Coupled Matrix and Tensor Factorizations: Models, Algorithms & Computational Issues

Evrim Acar University of Copenhagen

SIAM Conference on Parallel Processing for Scientific Computing

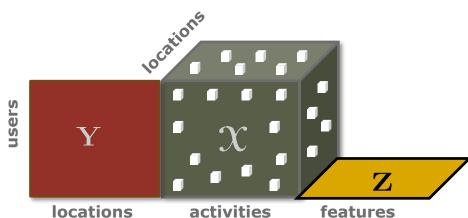
April 14, 2016

Data Fusion Applications of Interest:

Recommender Systems

Goal: To recommend users activities that they may be interested in doing at various locations

Missing Data Estimation

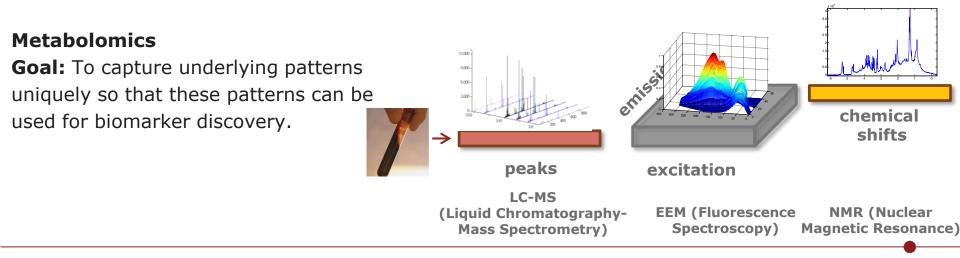


Data Fusion Applications of Interest:

Recommender Systems

Goal: To recommend users activities that they may be interested in doing at various locations

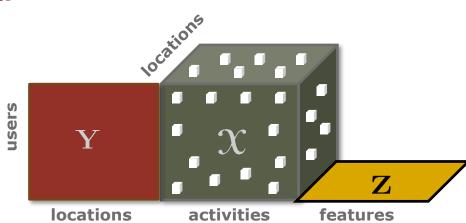




Data Fusion Applications of Interest:

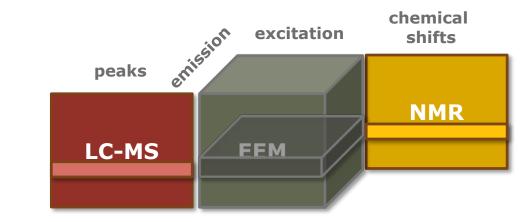
Recommender Systems

Goal: To recommend users activities that they may be interested in doing at various locations



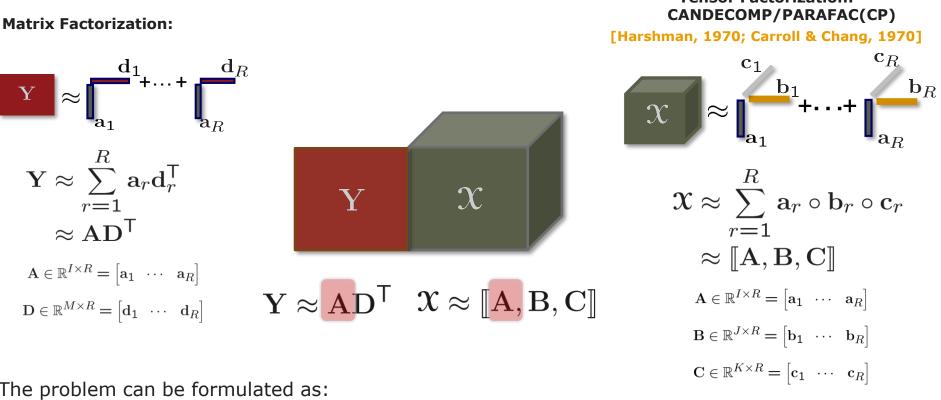
Goal: To capture underlying patterns uniquely so that these patterns can be used for biomarker discovery.

Capturing underlying structures accurately and uniquely



Coupled Matrix and Tensor Factorizations (CMTF)

Joint analysis of heterogeneous data from multiple sources can be formulated as a coupled matrix and tensor factorization problem. In CMTF, higher-order tensors and matrices are simultaneously factorized by fitting a CP model to higher-order tensors and factorizing matrices in a coupled manner. **Tensor Factorization:**



The problem can be formulated as:

 $\min_{\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}} \| \, \boldsymbol{\mathfrak{X}} - [\![\mathbf{A},\mathbf{B},\mathbf{C}]\!] \, \|^2 + \| \, \mathbf{Y} - \mathbf{A}\mathbf{D}^\mathsf{T} \, \|^2$

Data Fusion based on Coupled Factorizations

$$\min_{\mathbf{U},\mathbf{V},\mathbf{W}} \left\| \mathbf{X} - \mathbf{U}\mathbf{V}^{\mathsf{T}} \right\|^{2} + \left\| \mathbf{Y} - \mathbf{U}\mathbf{W}^{\mathsf{T}} \right\|^{2}$$

