Parallel Algorithms for Tensor Completion in the CP Format

Daniel Kressner Chair of Numerical Algorithms and HPC MATHICSE / SMA / SB / EPF Lausanne daniel.kressner@epfl.ch http://anchp.epfl.ch

Joint work with: Lars Karlsson (Umeå University) André Uschmajew (University of Bonn)

SIAM PP 2016

14.4.2016

Tensor completion

Goal: Complete multivariate data.

Applications:

 Completion of corrupted hyperspectral images, CT Scans, ...

・ コット (雪) (小田) (コット 日)

- Learning of multivariate functions
- Non-intrusive methods for stochastic/parametric PDEs
- Context-aware recommender systems

▶ ...

Tensor completion

Goal: Complete multivariate data.

Mathematical setting:

- $I_1 \times I_2 \times \cdots \times I_N$ tensor \mathcal{X} with very few entries known.
- $\Omega \subset [1, I_1] \cdots \times \cdots [1, I_N]$ contains (multi)indices of known entries.
- $P_{\Omega}: \mathbb{R}^{l_1 \times \cdots \times l_N} \to \mathbb{R}^{|\Omega|}$ orthogonal projection onto known entries.

Tensor completion:

$$\min_{\mathcal{X}} \quad \frac{1}{2} \|$$
known entries – P_Ω $\mathcal{X} \|^2$

(日) (日) (日) (日) (日) (日) (日)

- Ill-posed problem.
- Regularize with (multilinear) low-dimensional model for X.

Low-rank tensor completion

Goal: Complete multivariate data.

Mathematical setting:

- ► $I_1 \times I_2 \times \cdots \times I_N$ tensor \mathcal{X} with very few entries known.
- $\Omega \subset [1, I_1] \cdots \times \cdots [1, I_N]$ contains (multi)indices of known entries.
- $P_{\Omega}: \mathbb{R}^{l_1 \times \cdots \times l_N} \to \mathbb{R}^{|\Omega|}$ orthogonal projection onto known entries.

Low-rank tensor completion:

$$\min_{\mathcal{X}} \quad \frac{1}{2} \| \mathsf{P}_{\Omega} \mathcal{A} - \mathsf{P}_{\Omega} \mathcal{X} \|^{2}$$

subject to \mathcal{X} has tensor rank L

Alternatives to tensor rank (CP decomposition):

- Multilinear rank (Tucker decomposition) and mixtures.
- TT ranks/decomposition, HT ranks/decomposition, general tensor networks.

CANDECOMP/PARAFAC (CP) decomposition

\mathcal{X} has tensor rank L if it admits CP decomposition

$$\boldsymbol{\mathcal{X}} = \sum_{\ell=1}^{L} \mathbf{x}_{\ell}^{(1)} \circ \mathbf{x}_{\ell}^{(2)} \circ \cdots \circ \mathbf{x}_{\ell}^{(N)}, \qquad \mathbf{x}_{\ell}^{(n)} \in \mathbb{R}^{I_{n}}.$$
(1)

Properties of CP:

- Low data complexity: For constant L, linear (instead of exponential) complexity in N.
- ► Linear wrt *each* factor matrix $\mathbf{X}^{(n)} = [\mathbf{x}_1^{(n)}, \mathbf{x}_2^{(n)}, \dots, \mathbf{x}_L^{(n)}] \in \mathbb{R}^{l_n \times L}$.
- Tensor rank *L not* upper semi-continuous.

Low-rank tensor completion

Inserting CP into low-rank tensor completion ~->

$$\min \left\| P_{\Omega} \left(\mathcal{A} - \sum_{\ell=1}^{L} \mathbf{x}_{\ell}^{(1)} \circ \mathbf{x}_{\ell}^{(2)} \circ \cdots \circ \mathbf{x}_{\ell}^{(N)} \right) \right\|_{2}^{2}$$

This will not work well because of

Non-uniqueness:

$$\alpha \mathbf{x}_{\ell}^{(1)} \circ \cdots \circ \frac{1}{\alpha} \mathbf{x}_{\ell}^{(N)} = \mathbf{x}_{\ell}^{(1)} \circ \cdots \circ \mathbf{x}_{\ell}^{(N)}$$

for any $\alpha \neq 0$.

• Unboundedness: $||x_{\ell}^{(n)}||$ may become arbitrarily large.

