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@ We proposed an in-place TTM algorithm and employed auto-tuning method to adapt its
parameters.
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Background

Tensor and Applications

@ Tensor: interpreted as a multi-dimensional array, e.g. X € R/*J/xK,
o Special cases: vectors (x) are 1D tensors, and matrices (A)are 2D tensors.
e Tensor dimension (N): also called mode or order.
e We focus on dense tensors in this work.

@ Applications

e Quantum chemistry, quantum physics, signal and image processing, neuroscience, and data
analytics.

A third-order (or three-dimensional) / x J x K tensor.
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Background

Tensor Representations
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Background

Memory Mapping

@ Tensor organization

e Multi-dimensional array — logically

o Linear storage — physically

e Memory mapping?.
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LDim: Leading Dimension

lGARCIA, R.,and LUMSDAINE, A. Multiarray:A c++ library for generic programming with arrays.Software Practive Experience 35 (2004), 159-188.
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Background

TT™m Algorithm
@ Baseline tensor-times-matrix multiply (TTM™) algorithm in TENSOR TOOLBOX and

CycLops Tensor Framework (CTF).
Input:
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o TTM Applications
e Low-rank tensor decomposition.
o Tucker decomposition, e.g. TUCKER-HOOI algorithm.
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Background

Main Contributions

@ Proposed an in-place tensor-times-matrix multiply (INTTM) algorithm, by avoiding
physical reorganization of tensors.

@ Built an input-adaptive framework INTENSLI to automatically adapt parameters and
generate the code.

@ Achieved 4x and 13x speedups compared to the state-of-the-art TENSOR T'OOLBOX
and CTF tools.
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Observation 1: Transformation is expensive.

Notation: the number of words (Q), floating-point operations (W), last-level cache size (Z).

The relation of them is Q > YL — Z 2 for both general matrix-matrix multiply (GEMM) and

8vZ
TTM.

e Suppose TTM does the same number of flops as GEMM (W = W),
the relation of Arithmetic Intensity of GEMM and TT™: A~ A/(1 + 2) when counting
transformation.
(1+ %) is the penalty.

@ Assume cache size Z is 8MB, the penalty of a 3-D tensor is 33.

Conclusion: When TTM and GEMM do the same number of flops, Arithmetic Intensity of
TTM is decreased by a penalty of 33 or more, as tensor dimension increases.

2G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. Communication lower bounds and optimal algorithms for numerical linear
algebra. Acta Numerica, 23:pp. 1-155, 2014.
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Observation 2: Performance of the multiplication in TTM is far below
peak.

e T'T™ algorithm involves a variety of rectangular problem sizes.
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(a) TTM'’s multiplication.
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Observation 3: T'TM organization is critical to data locality.

@ There are many ways to organize data accesses.

@ Choose slice representation.

Table 1 : Different representation forms of mode-1 TT™M on a / X J x K tensor.

Mode-1 Product Representation Forms BLAS Level | Transformation

Tensor representation
Full Y=Xx1U

reorganization Matrix representation
Y = UX)

Fiber representation

y(f,:, k) = X(:, 1, k)u(f,:), L2 No
Loops: k=1,--- ,K,f=1,---,F

Slice representation
Y(:,:, k) =UX(,:, k), Loops : k=1,--- /K

L3 Yes

Sub-tensor
extraction

L3 No
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Algorithmic Strategy
Layout

© InTensLi Framework
@ Algorithmic Strategy
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Sl ey
Algorithmic Strategy

@ To avoid data copy,

o Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
o Lemma: TTM can be performed on up to max{n— 1, N — n} contiguous dimensions without
physical reorganization.
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Sl ey
Algorithmic Strategy

@ To avoid data copy,
o Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
o Lemma: TTM can be performed on up to max{n— 1, N — n} contiguous dimensions without
physical reorganization.
@ To get high performance of GEMM,

e Find an approximate matrix size according to computer architecture.
o Use auto-tuning method in INTENSLI framework.
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Sl ey
INTTM Algorithm and Comparison

Input: A dense tensor X € RI1*X%2XXIN '3 dense matrix
U € R’7%I" and an integer n;
Output: A dense tensor Y € RI1X - XIn—1XIxInt1 X1y,

// Nested loops, using Pr threads
1: parfor 4, =1 to I;, all i, € M, do

2: if M¢ are on the left of 7,, then
' .2 Q _ ~ 3: X..» = inplace-mat (X, Mc¢, in);
o INTTM's Al: A 5 0 = 3V Z ~ A. 4: Y... = inplace-mat (Y, Mc, j);
8vVZ
o , A~ A // Matrix-matrix multiplication, using Pc threads
e Traditional TT™M's Al: A= 144" 5: Y. = XowU’, U’ is the transpose of U.
L m 6: else
@ INTTM eliminates the Al by a factor 7: X,up = inplace-mat (X, in, Mc);
A 8: Y. = inplace-mat (Y, j, Mc);
1+ 4,
// Matrix-matrix multiplication, using Pc threads
. Yo = UXous
10:  end if
11: end parfor
12: return Y;

In-place Tensor-Times-Matrix Multiply (INTTM) algorithm.
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Sl ey
INTTM Algorithm and Comparison

Input: A dense tensor X € RI1*72XXIN '3 dense matrix
U € R7*" and an integer n;
Output: A dense tensor Y € RI1X X Tn—1XIxIny 1 xly,

