
An Input-Adaptive and In-Place Approach to
Dense Tensor-Times-Matrix Multiply

Jiajia Li, Casey Battaglino, Ioakeim Perros,
Jimeng Sun, Richard Vuduc

Computational Science & Engineering,
Georgia Institute of Technology

14th April 2016

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 1 / 31

The problem

J

K

I

F
F

J K
Y=X xn U

ITTM

X
Y U

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 2 / 31

The problem

J

K

I

F
F

J K
Y=X xn U

I

JK
I

F

I

JK

F Y(n)=UX(n)
GEMM

TTM

X
Y U

Y(n)

X(n)

U

Tr
an

sf
or

m

Tr
an

sf
or

m

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 3 / 31

The problem

J

K

I

F
F

J K
Y=X xn U

I

JK

I

F

I

JK

F Y(n)=UX(n)
GEMM

TTM

X
Y U

Y(n)

X(n)

U

Tr
an

sf
or

m

Tr
an

sf
or

m

Transform:

70% running time.
50% space.

We proposed an in-place TTM algorithm and employed auto-tuning method to adapt its
parameters.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 4 / 31

Outline

Background

Motivation

InTensLi Framework

Experiments and Analysis

Conclusion

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 5 / 31

Background

Tensor and Applications

Tensor: interpreted as a multi-dimensional array, e.g. X ∈ RI×J×K .

Special cases: vectors (x) are 1D tensors, and matrices (A)are 2D tensors.
Tensor dimension (N): also called mode or order.
We focus on dense tensors in this work.

Applications

Quantum chemistry, quantum physics, signal and image processing, neuroscience, and data
analytics.

j=1,...,J k=
1,
...,
Ki=
1,
...
,I

A third-order (or three-dimensional) I × J × K tensor.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 6 / 31

Background

Tensor Representations

Sub-tensor

X(i, :, :) X(:, j, :) X(:, :, k)
Horizontal Lateral Frontal

Slices

I

J

K

X(:, j, k) X(i, :, k) X(i, j, :)
Column Row Tube

Fibers

I

J

K

Whole tensor

J=2

K=
2

I=
2

1 3

2 4

5 7

6 8
1 2
3 4

5 6
7 8 J=

2

IK=4

X X(2)

Matricization

Tensorization

Diff representations → Diff algorithms → Diff performance.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 7 / 31

Background

Memory Mapping

Tensor organization

Multi-dimensional array – logically
Linear storage – physically

Memory mapping1.

J=2

K=
2

I=
2

1 3

2 4

5 7

6 8

1
2

3
46

7
8

X
5

Row-major (LDim: k)

Logical Physical

1 2 3 4
6 7 8

Mapping
Function

5

Column-major (LDim: 1)

LDim: Leading Dimension

K -> J -> I

I -> J -> K

1
GARCIA, R.,and LUMSDAINE, A. Multiarray:A c++ library for generic programming with arrays.Software Practive Experience 35 (2004), 159–188.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 8 / 31

Background

Ttm Algorithm

Baseline tensor-times-matrix multiply (Ttm) algorithm in Tensor Toolbox and
Cyclops Tensor Framework (Ctf).

Input:

MatricizationTensorization

Output:

Y(n)=UX(n)Multiplication:

Transformation

X
Y

X(n)

UY(n)

Ttm Applications
Low-rank tensor decomposition.
Tucker decomposition, e.g. Tucker-HOOI algorithm.

Y = X×1 A
(1)T · · · ×n−1 A

(n−1)T ×n+1 A
(n+1)T · · · ×N A(N)T .

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 9 / 31

Background

Main Contributions

Proposed an in-place tensor-times-matrix multiply (InTtm) algorithm, by avoiding
physical reorganization of tensors.

Built an input-adaptive framework InTensLi to automatically adapt parameters and
generate the code.

Achieved 4× and 13× speedups compared to the state-of-the-art Tensor Toolbox
and Ctf tools.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 10 / 31

Motivation

Observation 1: Transformation is expensive.

Notation: the number of words (Q), floating-point operations (W), last-level cache size (Z).

