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Transform:

70% running time.
50% space.

We proposed an in-place TTM algorithm and employed auto-tuning method to adapt its
parameters.
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Background

Tensor and Applications

Tensor: interpreted as a multi-dimensional array, e.g. X ∈ RI×J×K .

Special cases: vectors (x) are 1D tensors, and matrices (A)are 2D tensors.
Tensor dimension (N): also called mode or order.
We focus on dense tensors in this work.

Applications

Quantum chemistry, quantum physics, signal and image processing, neuroscience, and data
analytics.

j=1,...,J k=
1,
...,
Ki=
1,
...
,I

A third-order (or three-dimensional) I × J × K tensor.
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Background

Tensor Representations

Sub-tensor

X(i, :, :) X(:, j, :) X(:, :, k)
Horizontal Lateral Frontal

Slices

I

J

K

X(:, j, k) X(i, :, k) X(i, j, :)
Column Row Tube

Fibers

I

J

K

Whole tensor

J=2

K=
2

I=
2

1 3

2 4

5 7

6 8
1 2
3 4

5 6
7 8 J=

2

IK=4

X X(2)

Matricization

Tensorization

Diff representations → Diff algorithms → Diff performance.
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Background

Memory Mapping

Tensor organization

Multi-dimensional array – logically
Linear storage – physically

Memory mapping1.
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Mapping
Function

5

Column-major (LDim: 1)

LDim: Leading Dimension

K -> J -> I

I -> J -> K

1
GARCIA, R.,and LUMSDAINE, A. Multiarray:A c++ library for generic programming with arrays.Software Practive Experience 35 (2004), 159–188.
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Background

Ttm Algorithm

Baseline tensor-times-matrix multiply (Ttm) algorithm in Tensor Toolbox and
Cyclops Tensor Framework (Ctf).

Input:

MatricizationTensorization

Output:

Y(n)=UX(n)Multiplication:

Transformation

X
Y

X(n)

UY(n)

Ttm Applications
Low-rank tensor decomposition.
Tucker decomposition, e.g. Tucker-HOOI algorithm.

Y = X×1 A
(1)T · · · ×n−1 A

(n−1)T ×n+1 A
(n+1)T · · · ×N A(N)T .
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Background

Main Contributions

Proposed an in-place tensor-times-matrix multiply (InTtm) algorithm, by avoiding
physical reorganization of tensors.

Built an input-adaptive framework InTensLi to automatically adapt parameters and
generate the code.

Achieved 4× and 13× speedups compared to the state-of-the-art Tensor Toolbox
and Ctf tools.
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Motivation

Observation 1: Transformation is expensive.

Notation: the number of words (Q), floating-point operations (W ), last-level cache size (Z ).

The relation of them is Q ≥ W
8
√
Z
− Z 2 for both general matrix-matrix multiply (Gemm) and

Ttm.

Suppose Ttm does the same number of flops as Gemm (Ŵ = W ),
the relation of Arithmetic Intensity of Gemm and Ttm: Â ≈ A/(1 + A

m ) when counting
transformation.
(1 + A

m ) is the penalty.

Assume cache size Z is 8MB, the penalty of a 3-D tensor is 33.

Conclusion: When Ttm and Gemm do the same number of flops, Arithmetic Intensity of
Ttm is decreased by a penalty of 33 or more, as tensor dimension increases.

2
G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. Communication lower bounds and optimal algorithms for numerical linear

algebra. Acta Numerica, 23:pp. 1–155, 2014.
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Motivation

Observation 2: Performance of the multiplication in Ttm is far below
peak.

Ttm algorithm involves a variety of rectangular problem sizes.

(tiny)

(short)

(short)

(fat)
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(a) TTM’s multiplication.
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(b) GEMM performance in Intel MKL with 4 threads.
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Motivation

Observation 3: Ttm organization is critical to data locality.

There are many ways to organize data accesses.

Choose slice representation.

Table 1 : Different representation forms of mode-1 Ttm on a I × J × K tensor.

Mode-1 Product Representation Forms BLAS Level Transformation

Full
reorganization

Tensor representation
— —

Y = X×1 U
Matrix representation

L3 Yes
Y(1) = UX(1)

Sub-tensor
extraction

Fiber representation
L2 Noy(f , :, k) = X(:, :, k)u(f , :),

Loops : k = 1, · · · ,K , f = 1, · · · ,F
Slice representation

L3 No
Y(:, :, k) = UX(:, :, k), Loops : k = 1, · · · ,K
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InTensLi Framework Algorithmic Strategy

Algorithmic Strategy

...

I1 I2 I3 I4 IN

{n-1 N-n {

backward forward Xsub

I3

I4I5...IN {I1I2

Group

To avoid data copy,

Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
Lemma: Ttm can be performed on up to max{n− 1,N − n} contiguous dimensions without
physical reorganization.

To get high performance of Gemm,

Find an approximate matrix size according to computer architecture.
Use auto-tuning method in InTensLi framework.
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InTensLi Framework Algorithmic Strategy

InTtm Algorithm and Comparison

InTtm’s AI: Ã . Q̂
Q̂

8
√
Z

= 8
√
Z ≈ A.

Traditional Ttm’s AI: Â ≈ A
1+ A

m

.

