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Data Fusion Applications of Interest:

Recommender Systems
Goal: To recommend users activities that they
may be interested in doing at various locations
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Data Fusion Applications of Interest:

Recommender Systems
Goal: To recommend users activities that they
may be interested in doing at various locations

l% Missing Data Estimation

Metabolomics
Goal: To capture underlying patterns F
uniquely so that these patterns can be
used for biomarker discovery.

QCapturing underlying structures
accurately and uniquely
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Coupled Matrix and Tensor Factorizations (CMTF)

Joint analysis of heterogeneous data from multiple sources can be formulated as a coupled matrix
and tensor factorization problem. In CMTF, higher-order tensors and matrices are simultaneously
factorized by fitting a CP model to higher-order tensors and factorizing matrices in a coupled
manner.

Tensor Factorization:
Matrix Factorization: CANDECOMP/PARAFAC(CP)

[Harshman, 1970; Carroll & Chang, 1970]
di dp
- r +...+ r
ai R

R
Y ~ Z a'r'd;.r
r=1
~ AD'
AERIXRz[al aR}

pewviof - 4 Y ~AD! X~ [AB,C]

The problem can be formulated as:

min [|[X—[A.B.C]||2+||Y — AD' |2
AijIC,DH [A,B,C] ||+ || |
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Data Fusion based on Coupled Factorizations

. Psychometrics: Simultaneous factorization of Gramian matrices [Levin, 1966]; Simultaneous component
analysis [Kiers and Ten Berge, 1994]

. Chemometrics: Principal Component Analysis of multiple matrices [Westerhuis et al., 1998]; Augmented
Multivariate Curve Resolution [De Juan and Tauler, 2000]

. Bioinformatics: Comparing genome-scale expression data from multiple organisms [Alter et al., 20037;
Clustering microarray data [Badea, 2007]; Simultaneous component analysis with rotation to common and
distinct components [van Deun et al., 2012]; Decomposing multiple matrices into terms explaining joint and
individual variation [Lock et al., 2013]

. Signal Processing: Joint diagonalization of multiple matrices [Yeredor, 2002; Ziehe et al., 20047]; Audio source
separation [Yoo et al., 2010]; Joint independent component analysis [Calhoun et al., 2006]

. Data Mining: Collective matrix factorization [Singh and Gordon, 20087; Clustering multi-type relational data [Long
et al., 20067; Social recommendation [Ma et al., 2008]; Coupled matrix factorization with sparse factors [van Deun
et al.,, 2011; Acar et al., 2012]; Nonnegative shared subspace learning [Gupta et al., 2010]; Bayesian interbattery
factor analysis [Klami et al., 2013]

oy [ X OV v - uwT
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Data Fusion based on Coupled Factorizations

psychometrics, chemometrics, bioinformatics, signal processing, data mining, ...

mi

oy [ X OV v - uwT

Cannot handle joint
analysis of matrices and
higher-order tensors!

mi X —[A.B.C]|I°2+ Y —AD' |2
A,B,IS,DH [A,B,C] || + | |

. Psychometrics: Linked-mode PARAFAC [Harshman and Lundy, 1984]

. Chemometrics: Multi-way Multi-block component models [Smilde et al., 2000]

. Bioinformatics: Coupled analysis of in vitro and histology tissue samples [Acar et al., 2012]

. Signal Processing: Joint analysis of a covariance matrix and a cumulant tensor [De Lathauwer and
Vandewalle, 2004; Comon, 2004]; Generalized Coupled Tensor Factorizations [Yilmaz et al., 20117;
Structured Data Fusion [Sorber et al., 2015]

. Data Mining: Multi-way Clustering [Banerjee et al., 2007]; Community detection [Lin et al., 20097];
Missing value estimation [Zheng et al., 20107; Link prediction [Ermis et al., 2012]; Scalable CMTF
approaches (sampling—based [Papalexakis et al., 20141, distributed stochastic gradient running on
MapReduce [Beutel et al., 20141, distributed ALS running on MapReduce [Jeon et al., 2016])

Assume that all
components are shared!
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All-at-once Optimization for CMTF
[Acar, Dunlavy and Kolda, KDD Workshop MLG, 2011]

CMTF-OPT is a gradient-based optimization approach for joint
factorization of coupled matrices and higher-order tensors.
min_||X - [A,B,C Y - AD' |2
AT 1= [AB, CT 1P + | [

Step1l: Define thelobjective function . Y ~ADT X ~ [[A,B, C]]
f(A,B,C,D) ==||X—[A,B,C]||?°4+=||Y—-AD"||? ror
2 2 daq
Step2: Compute the gradient o
9% _ x. «(c T T T 2L
— 1)( ®B)4+A(C'C«xB'B)—- YD+ AD'D b1
dA ( : DC—1 3 - 1357
of M~ 1|2 46 8
by

of T T —
= X@CoNREEA)  my v=

Vectorize and

% = X3 (BoA)+C(B'BxATA) concatenate 2 AOB= [al ®by - ap® bR]
the partials of
ady
OF _ yTa +DATA ;
oD of
adp

