An Input-Adaptive and In-Place Approach to
Dense Tensor-Times-Matrix Multiply

Jiajia Li, Casey Battaglino, loakeim Perros,
Jimeng Sun, Richard Vuduc

Computational Science & Engineering,
Georgia Institute of Technology

' 14t April 2016

Georgia JI\ College off

TechM@c@mg@uﬂﬁﬁ[m@ ~} < SunLab

e N hpc -
= Computational Science and Engineering

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 1/31

.
The problem

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 2/31

The problem

™ |
~ - _
F =rLu]

Transform

K |
L Yo J=r[U

GEMM

J. Li et.al. (CSE, GaTech)

Y=Xx U
X £
L8
el U
. =
JK
X Yw=UX,
(n)
InTensLi 14t April 2016

3/31

.
The problem

™ | Transform:

F = F U Y=Xx U 70% running time.

50% space.

[><

Transform
k
Transform

|
L Yo J=¢ U | Yu=UX,,

(a)
m
=
=
x

@ We proposed an in-place TTM algorithm and employed auto-tuning method to adapt its
parameters.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 4 /31

]
Outline

Background
Motivation
InTensLi Framework

Experiments and Analysis

Conclusion

J. Liet.al. (CSE, GaTech) InTensLi 14th April 2016 5/31

Background

Tensor and Applications

@ Tensor: interpreted as a multi-dimensional array, e.g. X € R/*J/xK,
o Special cases: vectors (x) are 1D tensors, and matrices (A)are 2D tensors.
e Tensor dimension (N): also called mode or order.
e We focus on dense tensors in this work.

@ Applications

e Quantum chemistry, quantum physics, signal and image processing, neuroscience, and data
analytics.

A third-order (or three-dimensional) / x J x K tensor.

J. Liet.al. (CSE, GaTech) InTensLi 14th April 2016 6 /31

Background

Tensor Representations

@ Sub-tensor

Slices
Fibers
K
K
J
XG,) X, ji2) X, k)
Horizontal Lateral Frontal
@ Whole tensor
X X(Zl
5 -
3 5 Matricization 152 6|~
6 °8 4
u Tensorization (3 7 4 8
2 4 #,W IK=4
J=2

o Diff representations — Diff algorithms — Diff performance.
InTensLi 14t April 2016

7/31

Background

Memory Mapping

@ Tensor organization

e Multi-dimensional array — logically

o Linear storage — physically

e Memory mapping?.

Logical

X
5

7,

=2

2 4

8

J=2

~k/'/

Physical
Row-major (LDim: k)
1-5-3-7
— K->J->1
2-6-4-8
Mapping
Function

Column-major (LDim: 1)
1-2-3-4

«— _ I->J->K
5-6-7-8

LDim: Leading Dimension

lGARCIA, R.,and LUMSDAINE, A. Multiarray:A c++ library for generic programming with arrays.Software Practive Experience 35 (2004), 159-188.

J. Li et.al. (CSE, GaTech)

InTensLi 14th April 2016 8 /31

Background

TT™m Algorithm
@ Baseline tensor-times-matrix multiply (TTM™) algorithm in TENSOR TOOLBOX and

CycLops Tensor Framework (CTF).
Input:

Output:
e X

’ Transformation

/ AN
Tensorization Matricization

U

| |

|

(n)

(n)

Multiplication: Y =UX |

o TTM Applications
e Low-rank tensor decomposition.
o Tucker decomposition, e.g. TUCKER-HOOI algorithm.

Y =Xx; AOT oos APDT s APEDT Loy AT

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016

9/31

Background

Main Contributions

@ Proposed an in-place tensor-times-matrix multiply (INTTM) algorithm, by avoiding
physical reorganization of tensors.

@ Built an input-adaptive framework INTENSLI to automatically adapt parameters and
generate the code.

@ Achieved 4x and 13x speedups compared to the state-of-the-art TENSOR T'OOLBOX
and CTF tools.

J. Li et.al. (CSE, GaTech) InTensLi 14t April 2016 10 / 31

Observation 1: Transformation is expensive.

Notation: the number of words (Q), floating-point operations (W), last-level cache size (Z).

The relation of them is Q > YL — Z 2 for both general matrix-matrix multiply (GEMM) and

8vZ
TTM.

e Suppose TTM does the same number of flops as GEMM (W = W),
the relation of Arithmetic Intensity of GEMM and TT™: A~ A/(1 + 2) when counting
transformation.
(1+ %) is the penalty.