InTtm eliminates the AI by a factor
1 + A

m .

In-place Tensor-Times-Matrix Multiply (InTtm) algorithm.
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InTensLi Framework InTensLi Framework

InTensLi Framework

Input: tensor features, hardware configuration, and MM benchmark.
Parameter estimation

Mode partitioning: ML and MC .
Thread allocation: PL and PC .

Code generation

Hardware
Parameters

Max # of
threads

MM
Benchmark

Input
Parameters

Tensor

Thresholds

Mode n

Data Layout

Code 
Generator

ML

MC

PL

PC

Parameter 
Estimator InTTM Code

Mode
Partition

Thread
Allocation

A ect

parfor i1=1 : I1
parfor i2 = 1 : I2

... ...

MM Libraries

BLIS MKL

Nested loops

Matrix-matrix 
Multiplication

 Ysub=UXsub

 Ysub=XsubU’OR

InTensLi framework
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InTensLi Framework InTensLi Framework

Parameter Estimation – Mode Partitioning

Determine grouping direction
Row-major ↔ forward
Column-major ↔ backward

Group size decides InTtm algorithm.

I1 I2 I3 I4 I
6

{

Group
  size

2 3 {
I5

X1
sub

I3

I4I5I6 {I1I2

{ { I1I2I4

I3

I5I6

X2
sub

3

2

MC ML

ML

MC
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InTensLi Framework InTensLi Framework

Choosing Group Size
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X1
sub X2

subI3I3

MM benchmark 
on 16 x 512 and 512 x n 
matrices using 4 threads.

I3

MC={I5,I6}
ML={I1,I2,I4}

MSTH and MLTH: Thresholds of
Gemm’s size, the size of all the three
operating matrices.

MSTH = 1.04MB and MLTH = 7.04MB
in our experiments.

Decide MC : Use MSTH and MLTH to
decide group size, then decide MC .

Decide ML: The rest modes of MC ,
except mode-n.
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InTensLi Framework InTensLi Framework

Thread Allocation and Code Generation

Thread allocation
In most cases, maximum performance is obtained by only two configurations:

Small matrices: all threads are allocated to nested loops.
Large matrices: all threads are allocated to Gemm operation.

A threshold PTH is set to distinguish the Gemm size, which is 800 KB in our tests.

Code generation

Generate nested loops and wrappers for the Gemm kernel.
Code generated in C++, using OpenMP with the collapse directive.
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Experiments and Analysis

Experimental Platforms

Double-precision is adopted in our experiments.
We employ 8 and 32 threads on the two platforms respectively, considering hyper-threading.
Xeon E7-4820 has a relatively large memory (512 GiB), allowing us to test a larger range of (dense) tensor sizes
than has been common in prior single-node studies.

Table 2 : Experimental Platforms Configuration

Intel Intel
Parameters Core i7-4770K Xeon E7-4820

Microarchitecture Haswell Westmere
Frequency 3.5 GHz 2.0 GHz

# of physical cores 4 16
Hyper-threading On On
Peak GFLOP/s 224 128

Last-level cache 8 GiB 18 GiB
Memory size 32 GiB 512 GiB

Memory bandwidth 25.6 GB/s 34.2 GB/s
# of memory channels 2 4

Compiler icc 15.0.2 icc 15.0.0
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Experiments and Analysis

Performance Comparison

Implementations
InTtm: InTensLi generated C++ code with
OpenMP.
TT-TTM: Tensor Toolbox library in
MATLAB.
Ctf: C++ code, supporting MPI+OpenMP
parallelization.
Gemm: C++ code, baseline Ttm algorithm
without transformation.

Speedup
Obtain 4× and 13× speedup compared to
Tensor Toolbox and Ctf.
Get close to Gemm-only’s performance.
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Performance comparison of Ttm on mode-2 over diverse
dimensional tensors.
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Experiments and Analysis

Analysis

Performance of different modes.
InTensLi is stable for different mode-n products, while Tensor Toolbox is not.
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Performance behavior of InTtm against Tensor Toolbox (TT-TTM) for different mode products on a
160× 160× 160× 160 tensor.
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Experiments and Analysis

Analysis

Parameter selection
Compare InTensLi with exhaustive search, the performance is close to optimal.
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Comparison between the performance of Ttm on mode-1 with predicted configuration and the actually highest
performance on 5th-order tensors.
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Conclusion

Conclusion

Summary

Proposed an in-place tensor-times-matrix multiply (InTtm) algorithm, by avoiding
physical reorganization of tensors.

Built an input-adaptive framework InTensLi to automatically do optimization and
generate the code.

Achieved 4× and 13× speedups compared to the state-of-the-art Tensor Toolbox
and Ctf tools.

Source code

https://github.com/hpcgarage/InTensLi

Contact: Jiajia Li (jiajiali@gatech.edu)
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Observation 1: Transformation is expensive.

Transformation takes about 70% of the total run-time, and close to 50% of the total
storage.
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(b) Space Profiling

Profiling of Ttm algorithm on mode-2 product on 3rd, 4th, and 5th-order tensors, where the output tensors are low-rank
representations of corresponding input tensors.
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Observation 3: Ttm organization is critical to data locality.

There are many ways to organize data accesses.
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