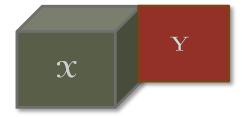
- **Psychometrics:** Simultaneous factorization of Gramian matrices [Levin, 1966]; Simultaneous component analysis [Kiers and Ten Berge, 1994]
- **Chemometrics:** Principal Component Analysis of multiple matrices [Westerhuis et al., 1998]; Augmented Multivariate Curve Resolution [De Juan and Tauler, 2000]
- **Bioinformatics:** Comparing genome-scale expression data from multiple organisms [Alter et al., 2003]; Clustering microarray data [Badea, 2007]; Simultaneous component analysis with rotation to common and distinct components [Van Deun et al., 2012]; Decomposing multiple matrices into terms explaining joint and individual variation [Lock et al., 2013]
- **Signal Processing:** Joint diagonalization of multiple matrices [Yeredor, 2002; Ziehe et al., 2004]; Audio source separation [Yoo et al., 2010]; Joint independent component analysis [Calhoun et al., 2006]
- Data Mining: Collective matrix factorization [Singh and Gordon, 2008]; Clustering multi-type relational data [Long et al., 2006]; Social recommendation [Ma et al., 2008]; Coupled matrix factorization with sparse factors [Van Deun et al., 2011; Acar et al., 2012]; Nonnegative shared subspace learning [Gupta et al., 2010]; Bayesian interbattery factor analysis [Klami et al., 2013]

Data Fusion based on Coupled Factorizations

$$\underset{\mathbf{U},\mathbf{V},\mathbf{W}}{\text{min}}\left\| \mathbf{X}-\mathbf{U}\mathbf{V}^{\mathsf{T}} \right\|^{2}+\left\| \mathbf{Y}-\mathbf{U}\mathbf{W}^{\mathsf{T}} \right\|^{2}$$

psychometrics, chemometrics, bioinformatics, signal processing, data mining, ...

Cannot handle joint analysis of matrices and higher-order tensors!



$$\min_{\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}} \|\, \boldsymbol{\mathfrak{X}} - [\![\mathbf{A},\mathbf{B},\mathbf{C}]\!]\,\|^2 + \|\, \mathbf{Y} - \mathbf{A}\mathbf{D}^\mathsf{T}\,\|^2$$

- Psychometrics: Linked-mode PARAFAC [Harshman and Lundy, 1984]
- Chemometrics: Multi-way Multi-block component models [Smilde et al., 2000]
- Bioinformatics: Coupled analysis of in vitro and histology tissue samples [Acar et al., 2012]
- Signal Processing: Joint analysis of a covariance matrix and a cumulant tensor [De Lathauwer and Vandewalle, 2004; Comon, 2004]; Generalized Coupled Tensor Factorizations [Yilmaz et al., 2011]; Structured Data Fusion [Sorber et al., 2015]
- Data Mining: Multi-way Clustering [Banerjee et al., 2007]; Community detection [Lin et al., 2009]; Missing value estimation [Zheng et al., 2010]; Link prediction [Ermis et al., 2012]; Scalable CMTF approaches (sampling-based [Papalexakis et al., 2014], distributed stochastic gradient running on MapReduce [Beutel et al., 2014], distributed ALS running on MapReduce [Jeon et al., 2016])

Assume that all components are shared!

All-at-once Optimization for CMTF

[Acar, Dunlavy and Kolda, KDD Workshop MLG, 2011]

 ∂f

 $\overline{\partial \mathbf{a}_R} \ \overline{\partial \mathbf{b}_1}$

 $rac{\partial f}{\partial \mathbf{b}_R}$

 $\frac{\partial f}{\partial \mathbf{c}_1}$

 \vdots ∂f

 $\overline{\partial \mathbf{c}_R}$

 $\frac{\frac{\partial f}{\partial \mathbf{d}_1}}{\vdots}$ $\frac{\frac{\partial f}{\partial \mathbf{d}_R}}{\frac{\partial f}{\partial \mathbf{d}_R}}$

 $\nabla f =$

CMTF-OPT is a gradient–based optimization approach for joint factorization of coupled matrices and higher-order tensors.

$$\min_{\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}} \| \boldsymbol{\mathfrak{X}} - [\![\mathbf{A},\mathbf{B},\mathbf{C}]\!] \|^2 + \| \mathbf{Y} - \mathbf{A}\mathbf{D}^\mathsf{T} \|^2$$

Step1: Define the objective function

$$f(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \frac{1}{2} \| \mathcal{X} - [\![\mathbf{A}, \mathbf{B}, \mathbf{C}]\!] \|^2 + \frac{1}{2} \| \mathbf{Y} - \mathbf{A}\mathbf{D}^{\mathsf{T}} \|^2 \int_{\mathbb{R}^3 \mathbf{a}_1}^{\frac{\partial f}{\partial \mathbf{a}_1}} \| \mathbf{X} - [\![\mathbf{A}, \mathbf{B}, \mathbf{C}]\!] \|^2 + \frac{1}{2} \| \mathbf{Y} - \mathbf{A}\mathbf{D}^{\mathsf{T}} \|^2$$