@ Assume cache size Z is 8MB, the penalty of a 3-D tensor is 33.

Conclusion: When TTM and GEMM do the same number of flops, Arithmetic Intensity of
TTM is decreased by a penalty of 33 or more, as tensor dimension increases.

2G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. Communication lower bounds and optimal algorithms for numerical linear
algebra. Acta Numerica, 23:pp. 1-155, 2014.

J. Li et.al. (CSE, GaTech) InTensLi 14t April 2016 11 /31

Observation 2: Performance of the multiplication in TTM is far below
peak.

e T'T™ algorithm involves a variety of rectangular problem sizes.

(short) (fat) 120
6 k=I_ n=l .1 [.1 100
m=

(tiny)w S e %
X 8 7 60

k (n) = 6
(short) ; w0

3

2

1

1234567 8 91011121314

log,k
(a) TTM'’s multiplication.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016

(b) GEMM performance in Intel MKL with 4 threads.

12 /31

Observation 3: T'TM organization is critical to data locality.

@ There are many ways to organize data accesses.

@ Choose slice representation.

Table 1 : Different representation forms of mode-1 TT™M on a / X J x K tensor.

Mode-1 Product Representation Forms BLAS Level | Transformation

Tensor representation
Full Y=Xx1U

reorganization Matrix representation
Y = UX)

Fiber representation

y(f,:, k) = X(:, 1, k)u(f,:), L2 No
Loops: k=1,--- ,K,f=1,---,F

Slice representation
Y(:,:, k) =UX(,:, k), Loops : k=1,--- /K

L3 Yes

Sub-tensor
extraction

L3 No

J. Li et.al. (CSE, GaTech) InTensLi 14t April 2016 13 / 31

Algorithmic Strategy
Layout

© InTensLi Framework
@ Algorithmic Strategy

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 14 / 31

Sl ey
Algorithmic Strategy

@ To avoid data copy,

o Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
o Lemma: TTM can be performed on up to max{n— 1, N — n} contiguous dimensions without
physical reorganization.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 15 / 31

Sl ey
Algorithmic Strategy

@ To avoid data copy,
o Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
o Lemma: TTM can be performed on up to max{n— 1, N — n} contiguous dimensions without
physical reorganization.
@ To get high performance of GEMM,

e Find an approximate matrix size according to computer architecture.
o Use auto-tuning method in INTENSLI framework.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 15 / 31

Sl ey
INTTM Algorithm and Comparison

Input: A dense tensor X € RI1*X%2XXIN '3 dense matrix
U € R’7%I" and an integer n;
Output: A dense tensor Y € RI1X - XIn—1XIxInt1 X1y,

// Nested loops, using Pr threads
1: parfor 4, =1 to I;, all i, € M, do

2: if M¢ are on the left of 7,, then
' .2 Q _ ~ 3: X..» = inplace-mat (X, Mc¢, in);
o INTTM's Al: A 5 0 = 3V Z ~ A. 4: Y... = inplace-mat (Y, Mc, j);
8vVZ
o , A~ A // Matrix-matrix multiplication, using Pc threads
e Traditional TT™M's Al: A= 144" 5: Y. = XowU’, U’ is the transpose of U.
L m 6: else
@ INTTM eliminates the Al by a factor 7: X,up = inplace-mat (X, in, Mc);
A 8: Y. = inplace-mat (Y, j, Mc);
1+ 4,
// Matrix-matrix multiplication, using Pc threads
. Yo = UXous
10: end if
11: end parfor
12: return Y;

In-place Tensor-Times-Matrix Multiply (INTTM) algorithm.

J. Liet.al. (CSE, GaTech) InTensLi 14th April 2016 16 / 31

Sl ey
INTTM Algorithm and Comparison

Input: A dense tensor X € RI1*72XXIN '3 dense matrix
U € R7*" and an integer n;
Output: A dense tensor Y € RI1X X Tn—1XIxIny 1 xly,

// Nested loops, usin | P, Jthreads
1: parfor 4y = 1to I}, all 4; € do

2. if are on the left of ¢, then
) Yy Q _ ~ 3: X.u» = inplace-mat (X, Mc, in);
o INTTM S AI A 5 2 8\/ Z =~ A 4: Y... = inplace-mat (X: Me,]),
8vZ
.. , Ao A // Matrix-matrix multiplication, using- threads
o Traditional TTM's Al: A= A 50 Yo = XowU’, U is the transpose oF U.
L m 6: else
@ INTTM eliminates the Al by a factor 7 X, = inplace-mat (X, in, Mc);
8: Y... = inplace-mat (Y, 5, Mc);

1+4.
// Matrix-matrix multiplication, using Pc threads
9: Your = UXoup
10: end if
11: end parfor
12: return Y;

In-place Tensor-Times-Matrix Multiply (INTTM) algorithm.