Step3: Pick a first-order optimization method

e.g., Nonlinear Conjugate Gradient (NCG) and Limited-memory BFGS (L-BFGS) from
Poblano Toolbox [Dunlavy, Kolda and Acar, 2010]
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CMTF easily extends to incomplete data sets

We fit the model only to the known data entries and ignore the missing
entries (in higher-order tensors and/or matrices)

min || W+(X — [A,B,C]) |2+ Y — ADT|

A B,C.D X
wig = | - T Tigh 1S Known, Y ~ ADT X ~ [A. B, C]
O if x5 is missing.

o

Our objective: 3"}1
- 2, 1 T2 afw

fw(A,B,C,D) = Z || W«(X — [A,B,C]) |+ = | Y — ADT| Jag
2 2 Ofw

b

Gradient: Let Z = [A,B,C] -
O fw

o bp

]

of Vectorize and Cl
W (Wioy*Zoy — Wioy* X)) (COA) concatenate dfw
oB the partials aa;R
W

orw ady
afg = (W3 *Z(3) = W(z) * X(3))(BOA) .
ofw

adp,

O/w _ _yTA 1 DATA
oD
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CMTF can improve missing data estimation performance!
[Acar et al., Chemometrics and Intelligent Lab. Systems, 2013]

Metabolomics: We have plasma samples measured using different analytical techniques, i.e.,
NMR and Fluorescence Spectroscopy.

Randomly set IW+(X — [A, B, C]) ”2 + H Y — AD' H2

tensor entries X
3 to missing
2 o
S &°
()] .&'b
(%
chemical L. ¢t
shifts emission
5
G 4
m f = - - ~
8¢ Missing Data  ||(1- W)« (X-X)|
auw R very Error—
=l | recovery Ero @ -w)=x]|
cCo ’
3 3 "
-é 9 2 ) 1 Missing data recovery error is lower
e« o using the coupled approach at high
1+ i ! ) [ - 1 amounts of missing data.
® @ Cg ® é é) @
0 70 80 85 87 90
CP CMTF CP CMTF CP CMTF CP CMTF CP CMTF

Missing Data(%)
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Coupling can handle structured missing data!

users

locations activities features

I 1 if user i performs activity j at location K,
ijk 0 otherwise.
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Coupling can handle structured missing data!

(‘(’

éo
o
Y

We face with the cold-start problem when a new
user starts using an application, e.g., location-
activity recommender system. This will correspond
to a missing slice for the new user.

users

For the missing slicei (fori=1,2,...,I):

Original val Estimated values
locations activities features riginal values using CMTF

vec(X;) vec(X,)

Average ROC curve for I=146 users

I {1 if user i performs activity j at location Kk,
ijk =
1

0 otherwise.

0 08 .«"’
T o e
~ o

We cannot use low-rank approximation Y ~AD 206 Py
of a tensor to fill in the missing slice. 8 04
However, we can make use of X ~ [[A, B, C]] g
additional sources of information F o2
through the coupled model. —— CMTF:0.92

7, ~ CET olbe .| Random

0 02 04 06 08 1

False Positive Rate
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CMTF fails to identify shared/unshared factors!

In real applications, coupled data sets often have both shared and unshared factors. However,
CMTF formulation focuses on modeling only the shared factors and fails to identify
shared/unshared factors.

Construct coupled data sets

Generate factor c1 Co c3 Minimize fusing CMTF-OPT
matrices
. /1I7£+ )\QI
aj
Example: One shared and one unshared component in each data set: [A1 Ao A3] = [0 1 1]
’ — [01 02 03] =[1 0 1]
N o

25

Fails to identify shared
18 and unshared components!

2 3
components
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ACMTF: Structure-Revealing CMTF

[Acar et al., BMC Bioinformatics, 2014]

We reformulate the coupled matrix and tensor factorization problem by having factor matrices
with unit norm columns and explicitly representing the weights of rank-one components in the
formulation. Through modeling constraints/penalties, we let the model identify shared/unshared
components.

Y ~ AXD! X ~ [\; A, B, C]
CR
d; dp .
~ 71 + -+ 9R ~ )\1 —b1+ + Af% —bR
N | | = [
a a1 ar
1 ar
Structure-revealing model: x| _ZW
1= i
min X —[\ABC]I?°+]Y—-AZD'|? A
N 1IZ+1 12+ 81 Al + BTy
s.t.[[ar|z =|Ibrlla =lcrllo =1dr [l =1,forr=1,.,R
Original CMTF
min_||X—[A,B,C]||?+||Y — AD' |?
Ain X~ [A,B,C]|? + | [
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ACMTF: Unconstrained Optimization
Optimization Problem:

i X — [\ A.B 21 1Y = AXD' |2
ap @B, X —NAB,CI"+| 12+ 8lIAlL+ Bl

s-t{llarlp =|brla=llcrlla=Idrly=1jfor r=1,. R

Define the objective function:
Add as quadratic penalty terms

FOLE,A,B,C,D) =X~ [\A,B,C]°+| Y- AZDT |2 +[ﬁ Al +Blle ||1]+

Replace sparsity penalties with

Smooth Approximation: differentiable approximations
FOLE,A,B,C,D) = | X — [\ A,B,C[|°+ 'Y — AEDTIIQ{ﬁ S X2 +e+8 Z Vo2 + ]+
r=1

Compute the gradient and pick a first order optimization method

Nonlinear Conjugate Gradient from Poblano Toolbox [Dunlavy, Kolda and Acar, 2010]
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Sparsity penalties enable us to capture the true structure!