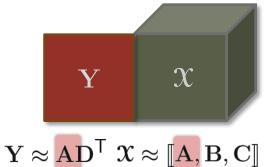
Step2: Compute the gradient

$$\frac{\partial f}{\partial A} = -X_{(1)}(C \odot B) + A(C^{T}C * B^{T}B) - YD + AD^{T}D$$
$$\frac{\partial f}{\partial B} = -X_{(2)}(C \odot A) + B(C^{T}C * A^{T}A)$$
$$\bigvee Vectorize and concatenate the partials$$

$$\frac{\partial f}{\partial \mathbf{D}} = -\mathbf{Y}^{\mathsf{T}}\mathbf{A} + \mathbf{D}\mathbf{A}^{\mathsf{T}}\mathbf{A}$$

Step3: Pick a first-order optimization method

e.g., Nonlinear Conjugate Gradient (NCG) and Limited-memory BFGS (L-BFGS) from **Poblano Toolbox [Dunlavy, Kolda and Acar, 2010]**



CMTF easily extends to incomplete data sets

We fit the model only to the known data entries and ignore the missing entries (in higher-order tensors and/or matrices)

$$\min_{\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}} \| \mathbf{\mathcal{W}}_{*}(\mathbf{\mathcal{X}} - [\![\mathbf{A},\mathbf{B},\mathbf{C}]\!]) \|^{2} + \| \mathbf{Y} - \mathbf{A}\mathbf{D}^{\mathsf{T}} \|$$

$$w_{ijk} = \begin{cases} 1 & \text{if } x_{ijk} \text{ is known,} \\ 0 & \text{if } x_{ijk} \text{ is missing.} \end{cases}$$

ing

$$\mathbf{Y} \approx \mathbf{A}\mathbf{D}^{\mathsf{T}} \ \mathbf{X} \approx \llbracket \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket$$

 $\frac{\partial f_{\mathbf{W}}}{\partial \mathbf{a}_1}$

 $\frac{\partial f_{\mathbf{W}}}{\partial \mathbf{a}_R} \\ \frac{\partial f_{\mathbf{W}}}{\partial \mathbf{b}_1}$

 $\partial f_{\mathbf{W}}$

 $\frac{\partial \mathbf{b}_R}{\partial \mathbf{b}_R}$

 $\frac{\partial f_{\mathbf{W}}}{\partial \mathbf{c}_1}$

:

 $\frac{\partial f_{\mathbf{W}}}{\partial \mathbf{c}_R}$

 $rac{\partial f_{\mathcal{W}}}{\partial \mathbf{d}_1}$

 $rac{\partial f_{\mathcal{W}}}{\partial \mathbf{d}_R}$

 $\nabla f_{\mathbf{W}} =$

Our objective:

$$f_{\mathcal{W}}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \frac{1}{2} \| \mathcal{W}_{\ast}(\mathcal{X} - [\![\mathbf{A}, \mathbf{B}, \mathbf{C}]\!]) \|^{2} + \frac{1}{2} \| \mathbf{Y} - \mathbf{A}\mathbf{D}^{\mathsf{T}} \|^{2}$$

Gradient: Let $\mathbf{\mathfrak{Z}} = \llbracket \mathbf{A}, \mathbf{B}, \mathbf{C}
rbracket$ $\frac{\partial f_{\mathcal{W}}}{\partial \mathbf{A}} = (\mathbf{W}_{(1)} * \mathbf{Z}_{(1)} - \mathbf{W}_{(1)} * \mathbf{X}_{(1)})(\mathbf{C} \odot \mathbf{B}) - \mathbf{Y}\mathbf{D} + \mathbf{A}\mathbf{D}^{\mathsf{T}}\mathbf{D}$

$$\frac{\partial f_{\mathcal{W}}}{\partial \mathbf{B}} = (\mathbf{W}_{(2)} * \mathbf{Z}_{(2)} - \mathbf{W}_{(2)} * \mathbf{X}_{(2)})(\mathbf{C} \odot \mathbf{A})$$

$$\frac{\partial f_{\mathcal{W}}}{\partial \mathbf{C}} = (\mathbf{W}_{(3)} * \mathbf{Z}_{(3)} - \mathbf{W}_{(3)} * \mathbf{X}_{(3)}) (\mathbf{B} \odot \mathbf{A})$$

 $\frac{\partial f_{\mathcal{W}}}{\partial \mathbf{D}} = -\mathbf{Y}^{\mathsf{T}}\mathbf{A} + \mathbf{D}\mathbf{A}^{\mathsf{T}}\mathbf{A}$