J. Liet.al. (CSE, GaTech) InTensLi 14th April 2016 17 / 31

InTensti Framework
Layout

© InTensLi Framework

@ InTensLi Framework

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 18 / 31

InTensLi Framework
INTENSLI Framework

@ Input: tensor features, hardware configuration, and MM benchmark.

@ Parameter estimation

e Mode partitioning: M; and Mc.
o Thread allocation: P; and Pc.

o Code generation

Input
Parameters

Data Layogt
Tensor
Moden

Parameter
Estimator

Mode
Partition

MM
Benchmark|

Hardware
Parameters

Thresholds
e

Max # of
threads

iAffect
Thread
Allocatio

InTensLi framework

J. Liet.al. (CSE, GaTech)

InTensLi

InTTM Code

Code
Generator >

:

Nested loops
parfor ir=1: I
parforiz=1:12
Matrix-matrix
Multiplication

Yon=UX
OR

Ysub:XsubU’

MM Libraries

BLIS | | MKL

14t April 2016

19 /31

InTensLi Framework InTensLi Framework

Parameter Estimation — Mode Partitioning

@ Determine grouping direction
e Row-major <> forward
e Column-major <+ backward

@ Group size decides INTTM algorithm.

2 3
I L LI LI
12 Y3 o5 g LI,
3 I ILIL
//'\ 3
X1Sub I11214
5
LI (M)
N 13 2
T Group Xsu
size

J. Liet.al. (CSE, GaTech) InTensLi 14th April 2016

20 / 31

InTensLi Framework InTensLi Framework

Choosing Group Size

3120
& o
P MM benchmark
2 o Tens . ® MSTH and MLTH: Thresholds of
g 3 matrices using 4 threads. GEMM'’s size, the size of all the three
g 0 . operating matrices.
log,n e MSTH = 1.04MB and MLTH = 7.04MB
Iy LI, \ LI in our experiments.
1 2 3
13 X sub IS X sub 13 X sub

M ={1,,1,1,}
s 6l

Choosing Group Size

InTensLi Framework

[+
9
G
E MM benchmark
S onl6x512and 512xn
g matrices using 4 threads.
z
log,n \
IG ISIG 141516
L X' 1] X X3

3 sub 3 sub

sub

U

Mcz{ls’les}
M,=(1,,1,,1,}

J. Li et.al. (CSE, GaTech)

InTensLi

InTensLi Framework

MSTH and MLTH: Thresholds of
GEMM's size, the size of all the three
operating matrices.

MSTH = 1.04MB and MLTH = 7.04MB
in our experiments.

Decide M¢: Use MSTH and MLTH to
decide group size, then decide Mc.

Decide M;: The rest modes of M,
except mode-n.

14t April 2016 21 /31

InTensLi Framework InTensLi Framework

Thread Allocation and Code Generation

@ Thread allocation
e In most cases, maximum performance is obtained by only two configurations:

@ Small matrices: all threads are allocated to nested loops.
o Large matrices: all threads are allocated to GEMM operation.

o A threshold PTH is set to distinguish the GEMM size, which is 800 KB in our tests.

@ Code generation

o Generate nested loops and wrappers for the GEMM kernel.
o Code generated in C++, using OpenMP with the collapse directive.

J. Li et.al. (CSE, GaTech) InTensLi 14t April 2016 22 / 31

Experimental Platforms

@ Double-precision is adopted in our experiments.

Experiments and Analysis

@ We employ 8 and 32 threads on the two platforms respectively, considering hyper-threading.
@ Xeon E7-4820 has a relatively large memory (512 GiB), allowing us to test a larger range of (dense) tensor sizes

than has been common in prior single-node studies.