The relation of them is Q ≥ W
8
√
Z
− Z 2 for both general matrix-matrix multiply (Gemm) and

Ttm.

Suppose Ttm does the same number of flops as Gemm (Ŵ = W),
the relation of Arithmetic Intensity of Gemm and Ttm: Â ≈ A/(1 + A

m) when counting
transformation.
(1 + A

m) is the penalty.

Assume cache size Z is 8MB, the penalty of a 3-D tensor is 33.

Conclusion: When Ttm and Gemm do the same number of flops, Arithmetic Intensity of
Ttm is decreased by a penalty of 33 or more, as tensor dimension increases.

2
G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. Communication lower bounds and optimal algorithms for numerical linear

algebra. Acta Numerica, 23:pp. 1–155, 2014.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 11 / 31

Motivation

Observation 2: Performance of the multiplication in Ttm is far below
peak.

Ttm algorithm involves a variety of rectangular problem sizes.

(tiny)

(short)

(short)

(fat)

m=16

k X(n)

U
k=In

n=I1...In-1In+1...IN

(a) TTM’s multiplication.
log2k

1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo
g 2n

1
2
3
4
5
6
7
8
9

10
11
12
13
14

20

40

60

80

100

120

140

(b) GEMM performance in Intel MKL with 4 threads.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 12 / 31

Motivation

Observation 3: Ttm organization is critical to data locality.

There are many ways to organize data accesses.

Choose slice representation.

Table 1 : Different representation forms of mode-1 Ttm on a I × J × K tensor.

Mode-1 Product Representation Forms BLAS Level Transformation

Full
reorganization

Tensor representation
— —

Y = X×1 U
Matrix representation

L3 Yes
Y(1) = UX(1)

Sub-tensor
extraction

Fiber representation
L2 Noy(f , :, k) = X(:, :, k)u(f , :),

Loops : k = 1, · · · ,K , f = 1, · · · ,F
Slice representation

L3 No
Y(:, :, k) = UX(:, :, k), Loops : k = 1, · · · ,K

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 13 / 31

InTensLi Framework Algorithmic Strategy

Layout

1 Background

2 Motivation

3 InTensLi Framework
Algorithmic Strategy
InTensLi Framework

4 Experiments and Analysis

5 Conclusion

6 References

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 14 / 31

InTensLi Framework Algorithmic Strategy

Algorithmic Strategy

...

I1 I2 I3 I4 IN

{n-1 N-n {

backward forward Xsub

I3

I4I5...IN {I1I2

Group

To avoid data copy,

Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
Lemma: Ttm can be performed on up to max{n− 1,N − n} contiguous dimensions without
physical reorganization.

To get high performance of Gemm,

Find an approximate matrix size according to computer architecture.
Use auto-tuning method in InTensLi framework.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 15 / 31

InTensLi Framework Algorithmic Strategy

Algorithmic Strategy

...

I1 I2 I3 I4 IN

{n-1 N-n {

backward forward Xsub

I3

I4I5...IN {I1I2

Group

To avoid data copy,

Rules: 1) compress only contiguous dimensions; 2) always include the leading dimension.
Lemma: Ttm can be performed on up to max{n− 1,N − n} contiguous dimensions without
physical reorganization.

To get high performance of Gemm,

Find an approximate matrix size according to computer architecture.
Use auto-tuning method in InTensLi framework.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 15 / 31

InTensLi Framework Algorithmic Strategy

InTtm Algorithm and Comparison

InTtm’s AI: Ã . Q̂
Q̂

8
√
Z

= 8
√
Z ≈ A.

Traditional Ttm’s AI: Â ≈ A
1+ A

m

.

InTtm eliminates the AI by a factor
1 + A

m .

In-place Tensor-Times-Matrix Multiply (InTtm) algorithm.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 16 / 31

InTensLi Framework Algorithmic Strategy

InTtm Algorithm and Comparison

InTtm’s AI: Ã . Q̂
Q̂

8
√
Z

= 8
√
Z ≈ A.

Traditional Ttm’s AI: Â ≈ A
1+ A

m

.