2

Vectorize and concatenate the partials

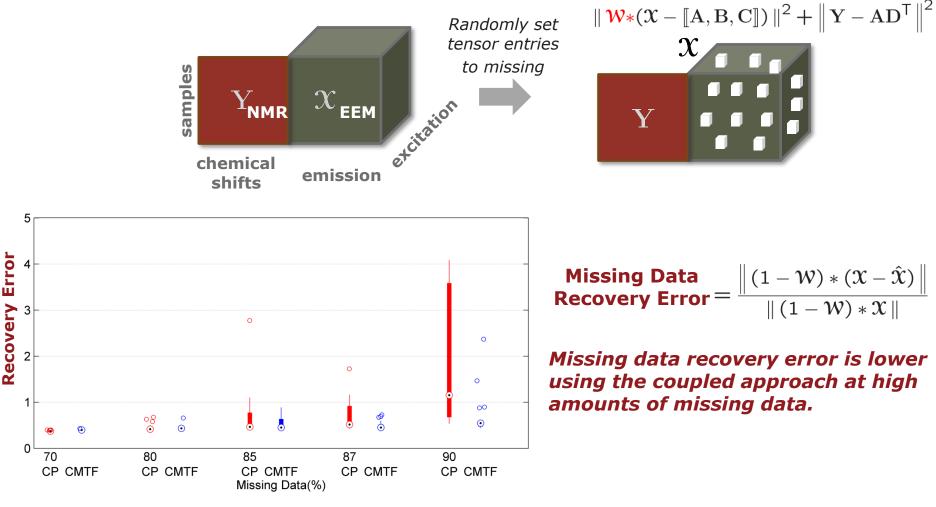
. . .

Missing Data

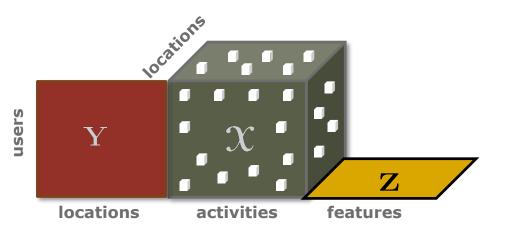
CMTF can improve missing data estimation performance!

[Acar et al., Chemometrics and Intelligent Lab. Systems, 2013]

Metabolomics: We have plasma samples measured using different analytical techniques, i.e., NMR and Fluorescence Spectroscopy.

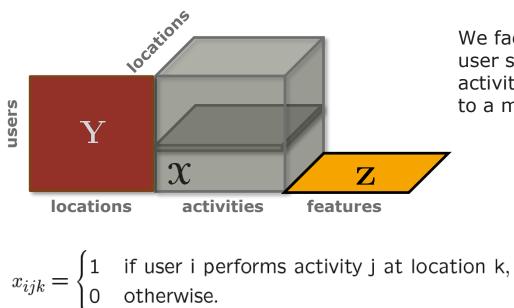


Coupling can handle structured missing data!



 $x_{ijk} = \begin{cases} 1 & \text{if user i performs activity j at location k,} \\ 0 & \text{otherwise.} \end{cases}$

Coupling can handle structured missing data!



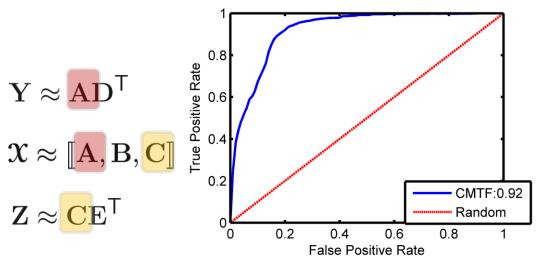
We face with the cold-start problem when a new user starts using an application, e.g., locationactivity recommender system. This will correspond to a missing slice for the new user.

For the missing slice i (for i=1,2,...,I):

Original values	Estimated values using CMTF
$vec(\mathbf{X}_i)$	$vec(\hat{\mathbf{X}}_i)$

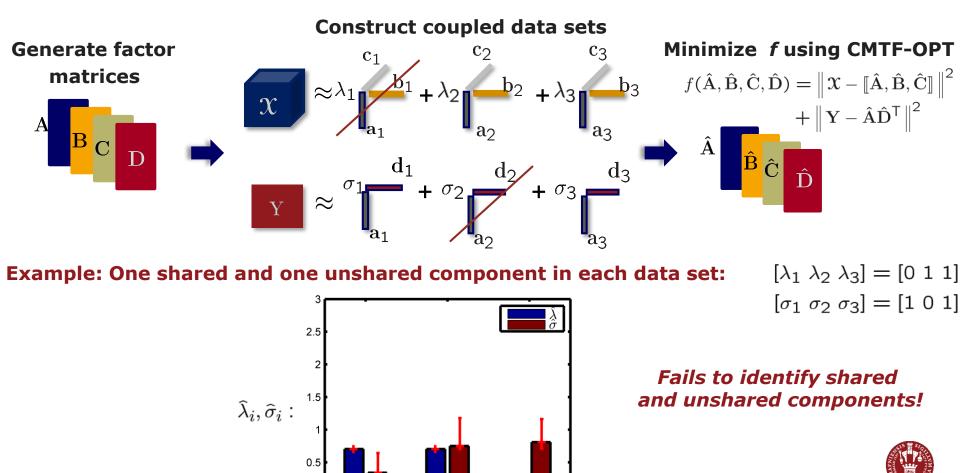
Average ROC curve for I=146 users

We cannot use low-rank approximation of a tensor to fill in the missing slice. However, we can make use of additional sources of information through the coupled model.