Table 2 : Experimental Platforms Configuration
Intel Intel
Parameters Core i7-4770K Xeon E7-4820
Microarchitecture Haswell Westmere
Frequency 3.5GHz 2.0GHz
7 of physical cores 4 16
Hyper-threading On On
Peak GFLOP/s 224 128
Last-level cache 8GiB 18 GiB
Memory size 32GiB 512GiB
Memory bandwidth 25.6GB/s 34.2GB/s
of memory channels 2 4
Compiler icc 15.0.2 icc 15.0.0
J. Li et.al. (CSE, GaTech) InTensLi 14t April 2016

23 /31

Experiments and Analysis

Performance Comparison

50 Bl v T

@ Implementations i crF B cevm
e INTTM: INTENSLI generated C4+ code with g 40
OpenMP. 9
@ TT-TTM: TENSOR TOOLBOX library in 5 30
MATLAB. E
@ CtF: C++ code, supporting MPI4+-OpenMP S 20
parallelization. £
@ GEMM: C++ code, baseline TTM™ algorithm Nt
without transformation. g
@ Speedup 0
@ Obtain 4x and 13X speedup compared to 3-D: 1000° 4-D:180* 5-D:60°
TENSOR TooLBOX and CTF. Tensor Size
© Get close to GEMM-only’s performance. Performance comparison of TTM on mode-2 over diverse

dimensional tensors.

J. Li et.al. (CSE, GaTech) InTensLi 14t April 2016 24 /31

Analysis

@ Performance of different modes.
o INTENSLI is stable for different mode-n products, while TENSOR TOOLBOX is not.

B hrT™ [TT-TTM

= N W b W
o O O O O
T T T T 1

Performance (GFLOP/s)

o

1 2 3 4
Mode

Performance behavior of INTTM against TENSOR ToOLBOX (TT-TTM) for different mode products on a
160 x 160 x 160 x 160 tensor.

J. Li et.al. (CSE, GaTech) InTensLi 14t April 2016 25 / 31

Analysis

@ Parameter selection
o Compare INTENSLI with exhaustive search, the performance is close to optimal.

40 -
- InTensLi |:| Best
230 =
[a
o
o
o
20
C
©
E
£10
[}
o
0
40 50 60 70 80
Tensor Size

Comparison between the performance of TTM on mode-1 with predicted configuration and the actually highest
performance on 5th-order tensors.

J. Li et.al. (CSE, GaTech) InTensLi 14t April 2016 26 / 31

Conclusion

Conclusion

Summary J

@ Proposed an in-place tensor-times-matrix multiply (INTTM) algorithm, by avoiding
physical reorganization of tensors.

@ Built an input-adaptive framework INTENSLI to automatically do optimization and
generate the code.

@ Achieved 4x and 13x speedups compared to the state-of-the-art TENSOR T'OOLBOX
and CTF tools.

Source code
@ https://github.com/hpcgarage/InTensLi

o Contact: Jiajia Li (jiajiali@gatech.edu)

J. Liet.al. (CSE, GaTech) InTensLi 14th April 2016 27 /31

https://github.com/hpcgarage/InTensLi

References

References

@ E. Solomonik, D. Matthews, J. Hammond, and J. Dem- mel. Cyclops tensor framework:
reducing commu- nication and eliminating load imbalance in massively parallel
contractions. Technical Report UCB/EECS- 2012-210, EECS Department, University of
California, Berkeley, Nov 2012.

o B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox version 2.5. Available from
http://wuw.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html, January 2012

o T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455-500, 20009.

J. Li et.al. (CSE, GaTech) InTensLi 14t April 2016 28 / 31

http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html

References

Backup Slides

J. Liet.al. (CSE, GaTech) InTensLi 14th April 2016 29 /31

References

Observation 1: Transformation is expensive.

@ Transformation takes about 70% of the total run-time, and close to 50% of the total

storage.
Transf Multipl i
o [P ransform [] ply ro. [P 7ransform [JMultiply
2038 20.8
£ g
= &
Eo,s §0.6
= =
€ €
€04 £04
2 2
0.2 0.2
0.0
1000° 200% 60° 00 1000° 200* 60°
Tensor Size Tensor Size
(a) Time Profiling (b) Space Profiling

Profiling of TTM algorithm on mode-2 product on 3rd, 4th, and 5th-order tensors, where the output tensors are low-rank

representations of corresponding input tensors.

J. Li et.al. (CSE, GaTech) InTensLi 14t April 2016

30 /31

References

Observation 3: T'TM organization is critical to data locality.

@ There are many ways to organize data accesses.

F
| J
o X i)
Non-Contigunous Contigunous

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016

31 /31

	Background
	Motivation
	InTensLi Framework
	Algorithmic Strategy
	InTensLi Framework

	Experiments and Analysis
	Conclusion
	References