Fix: Penalize factors with large norms.

(ロ) (同) (三) (三) (三) (○) (○)

Low-rank tensor completion

Low-rank tensor completion with regularization:

$$\min \left\| P_{\Omega} \left(\boldsymbol{\mathcal{A}} - \sum_{\ell=1}^{L} \mathbf{x}_{\ell}^{(1)} \circ \mathbf{x}_{\ell}^{(2)} \circ \cdots \circ \mathbf{x}_{\ell}^{(N)} \right) \right\|_{2}^{2} + \lambda \sum_{\ell=1}^{L} \sum_{n=1}^{N} \left\| \mathbf{x}_{\ell}^{(n)} \right\|_{2}^{2}$$

- ► λ regularization parameter (typically small, e.g., $\lambda = 10^{-3}$)
- nonlinear, nonconvex optimization problem
- ▶ no closed-form solution in terms of SVD for N ≥ 3
- ► quadratic convex problem in *each* individual factor matrix $\mathbf{X}^{(n)} = [\mathbf{x}_1^{(n)}, \dots, \mathbf{x}_L^{(n)}] \rightsquigarrow$ alternating optimization methods!

(日) (日) (日) (日) (日) (日) (日)

Previous parallel approaches to low-rank completion

N = 2 (matrix completion):

- ALS (alternating least-squares) [Teflioudi/Makari/Gemulla'2012, Zhou/Wilkinson/Schreiber/Pan'2008]
- CCD (cyclic coordinate descent) [Pilászy/Zibriczky/Tikk'2010, Yu et al.'2012–2013]
- SGD (stochastic gradient descent) [Gemulla et al.'2011, Recht/Ré'2013, Makari et al.'2015]
- N > 2 (tensor completion):
 - Well studied: Complete data = approximation of complete tensor
 - Incomplete data usually "fixed" via weight matrices or imputation [Hidasi/Tikk'2012], [Acar et al.2011]
 - Alternating proximal gradient method under additional nonnegativity constraints [Xu/Yin'2013]
 - Parallelization of ALS based on local CP models [Phan/Cichoki'2011]

ALS

▲□ → ▲圖 → ▲ 圖 → ▲ 圖 → 의 ۹ ()

ALS (Alternating Least-Squares)

- ► ALS alternatingly optimizes factor matrices X⁽ⁿ⁾ = [x₁⁽ⁿ⁾,...,x_L⁽ⁿ⁾] for n = 1,...,N.
- Optimization of *I*₁ × *L* factor matrix X⁽¹⁾ (while keeping all other factor matrices fixed):

$$\min \left\| \boldsymbol{P}_{\Omega} \left(\boldsymbol{\mathcal{A}} - \sum_{\ell=1}^{L} \mathbf{x}_{\ell}^{(1)} \circ \mathbf{x}_{\ell}^{(2)} \circ \cdots \circ \mathbf{x}_{\ell}^{(N)} \right) \right\|_{2}^{2} + \lambda \cdots$$

This decouples wrt rows of $X^{(1)}$.

*I*₁ decoupled optimization problems:

$$\min \sum_{\substack{\mathbf{i} \in \Omega\\ i_{1}=\hat{\imath}}} \left(\mathbf{a}_{\mathbf{i}} - \sum_{\ell=1}^{L} \mathbf{z}_{\ell} \prod_{n=2}^{N} \left[\mathbf{x}_{\ell}^{(n)} \right]_{i_{n}} \right)^{2} + \lambda \sum_{\ell=1}^{L} \mathbf{z}_{\ell}^{2}, \qquad \hat{\imath} = 1, \dots, I_{1}.$$

îth row of $\mathbf{X}^{(1)}$ determined by $|\Omega_{1,\hat{i}}| \times L$ LSQ:

min $\|\mathbf{a}_{1,\hat{\imath}} - \mathbf{H}_{1,\hat{\imath}}\mathbf{z}\|_{2}^{2} + \lambda \|\mathbf{z}\|_{2}^{2}$.