CMTF fails to identify shared/unshared factors!

In real applications, coupled data sets often have both **shared** and **unshared** factors. However, CMTF formulation focuses on modeling only the **shared** factors and fails to identify shared/unshared factors.



components

ACMTF: Structure-Revealing CMTF

[Acar et al., BMC Bioinformatics, 2014]

We reformulate the coupled matrix and tensor factorization problem by having factor matrices with unit norm columns and explicitly representing the weights of rank-one components in the formulation. Through modeling constraints/penalties, we let the model identify shared/unshared components.

$$Y \approx A\Sigma D^{\mathsf{T}} \qquad Y \qquad \mathfrak{X} \qquad \mathfrak{X} \approx [\lambda; \mathbf{A}, \mathbf{B}, \mathbf{C}]$$

$$Y \approx \mathbf{A}\Sigma D^{\mathsf{T}} \qquad \mathbf{A} \approx \mathbf{A}\Sigma \mathbf{A} = \mathbf{A}\Sigma \mathbf{A} \qquad \mathbf{A} = \mathbf{A}\Sigma \mathbf{A} \qquad \mathbf{A} = \mathbf{A} \qquad \mathbf{A} = \mathbf{A} \qquad \mathbf{A} \qquad \mathbf{A} = \mathbf{A} \qquad \mathbf{A} \qquad$$

ACMTF: Unconstrained Optimization

Optimization Problem:

$$\min_{A,B,C,D,\Sigma,\lambda} \| \mathcal{X} - [\lambda; A, B, C] \|^2 + \| \mathbf{Y} - A\Sigma \mathbf{D}^{\mathsf{T}} \|^2 + \beta \| \lambda \|_1 + \beta \| \sigma \|_1$$

s.t. $\| \mathbf{a}_r \|_2 = \| \mathbf{b}_r \|_2 = \| \mathbf{c}_r \|_2 = \| \mathbf{d}_r \|_2 = 1$, for $r = 1, ..., R$

Define the objective function:

Add as quadratic penalty terms

$$f(\lambda, \Sigma, \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \| \mathfrak{X} - [\lambda; \mathbf{A}, \mathbf{B}, \mathbf{C}] \|^2 + \| \mathbf{Y} - \mathbf{A}\Sigma\mathbf{D}^{\mathsf{T}} \|^2 + \beta \| \lambda \|_1 + \beta \| \sigma \|_1 + \dots$$

Smooth Approximation:

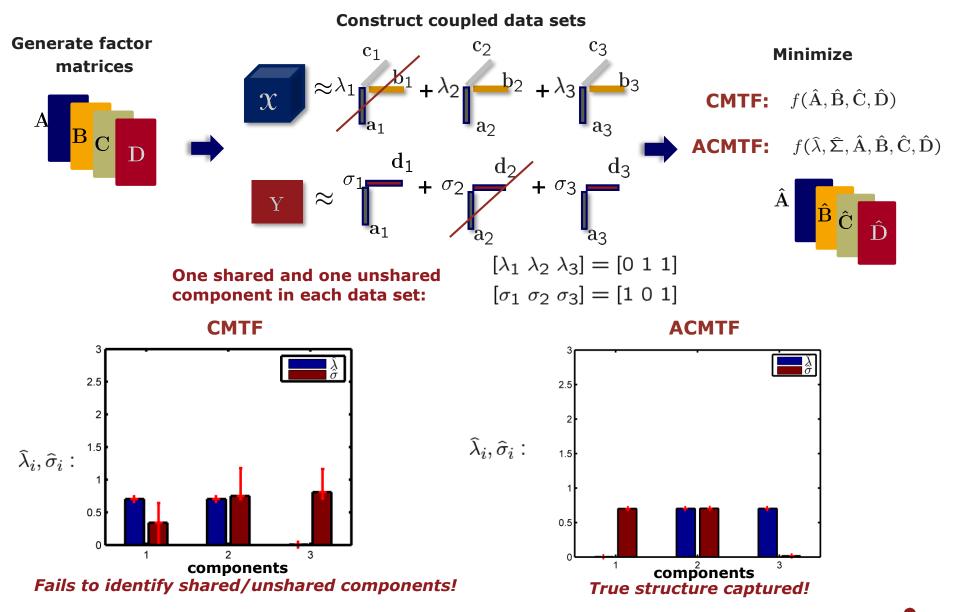
Replace sparsity penalties with differentiable approximations

$$f(\lambda, \Sigma, \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \| \mathfrak{X} - [\lambda; \mathbf{A}, \mathbf{B}, \mathbf{C}] \|^2 + \| \mathbf{Y} - \mathbf{A}\Sigma\mathbf{D}^{\mathsf{T}} \|^2 + \beta \sum_{r=1}^{R} \sqrt{\lambda_r^2 + \epsilon} + \beta \sum_{r=1}^{R} \sqrt{\sigma_r^2 + \epsilon} + \dots$$

Compute the gradient and pick a first order optimization method

Nonlinear Conjugate Gradient from Poblano Toolbox [Dunlavy, Kolda and Acar, 2010]

Sparsity penalties enable us to capture the true structure!



