An Input-Adaptive and In-Place Approach to Dense Tensor-Times-Matrix Multiply

Jiajia Li, **Casey Battaglino**, Ioakeim Perros, Jimeng Sun, Richard Vuduc

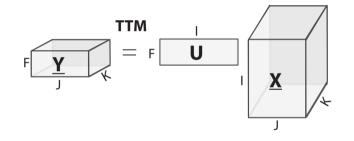
Computational Science & Engineering, Georgia Institute of Technology

14th April 2016

J. Li et.al. (CSE, GaTech)

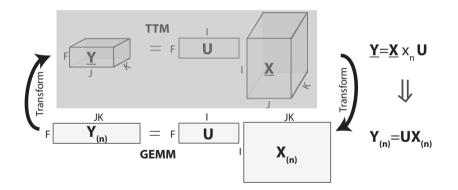
InTensLi

The problem

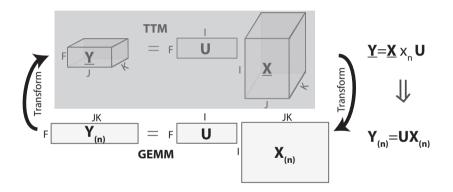


 $\underline{\mathbf{Y}} = \underline{\mathbf{X}} \mathbf{X}_{n} \mathbf{U}$

The problem



The problem



Transform:

70% running time. 50% space.

• We proposed an in-place TTM algorithm and employed auto-tuning method to adapt its parameters.

Outline

- Background
- Motivation
- InTensLi Framework
- Experiments and Analysis
- Conclusion

Tensor and Applications

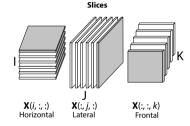
- Tensor: interpreted as a multi-dimensional array, e.g. $\mathbf{X} \in \mathbb{R}^{I \times J \times K}$
 - Special cases: vectors (x) are 1D tensors, and matrices (A)are 2D tensors.
 - Tensor dimension (N): also called mode or order.
 - We focus on dense tensors in this work.
- Applications
 - Quantum chemistry, quantum physics, signal and image processing, neuroscience, and data analytics.

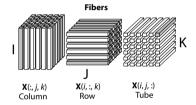
A third-order (or three-dimensional) $I \times J \times K$ tensor.

J. Li et.al. (CSE, GaTech)

Tensor Representations

Sub-tensor





• Whole tensor

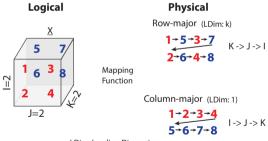
 \bullet Diff representations \rightarrow Diff algorithms \rightarrow Diff performance.

J. Li et.al. (CSE, GaTech)

Background

Memory Mapping

- Tensor organization
 - Multi-dimensional array logically
 - Linear storage physically
- Memory mapping¹.

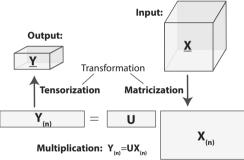


LDim: Leading Dimension

¹GARCIA, R., and LUMSDAINE, A. Multiarray: A c++ library for generic programming with arrays. Software Practive Experience 35 (2004), 159–188.

$\mathrm{T}\mathrm{T}\mathrm{M}$ Algorithm

• Baseline tensor-times-matrix multiply (TTM) algorithm in TENSOR TOOLBOX and CYCLOPS Tensor Framework (CTF).



- TTM Applications
 - Low-rank tensor decomposition.
 - $\bullet\,$ Tucker decomposition, e.g. $\rm TUCKER\text{-}HOOI$ algorithm.

$$\underline{\mathbf{Y}} = \underline{\mathbf{X}} \times_1 \mathbf{A}^{(1)T} \cdots \times_{n-1} \mathbf{A}^{(n-1)T} \times_{n+1} \mathbf{A}^{(n+1)T} \cdots \times_N \mathbf{A}^{(N)T}$$

J. Li et.al. (CSE, GaTech)

14th April 2016 9 / 31

Main Contributions

- Proposed an in-place tensor-times-matrix multiply (INTTM) algorithm, by avoiding physical reorganization of tensors.
- Built an input-adaptive framework INTENSLI to automatically adapt parameters and generate the code.
- \bullet Achieved $4\times$ and $13\times$ speedups compared to the state-of-the-art $\rm TENSOR$ $\rm TOOLBOX$ and $\rm CTF$ tools.

