« [X x1 A x3C)p
)
(

B + TRSVD(B, R,
€« [X x1 A x2 By
C + TRSVD(E, R3)
until no more improvement or maximum iterations reached
R1 7G+ X x1Ax2Bx3C
8 return [G; A, B, C]

%

o g A W N o=

@ We discuss the case where Ry = R, =--- =Ry =R and N = 3.
e A cR'*R B e R/*R and C € RE*R are dense.

4/ 16 Parallel Sparse Tucker Decompositions

Introduction

Higher Order Orthogonal Iteration (HOOI) Algorithm

Algorithm: HOOI for 3rd order tensors

W repeat
A [X x2B x3 C]m

A « TRSVD(A, R\) //R: leading left singular vectors

B« [X x1 A x3C)p

)

(

B + TRSVD(B, R,
€« [X x1 A x2 By
C + TRSVD(E, R3)
until no more improvement or maximum iterations reached
R1 7G+ X x1Ax2Bx3C
8 return [G; A, B, C]

& Il A

o g A W N o=

@ We discuss the case where Ry = R, =--- =Ry =R and N = 3.
o A cRI*R B ecR/¥R, and C € RX*R are dense.
o A« [X x2 B x3C|y) € R™F s called tensor-times-matrix multiply (TTM).

4/ 16 Parallel Sparse Tucker Decompositions

Introduction

Higher Order Orthogonal Iteration (HOOI) Algorithm

Algorithm: HOOI for 3rd order tensors

W repeat
A [X x2B x3 C]m

A « TRSVD(A, R\) //R: leading left singular vectors

B« [X x1 A x3C)p

)

(

B + TRSVD(B, R,
€« [X x1 A x2 By
C + TRSVD(E, R3)
until no more improvement or maximum iterations reached
R1 7G+ X x1Ax2Bx3C
8 return [G; A, B, C]

& Il A

o g A W N o=

@ We discuss the case where Ry = R, =--- =Ry =R and N = 3.
o A cRI*R B ecR/¥R, and C € RX*R are dense.
o A« [X x2 B x3C|y) € R™F s called tensor-times-matrix multiply (TTM).

o AcR*R" B cRR"™ and € € RK*R"™ 4re dense. (R? columns for N = 3)

4/ 16 Parallel Sparse Tucker Decompositions

Introduction

Tensor-Times-Matrix Multiply

o A [X x,B x3 Clw). A c RI¥F Algorithm: A « [X x, B x3 Cly

o B(j,:) @ C(k,:) € RF is a Kronecker product. 1 A < zeros(l, R?)
o For each nonzero X j «; foreafh.x;,j,k EA.Xj do .
A(i,:) receives the update x; j x[B(j,:) ® C(k,:)]. 2 | AG:) < Ai,2) +xix[B(,) @ C(k,)]

5/ 16 Parallel Sparse Tucker Decompositions

© Parallel HOO!

Parallel HOOI

(Bad) Fine-Grain Parallel TTM within Tucker-ALS

o A and A are rowwise distributed
o Process p owns and computes A(l,,:) and A(/,,:).

@ Tensor nonzeros are partitioned (arbitrarily) Algorithm: Computing A in fine-grain HOOI
o Process p owns the subset of nonzeros X, at process p
o Performing x;j «[B(J,:) ® C(k,:)] and generating a partial foreach x; € X, do
result for A(i,:) is a fine-grain task 1| AGL:) < AGL) + xik[BU,) ® Clk, 0)]
e We use post-communication scheme at each iteration: 2 Send/Receive and sum up “partial” rows of A
— at the beginning, rows of A, B, and C are available. 3 A(l,,:) « TRSVD(A, R)
— at the end, only A is updated and communicated. 4 Send/Receive rows of A
o Partial row results of A are sent/received (fold).
@ Rows of A(l,,:) are sent/received (expand).

6/ 16 Parallel Sparse Tucker Decompositions

Parallel HOOI

(Bad) Fine-Grain Parallel TTM within Tucker-ALS

Algorithm: Computing A in fine-grain HOOI

@ Number of rows sent/received in fold/expand are equal. at process p

o Each communication unit of expand has size R.

. . . . _ foreach x;j« € X, do
o Each communication unit of fold has size RV 1. ik s

| AG,2) < Ai,2) + x4[BG, 1) ® C(k,1)]
Send/Receive and sum up “partial” rows of A
A(l,,:) < TRSVD(A, R)

Send/Receive rows of A

-

o We want to avoid assembling A in fold communication.
o We need to compute TRSVD(A, R).