UNIVERSITY OF COPENHAGEN

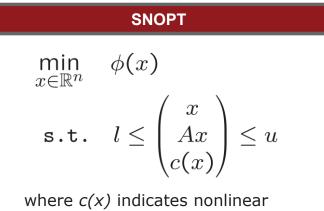
ACMTF: Constrained Optimization

[Acar, Nilsson, and Saunders, EUSIPCO, 2014]

In order to have a flexible modeling framework, we use a general-purpose optimization solver SNOPT (Sparse Nonlinear OPTimizer) [Gill, Murray and Saunders, 2005].

SNOPT is designed for large constrained optimization problems with smooth nonlinear functions in the objective and constraints.

SNOPT uses a sequential quadratic programming (SQP) algorithm to minimize an augmented Lagrangian.



functions, and A is a sparse matrix.

Structure-revealing CMTF model:

$$\min_{\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D},\boldsymbol{\Sigma},\boldsymbol{\lambda}} \| \boldsymbol{\mathcal{X}} - [\![\boldsymbol{\lambda};\mathbf{A},\mathbf{B},\mathbf{C}]\!] \|^2 + \| \mathbf{Y} - \mathbf{A}\boldsymbol{\Sigma}\mathbf{D}^\mathsf{T} \|^2$$
s.t. $\| \mathbf{a}_r \|_2 = \| \mathbf{b}_r \|_2 = \| \mathbf{c}_r \|_2 = \| \mathbf{d}_r \|_2 = 1$

$$\sum_{r=1}^R \lambda_r \leq \beta, \sum_{r=1}^R \sigma_r \leq \beta$$
 $\sigma_r, \lambda_r \geq 0, \text{ for } r = 1, ..., R.$

Additional constraints can easily be incorporated!

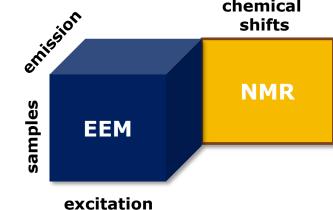
In many data fusion problems, we may need the following constraints to capture the underlying structures accurately. **chemical**

Nonnegativity Constraints:

$$\min_{A,B,C,D,\Sigma,\lambda} \| \mathcal{X} - [\lambda; A, B, C] \|^2 + \| \mathbf{Y} - \mathbf{A}\Sigma \mathbf{D}^{\mathsf{T}} \|^2$$
s.t. $\| \mathbf{a}_r \|_2 = \| \mathbf{b}_r \|_2 = \| \mathbf{c}_r \|_2 = \| \mathbf{d}_r \|_2 = 1$

$$\sum_{r=1}^R \lambda_r \leq \beta, \sum_{r=1}^R \sigma_r \leq \beta$$

$$\sigma_r, \lambda_r \geq 0, \mathbf{b}_{jr}, \mathbf{c}_{kr}, \mathbf{d}_{mr} \geq \mathbf{0}$$
for $r = 1 : R, j = 1 : J, k = 1 : K, m = 1 :$

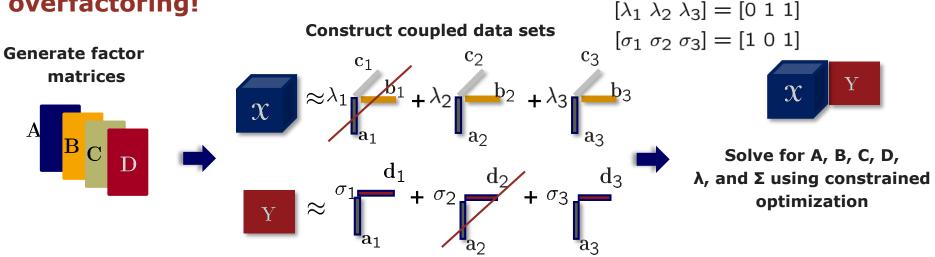


Angular Constraints: When coupled data sets are overfactored, one shared factor may be represented by two closely-correlated factors. In that case, the structure–revealing model will fail to identify shared factors accurately.

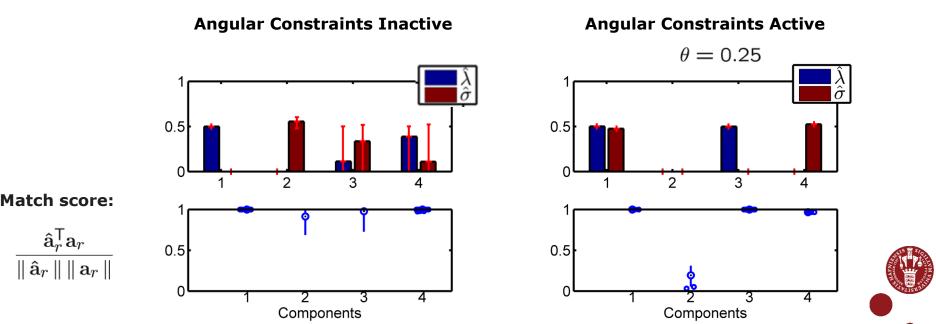
M.