Observation 1: Transformation is expensive.

Notation: the number of words (Q), floating-point operations (W), last-level cache size (Z).

The relation of them is $Q \ge \frac{W}{8\sqrt{Z}} - Z^2$ for both general matrix-matrix multiply (GEMM) and TTM.

• Suppose TTM does the same number of flops as GEMM ($\hat{W} = W$), the relation of Arithmetic Intensity of GEMM and TTM: $\hat{A} \approx A/(1 + \frac{A}{m})$ when counting transformation.

$$(1+\frac{A}{m})$$
 is the penalty.

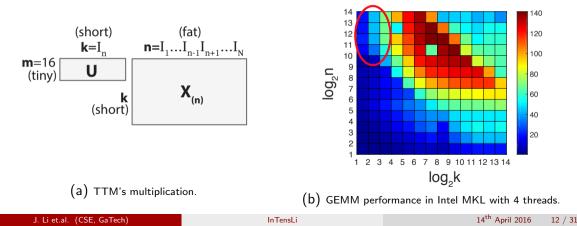
• Assume cache size Z is 8MB, the penalty of a 3-D tensor is 33.

Conclusion: When TTM and GEMM do the same number of flops, Arithmetic Intensity of TTM is decreased by a penalty of 33 or more, as tensor dimension increases.

²G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. Communication lower bounds and optimal algorithms for numerical linear algebra. Acta Numerica, 23:pp. 1–155, 2014.

Observation 2: Performance of the multiplication in $\mathbf{T}_{\mathbf{T}\mathbf{M}}$ is far below peak.

 $\bullet~\mathrm{TTM}$ algorithm involves a variety of rectangular problem sizes.



Observation 3: $\ensuremath{\mathrm{TTM}}$ organization is critical to data locality.

- There are many ways to organize data accesses.
- Choose slice representation.

Mod	e-1 Product Representation Forms	BLAS Level	Transformation	
	Tensor representation		—	
Full	$\underline{\mathbf{Y}} = \underline{\mathbf{X}} imes_1 \mathbf{U}$			
reorganization	Matrix representation	L3	Yes	
	$\mathbf{Y}_{(1)}=\mathbf{U}\mathbf{X}_{(1)}$	LJ		
Sub-tensor extraction	Fiber representation			
	$\mathbf{y}(f,:,k) = \mathbf{X}(:,:,k)\mathbf{u}(f,:),$	L2	No	
	$Loops: k = 1, \cdots, K, f = 1, \cdots, F$			
	Slice representation	L3	No	
	$\mathbf{Y}(:,:,k) = \mathbf{UX}(:,:,k), Loops: k = 1, \cdots, K$	L.J		

Table 1 :	Different re	presentation	forms of	mode-1	$T \ensuremath{\mathrm{TM}}$ on	a I	$\times J \times K$	tensor.
-----------	--------------	--------------	----------	--------	---------------------------------	-----	---------------------	---------

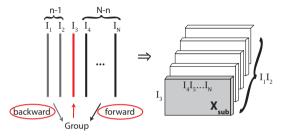
Layout

Background

2 Motivation

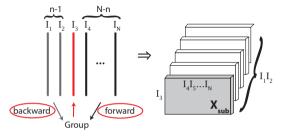
- InTensLi Framework
 Algorithmic Strategy
 InTensLi Framework
 - 4 Experiments and Analysis
 - 5 Conclusion
 - References

Algorithmic Strategy



- To avoid data copy,
 - Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
 - Lemma: TTM can be performed on up to $max\{n-1, N-n\}$ contiguous dimensions without physical reorganization.