// Nested loops, usin | P, Jthreads
1: parfor 4y = 1to I}, all 4; € do

2. if are on the left of ¢, then
) Yy Q _ ~ 3: X.u» = inplace-mat (X, Mc, in);
o INTTM S AI A 5 2 8\/ Z =~ A 4: Y... = inplace-mat (X: Me, ]),
8vZ
.. , Ao A // Matrix-matrix multiplication, using- threads
o Traditional TTM's Al: A= A 50 Yo = XowU’, U is the transpose oF U.
L m 6: else
@ INTTM eliminates the Al by a factor 7 X, = inplace-mat (X, in, Mc);
8: Y... = inplace-mat (Y, 5, Mc);

1+4.
// Matrix-matrix multiplication, using Pc threads
9: Your = UXoup
10:  end if
11: end parfor
12: return Y;

In-place Tensor-Times-Matrix Multiply (INTTM) algorithm.
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Layout

© InTensLi Framework

@ InTensLi Framework
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InTensLi Framework
INTENSLI Framework

@ Input: tensor features, hardware configuration, and MM benchmark.

@ Parameter estimation

e Mode partitioning: M; and Mc.
o Thread allocation: P; and Pc.

o Code generation
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InTensLi Framework InTensLi Framework

Parameter Estimation — Mode Partitioning

@ Determine grouping direction
e Row-major <> forward
e Column-major <+ backward

@ Group size decides INTTM algorithm.
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InTensLi Framework InTensLi Framework

Choosing Group Size
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Choosing Group Size

InTensLi Framework
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MSTH and MLTH: Thresholds of
GEMM's size, the size of all the three
operating matrices.

MSTH = 1.04MB and MLTH = 7.04MB
in our experiments.

Decide M¢: Use MSTH and MLTH to
decide group size, then decide Mc.

Decide M;: The rest modes of M,
except mode-n.
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InTensLi Framework InTensLi Framework

Thread Allocation and Code Generation

@ Thread allocation
e In most cases, maximum performance is obtained by only two configurations:

@ Small matrices: all threads are allocated to nested loops.
o Large matrices: all threads are allocated to GEMM operation.

o A threshold PTH is set to distinguish the GEMM size, which is 800 KB in our tests.

@ Code generation

o Generate nested loops and wrappers for the GEMM kernel.
o Code generated in C++, using OpenMP with the collapse directive.
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Experimental Platforms

@ Double-precision is adopted in our experiments.

Experiments and Analysis

@ We employ 8 and 32 threads on the two platforms respectively, considering hyper-threading.
@ Xeon E7-4820 has a relatively large memory (512 GiB), allowing us to test a larger range of (dense) tensor sizes

than has been common in prior single-node studies.

Table 2 :  Experimental Platforms Configuration
Intel Intel
Parameters  Core i7-4770K  Xeon E7-4820
Microarchitecture Haswell Westmere
Frequency 3.5GHz 2.0GHz
7 of physical cores 4 16
Hyper-threading On On
Peak GFLOP/s 224 128
Last-level cache 8GiB 18 GiB
Memory size 32GiB 512GiB
Memory bandwidth 25.6GB/s 34.2GB/s
# of memory channels 2 4
Compiler icc 15.0.2 icc 15.0.0
J. Li et.al. (CSE, GaTech) InTensLi 14t April 2016
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Experiments and Analysis

Performance Comparison

50 Bl v T

@ Implementations i crF B cevm
e INTTM: INTENSLI generated C4+ code with g 40
OpenMP. 9
@ TT-TTM: TENSOR TOOLBOX library in 5 30
MATLAB. E
@ CtF: C++ code, supporting MPI4+-OpenMP S 20
parallelization. £
@ GEMM: C++ code, baseline TTM™ algorithm Nt
without transformation. g
@ Speedup 0
@ Obtain 4x and 13X speedup compared to 3-D: 1000° 4-D:180* 5-D:60°
TENSOR TooLBOX and CTF. Tensor Size
© Get close to GEMM-only’s performance. Performance comparison of TTM on mode-2 over diverse

dimensional tensors.
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Analysis

@ Performance of different modes.
o INTENSLI is stable for different mode-n products, while TENSOR TOOLBOX is not.

B hrT™ [ TT-TTM

= N W b W
o O O O O
T T T T 1

Performance (GFLOP/s)

o

1 2 3 4
Mode

Performance behavior of INTTM against TENSOR ToOLBOX (TT-TTM) for different mode products on a
160 x 160 x 160 x 160 tensor.
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Analysis

@ Parameter selection
o Compare INTENSLI with exhaustive search, the performance is close to optimal.
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Comparison between the performance of TTM on mode-1 with predicted configuration and the actually highest
performance on 5th-order tensors.
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Conclusion

Conclusion

Summary J

@ Proposed an in-place tensor-times-matrix multiply (INTTM) algorithm, by avoiding
physical reorganization of tensors.

@ Built an input-adaptive framework INTENSLI to automatically do optimization and
generate the code.

@ Achieved 4x and 13x speedups compared to the state-of-the-art TENSOR T'OOLBOX
and CTF tools.

Source code
@ https://github.com/hpcgarage/InTensLi

o Contact: Jiajia Li (jiajiali@gatech.edu)
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Observation 1: Transformation is expensive.

@ Transformation takes about 70% of the total run-time, and close to 50% of the total

storage.
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Profiling of TTM algorithm on mode-2 product on 3rd, 4th, and 5th-order tensors, where the output tensors are low-rank

representations of corresponding input tensors.
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Observation 3: T'TM organization is critical to data locality.

@ There are many ways to organize data accesses.
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