N

&

6/ 16 Parallel Sparse Tucker Decompositions

Parallel HOOI

(Bad) Fine-Grain Parallel TTM within Tucker-ALS

Algorithm: Computing A in fine-grain HOOI

@ Number of rows sent/received in fold/expand are equal. at process p

o Each communication unit of expand has size R.

N . . N_1 foreach x;j« € X, do
e Each communication unit oifold has size R" 7. | A(i,:)lﬂfA(I‘j’:)+X,mk[B(j,:)®C(k.:)]
@ We want to avoid assembling A in fold communication. 2 Send/Receive-and-sum-up—partiat’rows-of A
o We need to compute TRSVD(A, R). 3 A(lp.:) < TRSVD(A, R)

4 Send/Receive rows of A

6/ 16 Parallel Sparse Tucker Decompositions

Computing TRSVD

A,

w>l

A,
S==n

/ 16 Parallel Sparse Tucker Decompositions

Parallel HOOI

Computing TRSVD

e Gram matrix AAT?

/ 16 Parallel Sparse Tucker Decompositions

Parallel HOOI

Computing TRSVD

o Gram matrix AAT?
o lterative solvers?
o Need to perform Ax and ATx efficiently.

/ 16 Parallel Sparse Tucker Decompositions

Parallel HOOI

Computing y <+ Ax

N>z
w>z

8/ 16 Parallel Sparse Tucker Decompositions

Parallel HOOI

Computing y <+ Ax

8/ 16 Parallel Sparse Tucker Decompositions

Parallel HOOI

Computing y <+ Ax

@ For each unit of communication, we perform extra work in MxV.

8/ 16 Parallel Sparse Tucker Decompositions

Parallel HOOI

Computing y <+ Ax

y Y. Y2 ¥

e Instead of communicating RN~ entries, we communicate 1! (per SVD iteration)

8/ 16 Parallel Sparse Tucker Decompositions

Parallel HOOI

Computing y <+ Ax

Il
+
+

@ y < ATx works in reverse with the same communication cost.

o Row distribution of y and left-singular vectors are the same as A
o A gets the same row distribution as A

8/ 16 Parallel Sparse Tucker Decompositions

Parallel HOOI

(Good) Fine-Grain Parallel TTM within Tucker-ALS

Algorithm: Computing A in fine-grain HOOI
at process p

foreach x;x € X, do
1 L A(i,:) < A(i,:) + xij«[B(,:) ® C(k,:)]
2 A(lp,:) < TRSVD(A, R,MxV(...),MTxV(...))
3 Send/Receive rows of A

9/ 16 Parallel Sparse Tucker Decompositions

Parallel HOOI

Hypergraph Model for Parallel HOOI

X ={(1,2,3),(2,3,1),(3,1,2)}
@ Multi-constraint hypergraph partitioning
o We balance computation and memory costs.
@ By minimizing the cutsize of the hypergraph,
we minimize:
o the total communication volume of MtV/MTxV,

o the total extra MxV/MTxV work,
o and the total volume of communication for TTM.

o ldeally, should minimize the maximum, not total

10/ 16 Parallel Sparse Tucker Decompositions

e Results

Experimental Setup

@ HyperTensor

e Hybrid OpenMP/MPI code in C++
o Dependencies to BLAS, LAPACK, and C++11 STL
e SLEPc/PETSc for distributed memory TRSVD computations

o IBM BlueGene/Q Machine

e 16GB memory and 16 cores (at 1.6GHz) per node

o Experiments using up to 4096 cores (256 nodes)

@ R;is set to 5/10 for 4/3-dimensional tensors.

Tensor sizes

Tensor h b I Is F#nonzeros
Netflix 480K 17K 2K - 100M
NELL 3.2M 301 638K - 78M
Delicious 1K 530K 17M 2.4M 140M
Flickr 713 319K | 28M | 1.6M 112M

11/ 16 Parallel Sparse Tucker Decompositions

Results - Flickr/Delicious

Per iteration runtime of the parallel HOOI (in seconds)

Delicious Flickr
#nodesxgfcores fine-hp | fine-rd | coarse-hp | coarse-bl | fine-hp | fine-rd | coarse-hp | coarse-bl
1x16 - - - - - - - -
2 x 16 - - - - - - - -
4 x 16 - - - - - - - -
8 x 16 164.9 - 235.3 400.5 206.2 - 287.5 308.5
16 x 16 85.2 | 162.0 197.5 302.4 1156 | 221.8 210.5 230.1
32 x 16 47.6 96.2 155.6 206.5 64.6 | 1245 166.3 190.1
64 x 16 27.2 57.8 98.9 159.6 36.8 69.9 124.1 129.0
128 x 16 18.2 347 80.8 96.4 22.6 429 87.9 102.3
256 x 16 12.2 22.1 65.1 77.1 20.0 29.2 73.8 86.3

Coarse-grain kernel is slow due to load imbalance and communication.