Algorithmic Strategy



- To avoid data copy,
 - Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
 - Lemma: TTM can be performed on up to $max\{n-1, N-n\}$ contiguous dimensions without physical reorganization.
- $\bullet\,$ To get high performance of ${\rm GEMM},$
 - Find an approximate matrix size according to computer architecture.
 - $\bullet~$ Use auto-tuning method in $\rm InTENSLI$ framework.

${\rm InTTM}$ Algorithm and Comparison

• INTTM'S AI:
$$\tilde{A} \lesssim \frac{\hat{Q}}{\frac{\hat{Q}}{8\sqrt{Z}}} = 8\sqrt{Z} \approx A.$$

- Traditional TTM's AI: $\hat{A} \approx \frac{A}{1+\frac{A}{m}}$.
- INTTM eliminates the AI by a factor $1 + \frac{A}{m}$.

Input: A dense tensor $\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$, a dense matrix $\mathbf{U} \in \mathbb{R}^{J \times I_n}$, and an integer n; Output: A dense tensor $\underline{\mathbf{Y}} \in \mathbb{R}^{I_1 \times \cdots \times I_{n-1} \times J \times I_{n+1} \times \cdots \times I_N}$;

 $\begin{array}{l} // \text{ Nested loops, using } P_L \text{ threads} \\ 1: \text{ parfor } i_l = 1 \text{ to } I_l, \text{ all } i_l \in M_L \text{ do} \\ 2: \text{ if } M_C \text{ are on the left of } i_n \text{ then} \\ 3: \mathbf{X}_{\text{sub}} = \text{ inplace-mat} (\underline{\mathbf{X}}, M_C, i_n); \\ 4: \mathbf{Y}_{\text{sub}} = \text{ inplace-mat} (\underline{\mathbf{Y}}, M_C, j); \\ // \text{ Matrix-matrix multiplication, using } P_C \text{ threads} \\ 5: \mathbf{Y}_{\text{sub}} = \mathbf{X}_{\text{sub}} \mathbf{U}', \mathbf{U}' \text{ is the transpose of } \mathbf{U}. \\ 6: \text{ else} \\ 7: \mathbf{X}_{\text{sub}} = \text{ inplace-mat} (\mathbf{X}, i_n, M_C); \end{array}$

 $\mathbf{Y}_{\text{sub}} = \text{inplace-mat} (\mathbf{Y}, i, M_C);$

 $\begin{array}{ll} & // \mbox{ Matrix-matrix multiplication, using } P_C \mbox{ threads} \\ 9: & \mathbf{Y}_{\rm sub} = \mathbf{U} \mathbf{X}_{\rm sub} \\ 10: & \mbox{ end if} \end{array}$

11: end parfor

8:

12: return \underline{Y} ;

In-place Tensor-Times-Matrix Multiply (INTTM) algorithm.

${\rm InTTM}$ Algorithm and Comparison

• INTTM'S AI:
$$\tilde{A} \lesssim \frac{\hat{Q}}{\frac{\hat{Q}}{8\sqrt{Z}}} = 8\sqrt{Z} \approx A.$$

- Traditional TTM's AI: $\hat{A} \approx \frac{A}{1+\frac{A}{m}}$.
- INTTM eliminates the AI by a factor $1 + \frac{A}{m}$.

Input: A dense tensor $\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$, a dense matrix $\mathbf{U} \in \mathbb{R}^{J \times I_n}$, and an integer n; Output: A dense tensor $\underline{\mathbf{Y}} \in \mathbb{R}^{I_1 \times \cdots \times I_{n-1} \times J \times I_{n+1} \times \cdots \times I_N}$;

// Nested loops, using P_L threads 1: parfor $i_l = 1$ to I_l , all $i_l \in M_L$ do if M_C are on the left of i_n then 2: 3: $\mathbf{X}_{sub} = inplace-mat (\mathbf{X}, M_C, i_n);$ 4. $\mathbf{Y}_{sub} = inplace-mat (\mathbf{Y}, M_C, j);$ // Matrix-matrix multiplication, using P_C threads 5: $\mathbf{Y}_{sub} = \mathbf{X}_{sub} \mathbf{U}', \mathbf{U}'$ is the transpose of \mathbf{U} . 6: else 7: $\mathbf{X}_{sub} = inplace-mat (\mathbf{X}, i_n, M_C);$ 8: $\mathbf{Y}_{\text{sub}} = \text{inplace-mat} (\mathbf{Y}, i, M_C);$

// Matrix-matrix multiplication, using P_C threads 9: $\mathbf{Y}_{sub} = \mathbf{U}\mathbf{X}_{sub}$ 10: end if 11: end parfor

12: return \underline{Y} ;

In-place Tensor-Times-Matrix Multiply (INTTM) algorithm.