$$\begin{split} \min_{\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D},\boldsymbol{\Sigma},\boldsymbol{\lambda}} \| \, \boldsymbol{\mathcal{X}} - [\![\boldsymbol{\lambda};\mathbf{A},\mathbf{B},\mathbf{C}]\!] \, \|^2 + \| \, \mathbf{Y} - \mathbf{A}\boldsymbol{\Sigma}\mathbf{D}^{\mathsf{T}} \, \|^2 \\ \texttt{s.t.} \quad \| \, \mathbf{a}_r \, \|_2 = \| \, \mathbf{b}_r \, \|_2 = \| \, \mathbf{c}_r \, \|_2 = \| \, \mathbf{d}_r \, \|_2 = 1 \\ | \, \mathbf{a}_r^{\mathsf{T}} \mathbf{a}_p | \leq \theta, | \, \mathbf{b}_r^{\mathsf{T}} \mathbf{b}_p | \leq \theta, | \, \mathbf{c}_r^{\mathsf{T}} \mathbf{c}_p | \leq \theta, | \, \mathbf{d}_r^{\mathsf{T}} \mathbf{d}_p | \leq \theta \\ \sum_{r=1}^R \lambda_r \leq \beta, \sum_{r=1}^R \sigma_r \leq \beta \\ \sigma_r, \lambda_r \geq 0 \text{ for } r, p \in \{1:R\}, r \neq p. \end{split}$$

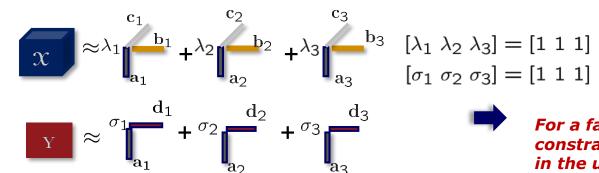
Angular constraints have a promising performance in the case of overfactoring! $[\lambda_1 \ \lambda_2 \ \lambda_3] = [0 \ 1 \ 1]$



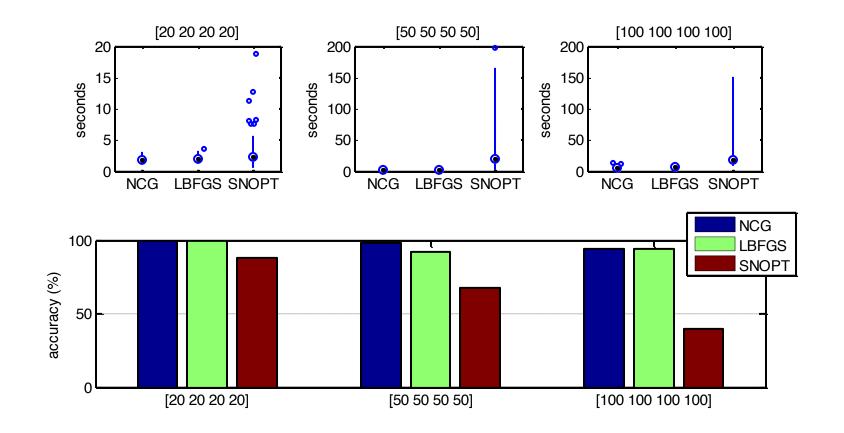
Overfactoring (R=4):



Performance Comparison: Unconstrained Optimization vs. SNOPT



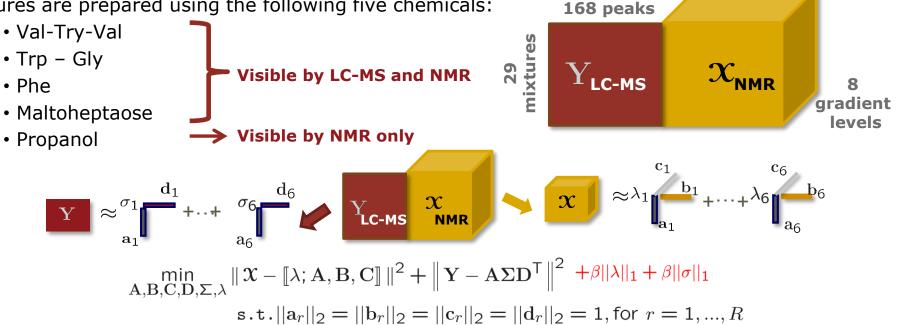
For a fair comparison, we only have norm constraints (treated as quadratic penalties in the unconstrained version).