Solution $\mathbf{z}^* = (\mathbf{H}_{1,\hat{\imath}}^\mathsf{T}\mathbf{H}_{1,\hat{\imath}} + \lambda I)^{-1}\mathbf{H}_{1,\hat{\imath}}^\mathsf{T}\mathbf{a}_{1,\hat{\imath}}.$

ALS

Algorithm 1: ALS

Tempting parallelization:

- Parallelize wrt variables in inner loop.
- Extension of distributed ALS [Teflioudi/Makari/Gemulla'2012] to tensors: Each node owns corresponding data a_{n i}.
- Requires N replications of A!

Parallelization of ALS

- $\Omega = \Omega^{(1)} \cup \cdots \cup \Omega^{(p)}$ partition of index set Ω over *p* processors
- Processor q owns a_i for all $i \in \Omega^{(q)}$.
- Factor matrices X⁽ⁿ⁾ for n = 1,..., N of CP decomposition of X replicated on all p processors.

Algorithm 2: Parallel formulation of ALS.

 $\begin{array}{c|c} \mbox{ Initialize all vectors } \mathbf{x}_{\ell}^{(n)} \mbox{ in parallel;} \\ \mbox{2 for } each \mbox{ outer iteration } \mathbf{do} \\ \mbox{3 } & \mbox{for } \hat{n} = 1, 2, \ldots, N \mbox{ do} \\ \mbox{4 } & \mbox{Construct local contributions to } \mathbf{C}_{\hat{\imath}} := \mathbf{H}_{\hat{n},\hat{\imath}}^{\mathsf{T}} \mathbf{H}_{\hat{n},\hat{\imath}} \mbox{ and } \\ \mbox{d}_{\hat{\imath}} := \mathbf{H}_{\hat{n},\hat{\imath}}^{\mathsf{T}} \mathbf{a}_{\hat{n},\hat{\imath}} \mbox{ for } \hat{\imath} = 1, \ldots, I_{\hat{n}}. \\ \mbox{Feduce local contributions.} \\ \mbox{Scatter } I_{\hat{n}} \mbox{ coefficients } \mathbf{C}_{\hat{\imath}}, \mbox{ d}_{\hat{\imath}} \mbox{ across all processors.} \\ \mbox{Solve (roughly } I_{\hat{n}}/p) \mbox{ local normal equations } (\mathbf{C}_{\hat{\imath}} + \lambda \mathbf{I}) \mathbf{z}_{\hat{\imath}} = \mathbf{d}_{\hat{\imath}}. \\ \mbox{Replicate updated factor matrix } \mathbf{X}^{(\hat{n})}; \end{array}$

Cyclic coordinate descent

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cyclic coordinate descent

Motivation: ALS expensive for larger tensor ranks *L*. Computation $\mathcal{O}(L^3)$, Memory/communication bandwidth $\mathcal{O}(L^2)$.

Idea:

- Optimize only one term in $\mathcal{X} = \sum_{\ell=1}^{L} \mathbf{x}_{\ell}^{(1)} \circ \mathbf{x}_{\ell}^{(2)} \circ \cdots \circ \mathbf{x}_{\ell}^{(N)}$.
- Attempt to optimize *l*th term by one sweep of rank-one ALS applied to

$$\mathcal{A} - \sum_{\ell \neq \hat{\ell}} \mathbf{x}_{\ell}^{(1)} \circ \mathbf{x}_{\ell}^{(2)} \circ \cdots \circ \mathbf{x}_{\ell}^{(N)}.$$

• \hat{i} th entry of $\mathbf{x}_{\hat{\ell}}^{(\hat{n})}$ is replaced by

$$\boldsymbol{z}^{*} = \frac{\sum_{\substack{\mathbf{i} \in \Omega \\ \boldsymbol{i}_{p} = \hat{\boldsymbol{i}}}} \left(\boldsymbol{a}_{\mathbf{i}} - \sum_{\substack{\ell=1 \\ \ell \neq \hat{\boldsymbol{\ell}}}}^{L} \prod_{n=1}^{N} \left[\mathbf{x}_{\ell}^{(n)}\right]_{i_{n}}\right) \prod_{\substack{n=1 \\ n \neq \hat{\boldsymbol{h}}}}^{N} \left[\mathbf{x}_{\hat{\ell}}^{(n)}\right]_{i_{n}}}{\lambda + \sum_{\substack{\mathbf{i} \in \Omega \\ \boldsymbol{i}_{p} = \hat{\boldsymbol{i}}}} \left(\prod_{\substack{n=1 \\ n \neq \hat{\boldsymbol{h}}}}^{N} \left[\mathbf{x}_{\hat{\ell}}^{(n)}\right]_{i_{n}}\right)^{2}}.$$