Layout

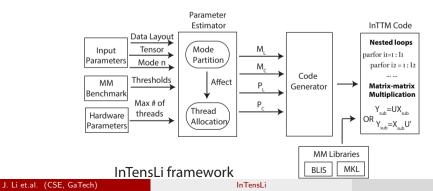
Background

2 Motivation

- InTensLi Framework
 Algorithmic Strategy
 - InTensLi Framework
- 4 Experiments and Analysis
- 5 Conclusion
- References

$InTensLi \ \textit{Framework}$

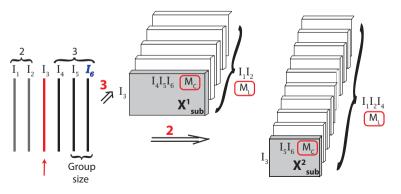
- Input: tensor features, hardware configuration, and MM benchmark.
- Parameter estimation
 - Mode partitioning: M_L and M_C .
 - Thread allocation: P_L and P_C .
- Code generation



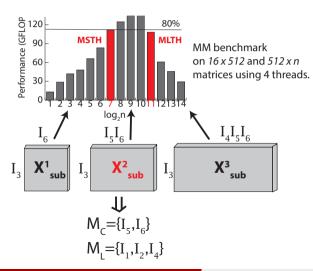
InTensLi Framework

Parameter Estimation – Mode Partitioning

- Determine grouping direction
 - Row-major \leftrightarrow forward
 - Column-major \leftrightarrow backward
- Group size decides INTTM algorithm.

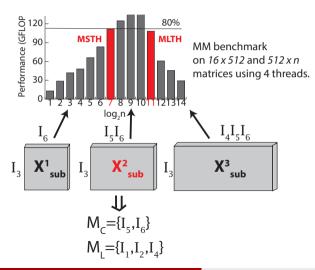


Choosing Group Size



- *MSTH* and *MLTH*: Thresholds of GEMM's size, the size of all the three operating matrices.
- *MSTH* = 1.04*MB* and *MLTH* = 7.04*MB* in our experiments.

Choosing Group Size



- *MSTH* and *MLTH*: Thresholds of GEMM's size, the size of all the three operating matrices.
- *MSTH* = 1.04*MB* and *MLTH* = 7.04*MB* in our experiments.
- Decide *M_C*: Use *MSTH* and *MLTH* to decide group size, then decide *M_C*.
- Decide *M*_L: The rest modes of *M*_C, except mode-*n*.

Thread Allocation and Code Generation

• Thread allocation

- In most cases, maximum performance is obtained by only two configurations:
 - Small matrices: all threads are allocated to nested loops.
 - $\bullet\,$ Large matrices: all threads are allocated to ${\rm GEMM}$ operation.
- \bullet A threshold $\it PTH$ is set to distinguish the $\rm GEMM$ size, which is 800 KB in our tests.

• Code generation

- $\bullet\,$ Generate nested loops and wrappers for the $\rm GEMM$ kernel.
- $\bullet\,$ Code generated in C++, using OpenMP with the collapse directive.

Experimental Platforms

- Double-precision is adopted in our experiments.
- We employ 8 and 32 threads on the two platforms respectively, considering hyper-threading.
- Xeon E7-4820 has a relatively large memory (512 GiB), allowing us to test a larger range of (dense) tensor sizes than has been common in prior single-node studies.