On Delicious, fine-hp is 1.8x/5.4x/6.4x faster than fine-rd/coarse-hp/coarse-bl.
On Flickr, fine-hp is 1.5x/3.7x/4.3x faster than fine-rd/coarse-hp/coarse-bl.
All instances achieve scalability to 4096 cores.

12/ 16 Parallel Sparse Tucker Decompositions

Results - NELL /Netflix

Per iteration runtime of the parallel HOOI (in seconds)

NELL Netflix
#nodesx ffcores fine-hp | fine-rd | coarse-hp | coarse-bl | fine-hp | fine-rd | coarse-hp | coarse-bl
1x16 2221 | 2221 240.1 240.1 - - - -
2x 16 151.6 | 137.6 198.5 164.4 - - - -
4 x16 87.7 75.9 180.6 131.4 33.7 39.2 46.0 42.8
8 x 16 67.8 46.9 1725 109.7 18.6 26.1 30.6 33.4
16 x 16 54.9 28.3 112.4 94.1 10.3 18.3 322 27.8
32 x16 439 17.2 73.8 68.2 5.7 13.9 26.2 26.7
64 x 16 354 11.9 67.1 54.5 3.9 10.9 26.2 21.7
128 x 16 26.7 8.4 50.3 48.5 2.9 8.7 19.8 18.7
256 x 16 14.8 7.7 48.1 449 3.8 8.3 14.7 16.1

@ On Netflix, fine-hp is 2.8x/5x/5.5x faster than fine-rd/coarse-hp/coarse-bl.

@ On NELL, fine-rd is faster than fine-hp (5x less total comm. but 2x more max comm.)

13/ 16 Parallel Sparse Tucker Decompositions

@ Conclusion

Conclusion

Conclusion

o We provide

o the first high performance shared/distributed memory parallel algorithm/implementation
for the Tucker decomposition of sparse tensors
o hypergraph partitioning models of these computations for better scalability.

14/ 16 Parallel Sparse Tucker Decompositions

Conclusion

Conclusion

o We provide

o the first high performance shared/distributed memory parallel algorithm/implementation
for the Tucker decomposition of sparse tensors
o hypergraph partitioning models of these computations for better scalability.

@ We achieve scalability up to 4096 cores even with random partitioning.

14/ 16 Parallel Sparse Tucker Decompositions

Conclusion

Conclusion

o We provide

o the first high performance shared/distributed memory parallel algorithm/implementation
for the Tucker decomposition of sparse tensors
o hypergraph partitioning models of these computations for better scalability.

@ We achieve scalability up to 4096 cores even with random partitioning.

@ We enable Tucker-based tensor analysis of very big sparse data.

14/ 16 Parallel Sparse Tucker Decompositions

Conclusion
References

[1] O. Kaya and B. Ugar, “High-performance parallel algorithms for the Tucker decomposition
of higher order sparse tensors,” Tech. Rep. RR-8801, Inria, Grenoble — Rhéne-Alpes, Oct
2015.

[2] W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor compression for large-scale
scientific data,” tech. rep., arXiv, 2015.

[3] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “Haten2: Billion-scale tensor
decompositions,” in I[EEE 31st International Conference on Data Engineering (ICDE),
pp. 1047-1058, 2015.

[4] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, “Efficient and scalable computations
with sparse tensors,” in IEEE Conference on High Performance Extreme Computing
(HPEC), pp. 1-6, Sept 2012.

[5] J. Sun, H. Zeng, H. Liu, Y. Lu, and Z. Chen, "CubeSVD: A novel approach to personalized
web search,” in Proceedings of the 14th International Conference on World Wide Web,
WWW '05, (New York, NY, USA), pp. 382-390, ACM, 2005.

15/ 16 Parallel Sparse Tucker Decompositions

Conclusion

Contact

oguz.kaya@ens-lyon.fr
www.oguzkaya.com

bora.ucar@ens-lyon.fr
perso.ens-lyon.fr/bora.ucar

6 Parallel Sparse Tucker Decompositions

	Main Talk
	Introduction
	Parallel HOOI
	Results
	Conclusion