Cyclic coordinate descent

Algorithm 3: CCD++

- Proposed by [Yu/Hsieh/Si/Dhillon'2012] for matrix completion.
- Keeping track of

$$r_{\mathbf{i}} := a_{\mathbf{i}} - \sum_{\substack{\ell=1\\\ell\neq\hat{\ell}}}^{L} \prod_{n=1}^{N} \left[\mathbf{x}_{\ell}^{(n)} \right]_{i_{n}}$$

reduces cost by a factor $\approx 1/N,$ at the expense of storing sparse tensor $\boldsymbol{\mathcal{R}}.$

Convergence to critical point follows from [Xu/Yin'2013].

Parallel cyclic coordinate descent

- $\Omega = \Omega^{(1)} \cup \cdots \cup \Omega^{(p)}$ partition of index set Ω over *p* processors
- Processor q owns a_i and r_i for all $i \in \Omega^{(q)}$.
- Factor matrices X⁽ⁿ⁾ for n = 1,..., N of CP decomposition of X replicated on all p processors.

Algorithm 4: Parallel CCD++

Initialize in parallel all vectors $\mathbf{x}_{\ell}^{(n)}$ and \mathcal{R} . 2 for each outer iteration do for $\hat{\ell} = 1, 2, ..., L$ do 3 for $\hat{n} = 1, 2, ..., N$ do 4 Construct local contributions to tensor contractions 5 $\alpha_{\hat{\imath}} = \sum_{\substack{i \in \Omega \\ i_n = \hat{\imath}}} r_i \gamma_i \text{ and } \beta_{\hat{\imath}} = \sum_{\substack{i \in \Omega \\ i_n = \hat{\imath}}} \prod_{\substack{n=1 \\ n \neq \hat{n}}}^N \left[\mathbf{x}_{\hat{\ell}}^{(n)} \right]_{i_n}^2 \text{ for } \hat{\imath} = 1, \dots, I_{\hat{n}}.$ Reduce local contributions by summation. 6 Perform $[\mathbf{x}_{\hat{\ell}}^{(\hat{n})}]_{\hat{\iota}} \leftarrow \frac{\alpha_{\hat{\iota}}}{\lambda + \beta_{\hat{\iota}}}$ on master processor. 7 Replicate updated variables $\mathbf{x}_{\hat{i}}^{(\hat{n})}$. 8 Update \mathcal{R} in parallel. 9

Numerical experiments

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Computational environment

- Abisko distributed memory system at HPC2N in Umeå/Sweden.
- Each node contains four sockets with AMD Opteron 6238 processors.
- Each processor contains 12 cores partitioned into two NUMA domains.
- Nodes are interconnected with 40 Gb/s Mellanox Infiniband.

(ロ) (同) (三) (三) (三) (○) (○)

PathScale C++ compiler with OpenMPI.

Results: Synthetic data

Function-related tensors

Discretization of x → exp(-||x||₂), which has a cusp singularity at the origin, on a tensor product grid.

•
$$a_{i_1,i_2,...,i_N} = \exp(-\sqrt{\xi_{i_1}^2 + \xi_{i_2}^2 + \cdots + \xi_{i_N}^2})$$

- ▶ Sample 10*nNL* entries of *A*.
- Application of tensor completion: High-dimensional integration.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ Experiments: *n* = 51, *N* = 5, *L* = 100, 48 cores.

Results: Function-related tensors

Results: $1017 \times 1340 \times 33$ hyperspectral image

Results: 71 567 \times 10 677 \times 731 MovieLens tensor

Conclusions

Conclusions and ongoing work

- Parallel CCD++ method of choice for data-related applications.
- Parallel ALS sometimes better when high accuracy is required.
- Both algorithms are weakly scalable.

More details in:

 L. Karlsson, D. Kressner, and A. Uschmajew. Parallel algorithms for tensor completion in the CP format. Parallel Computing, 2015.

Outlook:

- (MPI+)Cuda: Ongoing joint work with Efthalia Karydi.
- Adjust distribution of Ω to increase data locality.
- Application to UQ. (Talk by Grasedyck on Tuesday)