Intel	Intel		
Core i7-4770K	Xeon E7-4820		
Haswell	Westmere		
3.5 GHz	2.0 GHz		
4	16		
On	On		
224	128		
8 GiB	18 GiB		
32 GiB	512 GiB		
25.6 GB/s	34.2 GB/s		
2	4		
icc 15.0.2	icc 15.0.0		
	Core i7-4770K Haswell 3.5 GHz 4 On 224 8 GiB 32 GiB 25.6 GB/s 2		

Table 2 : Experimental Platforms Configuration

J. Li et.al. (CSE, GaTech)

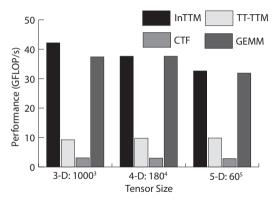
Performance Comparison

Implementations

- INTTM: INTENSLI generated C++ code with OpenMP.
- TT-TTM: TENSOR TOOLBOX library in MATLAB.
- CTF: C++ code, supporting MPI+OpenMP parallelization.
- GEMM: C++ code, baseline TTM algorithm without transformation.

Speedup

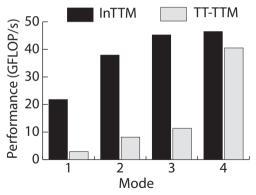
- Obtain 4× and 13× speedup compared to TENSOR TOOLBOX and CTF.
- Get close to GEMM-only's performance.



Performance comparison of $\mathrm{T}\mathrm{T}\mathrm{M}$ on mode-2 over diverse dimensional tensors.

Analysis

- Performance of different modes.
 - INTENSLI is stable for different mode-n products, while TENSOR TOOLBOX is not.

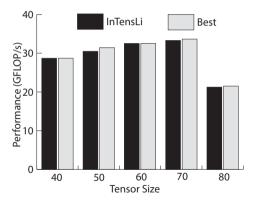


 $\label{eq:performance} \begin{array}{l} \mbox{Performance behavior of $INTTM$ against $Tensor Toolbox (TT-TTM$) for different mode products on a $160 \times 160 \times 160 \times 160$ tensor. \end{array}$

J. Li et.al. (CSE, GaTech)

Analysis

- Parameter selection
 - $\bullet~\mbox{Compare InTENSLI}$ with exhaustive search, the performance is close to optimal.



 $\label{eq:tomparison} \mbox{ Comparison between the performance of T_{TM}$ on mode-1 with predicted configuration and the actually highest $$ performance on 5th-order tensors. $$$

J. Li et.al. (CSE, GaTech)

Conclusion

Summary

- Proposed an in-place tensor-times-matrix multiply (INTTM) algorithm, by avoiding physical reorganization of tensors.
- Built an input-adaptive framework INTENSLI to automatically do optimization and generate the code.
- \bullet Achieved 4× and 13× speedups compared to the state-of-the-art $\rm TENSOR$ $\rm TOOLBOX$ and $\rm CTF$ tools.

Source code

- https://github.com/hpcgarage/InTensLi
- Contact: Jiajia Li (jiajiali@gatech.edu)

References

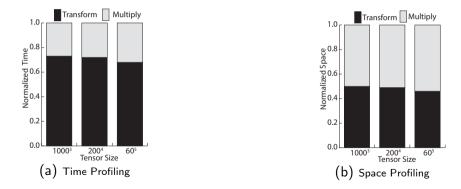
- E. Solomonik, D. Matthews, J. Hammond, and J. Dem- mel. Cyclops tensor framework: reducing commu- nication and eliminating load imbalance in massively parallel contractions. Technical Report UCB/EECS- 2012-210, EECS Department, University of California, Berkeley, Nov 2012.
- B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox version 2.5. Available from http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html, January 2012
- T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–500, 2009.

...

Backup Slides

Observation 1: Transformation is expensive.

• Transformation takes about 70% of the total run-time, and close to 50% of the total storage.



Profiling of T_{TM} algorithm on mode-2 product on 3rd, 4th, and 5th-order tensors, where the output tensors are low-rank representations of corresponding input tensors.

J. Li et.al. (CSE, GaTech)

Observation 3: $\ensuremath{\mathrm{TTM}}$ organization is critical to data locality.

• There are many ways to organize data accesses.