InTtm eliminates the AI by a factor
1 + A

m .

In-place Tensor-Times-Matrix Multiply (InTtm) algorithm.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 17 / 31

InTensLi Framework InTensLi Framework

Layout

1 Background

2 Motivation

3 InTensLi Framework
Algorithmic Strategy
InTensLi Framework

4 Experiments and Analysis

5 Conclusion

6 References

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 18 / 31

InTensLi Framework InTensLi Framework

InTensLi Framework

Input: tensor features, hardware configuration, and MM benchmark.
Parameter estimation

Mode partitioning: ML and MC .
Thread allocation: PL and PC .

Code generation

Hardware
Parameters

Max # of
threads

MM
Benchmark

Input
Parameters

Tensor

Thresholds

Mode n

Data Layout

Code
Generator

ML

MC

PL

PC

Parameter
Estimator InTTM Code

Mode
Partition

Thread
Allocation

A ect

parfor i1=1 : I1
parfor i2 = 1 : I2

... ...

MM Libraries

BLIS MKL

Nested loops

Matrix-matrix
Multiplication

 Ysub=UXsub

 Ysub=XsubU’OR

InTensLi framework
J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 19 / 31

InTensLi Framework InTensLi Framework

Parameter Estimation – Mode Partitioning

Determine grouping direction
Row-major ↔ forward
Column-major ↔ backward

Group size decides InTtm algorithm.

I1 I2 I3 I4 I
6

{

Group
 size

2 3 {
I5

X1
sub

I3

I4I5I6 {I1I2

{ { I1I2I4

I3

I5I6

X2
sub

3

2

MC ML

ML

MC

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 20 / 31

InTensLi Framework InTensLi Framework

Choosing Group Size

0

30

60

90

120

150

1413121110987654321

)s/P
OLF

G(ecna
mrofreP

log2n

80%

MSTH MLTH

X3
sub

I4I5I6I5I6I6

X1
sub X2

subI3I3

MM benchmark
on 16 x 512 and 512 x n
matrices using 4 threads.

I3

MC={I5,I6}
ML={I1,I2,I4}

MSTH and MLTH: Thresholds of
Gemm’s size, the size of all the three
operating matrices.

MSTH = 1.04MB and MLTH = 7.04MB
in our experiments.

Decide MC : Use MSTH and MLTH to
decide group size, then decide MC .

Decide ML: The rest modes of MC ,
except mode-n.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 21 / 31

InTensLi Framework InTensLi Framework

Choosing Group Size

0

30

60

90

120

150

1413121110987654321

)s/P
OLF

G(ecna
mrofreP

log2n

80%

MSTH MLTH

X3
sub

I4I5I6I5I6I6

X1
sub X2

subI3I3

MM benchmark
on 16 x 512 and 512 x n
matrices using 4 threads.

I3

MC={I5,I6}
ML={I1,I2,I4}

MSTH and MLTH: Thresholds of
Gemm’s size, the size of all the three
operating matrices.

MSTH = 1.04MB and MLTH = 7.04MB
in our experiments.

Decide MC : Use MSTH and MLTH to
decide group size, then decide MC .

Decide ML: The rest modes of MC ,
except mode-n.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 21 / 31

InTensLi Framework InTensLi Framework

Thread Allocation and Code Generation

Thread allocation
In most cases, maximum performance is obtained by only two configurations:

Small matrices: all threads are allocated to nested loops.
Large matrices: all threads are allocated to Gemm operation.

A threshold PTH is set to distinguish the Gemm size, which is 800 KB in our tests.

Code generation

Generate nested loops and wrappers for the Gemm kernel.
Code generated in C++, using OpenMP with the collapse directive.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 22 / 31

Experiments and Analysis

Experimental Platforms

Double-precision is adopted in our experiments.
We employ 8 and 32 threads on the two platforms respectively, considering hyper-threading.
Xeon E7-4820 has a relatively large memory (512 GiB), allowing us to test a larger range of (dense) tensor sizes
than has been common in prior single-node studies.