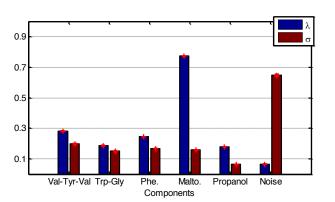


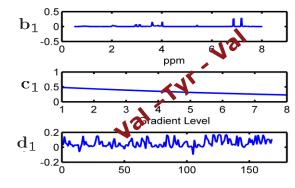
UNIVERSITY OF COPENHAGEN

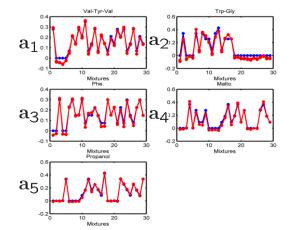
Application: Joint analysis of LC-MS and NMR measurements

Goal: To identify shared/unshared factors in each data set **Data:** 29 mixtures measured using DOSY-NMR and LC-MS. Mixtures are prepared using the following five chemicals:





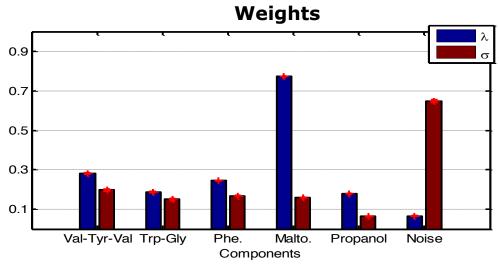




[Acar et al., BMC Bioinformatics, 2014]

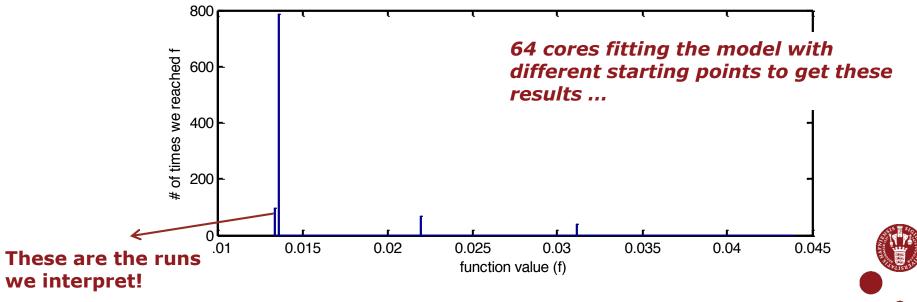
1591 chemical shifts

Need better ways for dealing with the initialization problem!



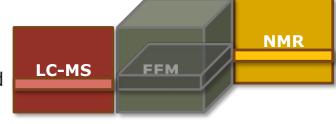
• The minimum function value: $f(\hat{\lambda}, \hat{\Sigma}, \hat{A}, \hat{B}, \hat{C}, \hat{D}) = 0.0134$

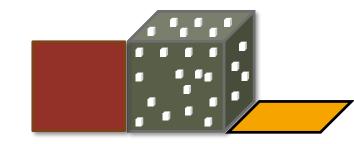
• Out of 1000 runs with random initializations, we get the minimum function value 98 times.



Summary

- Goal: Joint analysis of heterogeneous data sets
- **Our Approach:** Coupled matrix and tensor factorizations
 - Original formulation assuming all components are shared
 - Reformulation of the original model to identify shared/unshared factors accurately
 - >> All can handle missing data!
 - Algorithmic Approach: All-at-once optimization
 - Unconstrained optimization
 - Constrained optimization
- Applications:
 - Chemometrics/Metabolomics
 - Social network analysis
- Open issues:
 - More flexible structure-revealing data fusion models, e.g., constraints [Acar, Nilsson, and Saunders, EUSIPCO, 2014], flexible couplings [Farias et al., LVA/ICA, 2015]...
 - More robust and/or computationally efficient approaches





Thank you!

🛕 СМТЕ:

E. Acar, T. G. Kolda, and D. M. Dunlavy. All-at-once Optimization for Coupled Matrix and Tensor Factorizations. *KDD Workshop on Mining and Learning with Graphs*, 2011 (<u>arXiv:1105.3422</u>)

ACMTF: Structure-revealing data fusion model

E. Acar, R. Bro, and A. K. Smilde, Data Fusion in Metabolomics using Coupled Matrix and Tensor Factorizations, *Proceedings of the IEEE*, 103: 1602-1620, 2015.

E. Acar, E. E. Papalexakis, G. Gurdeniz, M. A. Rasmussen, A. J. Lawaetz, M. Nilsson, and R. Bro, Structure Revealing Data Fusion, *BMC Bioinformatics*, 15: 239, 2014.

E. Acar, M. Nilsson, and M. Saunders, A Flexible Modeling Framework for Coupled Matrix and Tensor Factorizations, *EUSIPCO*, pp. 111-115, 2014.

E. Acar, A. J. Lawaetz, M. A. Rasmussen, and R. Bro, Structure Revealing Data Fusion Model with Applications in Metabolomics, *IEEE EMBC*, pp. 6023 - 6026, 2013.

Missing Data Estimation: E. Acar, M. A. Rasmussen, F. Savorani, T. Næs, and R. Bro. Understanding Data Fusion within the Framework of Coupled Matrix and Tensor Factorizations, *Chemometrics and Intelligent Laboratory Systems*, 129: 53-63, 2013.

Link Prediction: B. Ermis, E. Acar, and A. T. Cemgil. Link Prediction in Heterogeneous Data via Generalized Coupled Tensor Factorization, *Data Mining and Knowledge Discovery*, 29(1): 203-236, 2015.