Table 2 : Experimental Platforms Configuration

Intel Intel
Parameters Core i7-4770K Xeon E7-4820

Microarchitecture Haswell Westmere
Frequency 3.5 GHz 2.0 GHz

of physical cores 4 16
Hyper-threading On On
Peak GFLOP/s 224 128

Last-level cache 8 GiB 18 GiB
Memory size 32 GiB 512 GiB

Memory bandwidth 25.6 GB/s 34.2 GB/s
of memory channels 2 4

Compiler icc 15.0.2 icc 15.0.0

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 23 / 31

Experiments and Analysis

Performance Comparison

Implementations
InTtm: InTensLi generated C++ code with
OpenMP.
TT-TTM: Tensor Toolbox library in
MATLAB.
Ctf: C++ code, supporting MPI+OpenMP
parallelization.
Gemm: C++ code, baseline Ttm algorithm
without transformation.

Speedup
Obtain 4× and 13× speedup compared to
Tensor Toolbox and Ctf.
Get close to Gemm-only’s performance.

0

10

20

30

40

50

GEMMCTF

TT-TTMInTTM

Tensor Size
3-D: 10003 4-D: 1804 5-D: 605

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Performance comparison of Ttm on mode-2 over diverse
dimensional tensors.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 24 / 31

Experiments and Analysis

Analysis

Performance of different modes.
InTensLi is stable for different mode-n products, while Tensor Toolbox is not.

0

10

20

30

40

50 TT-TTMInTTM

4321
Mode

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Performance behavior of InTtm against Tensor Toolbox (TT-TTM) for different mode products on a
160× 160× 160× 160 tensor.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 25 / 31

Experiments and Analysis

Analysis

Parameter selection
Compare InTensLi with exhaustive search, the performance is close to optimal.

40 50 60 70 80

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Tensor Size

0

10

20

30

40
BestInTensLi

Comparison between the performance of Ttm on mode-1 with predicted configuration and the actually highest
performance on 5th-order tensors.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 26 / 31

Conclusion

Conclusion

Summary

Proposed an in-place tensor-times-matrix multiply (InTtm) algorithm, by avoiding
physical reorganization of tensors.

Built an input-adaptive framework InTensLi to automatically do optimization and
generate the code.

Achieved 4× and 13× speedups compared to the state-of-the-art Tensor Toolbox
and Ctf tools.

Source code

https://github.com/hpcgarage/InTensLi

Contact: Jiajia Li (jiajiali@gatech.edu)

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 27 / 31

https://github.com/hpcgarage/InTensLi

References

References

E. Solomonik, D. Matthews, J. Hammond, and J. Dem- mel. Cyclops tensor framework:
reducing commu- nication and eliminating load imbalance in massively parallel
contractions. Technical Report UCB/EECS- 2012-210, EECS Department, University of
California, Berkeley, Nov 2012.

B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox version 2.5. Available from
http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html, January 2012

T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, 2009.

...

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 28 / 31

http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html

References

Backup Slides

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 29 / 31

References

Observation 1: Transformation is expensive.

Transformation takes about 70% of the total run-time, and close to 50% of the total
storage.

0.0

0.2

0.4

0.6

0.8

1.0
MultiplyTransform

10003 2004 605

N
or

m
al

iz
ed

 T
im

e

Tensor Size

(a) Time Profiling

0.0

0.2

0.4

0.6

0.8

1.0
MultiplyTransform

10003 2004 605

N
or

m
al

iz
ed

 S
pa

ce

Tensor Size

(b) Space Profiling

Profiling of Ttm algorithm on mode-2 product on 3rd, 4th, and 5th-order tensors, where the output tensors are low-rank
representations of corresponding input tensors.

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 30 / 31

References

Observation 3: Ttm organization is critical to data locality.

There are many ways to organize data accesses.

I

F
K

IF
JX(: ,

:, k
)

X(:, j, :)U

U

Non-Contigunous Contigunous

J. Li et.al. (CSE, GaTech) InTensLi 14th April 2016 31 / 31

	Background
	Motivation
	InTensLi Framework
	Algorithmic Strategy
	InTensLi Framework

	Experiments and Analysis
	Conclusion
	References