Construct coupled data sets
Generate factor e e
Minimize

matrices _b _b
~\ by D) 3 .
- L + 2 + 3| CMTF: f(A B C D)
H (R » ACMTF: f(%,£,A,B,C D)

o I-

A A A~
B &

a3
[AM1 A2 A3] =[O0 1 1]

One shared and one unshared

component in each data set: [01 00 03] = [1 0 1]
CMTF ACMTF
3
—g ’ P

2.5 2.5F

)
)
&
>
)

1,07 - 1.5}

Ay T - '
1
1F ]
o 110D

0.5F ]

0 —_—
1 2 3 0 —t—
] ) ) components compzonents
Fails to identify shared/unshared components! True structure captured!
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ACMTF: Constrained Optimization
[Acar, Nilsson, and Saunders, EUSIPCO, 2014]

In order to have a flexible modeling framework, we use a

general-purpose optimization solver SNOPT (Sparse

Nonlinear OPTimizer) [Gill, Murray and Saunders, 2005].

min x

TeR™ QS( )

SNOPT is designed for large constrained optimization T
problems with smooth nonlinear functions in the objective s.t. I<| Az | <u
and constraints. c(z)

where c(x) indicates nonlinear

SNOPT uses a sequential quadratic programming (SQP) _ _ _
functions, and A is a sparse matrix.

algorithm to minimize an augmented Lagrangian.

Structure-revealing CMTF model:

min _ |X—[X\A,B,C]|I°+||Y —AZDT|?

AB,C.D.X )\
s.t. farfa=|brlz=lcrla=|ldr[, =1
R R
Z Ar < B, Z or <3
r=1 r=1

Or, Afr’ 2 O, fOI’ = 1, ...,R.
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Additional constraints can easily be incorporated!
In many data fusion problems, we may need the following constraints to capture the underlying

structures accurately. chemical
. . & shifts
Nonnegativity Constraints: &
- &
min _ |X—[\AB,C]||°+|Y—-AZD'|? @
A B,C,D, X\
0
s.t. |arlp=1brlo=lcrl =drllo=1 %_
R R £
Z )\T‘ S 18) Z Oy S 6 g
r=1 r=1
ory Ar 2 0,04, €y dmyr 2 0 excitation

forr=1R,j=1:J k=1 K,m=1:M.

Angular Constraints: When coupled data sets are overfactored, one shared factor may be
represented by two closely-correlated factors. In that case, the structure-revealing model will
fail to identify shared factors accurately.
min _ |X—[X\AB,C]||°+|Y—-AZD'|?
A B,C.D.X )\
s.t. |ar|y=Ibrlxa=lcrla=1drllo=1
layap| < 0, [blby| < 0,]c/cpl < 0,|d dp| <0

R R
Z Ar < B, Z or <8
r=1 r=1
or,Ar >0 for r,pe {1: R}, r # p.
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Angular constraints have a promising performance in the case of
overfactoring! [AM Ao A3] = [0 1 1]
Construct coupled data sets

Generate factor [‘71 oo 03] = [1 0 1]

matrices i
- ~ A +}\2 42 +/\3IJ3 X
Ar H » » Solve for A, B, C, D,

- ds A, and Z using constrained
~ ]I + 02 + U3I_ optimization
ai ) as

Overfactoring (R=4):

Angular Constraints Inactive Angular Constraints Active
0 =0.25
1 . )\ 1 -2\
o o
oLl i |
0 y ¥ 0 st
1 2 3 4 1 2
Match score: 1 - T 1 - -
iTa T -
ar 0.5} 1 0.5
| &r Il | ar | %
0 7 , 3 2 0 7 3 Z

Components Components
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Performance Comparison: Unconstrained Optimization vs. SNOPT

Cq Cco C3
b __
%All—bl +)\2IJ2 +)\3I— 3 [/\]_ )\2 A3] — [1 1 1] :x Y
aq an az [Ul a2 0-3] — [l 1 1]
dy da ds » ) )
7 + 02 + 03 For a fair comparison, we only have norm
~ I I constraints (treated as quadratic penalties
a a5 a3 in the unconstrained version).
[20 20 20 20] [50 50 50 50] [100 100 100 100]
20 3 200 > 200

» 15} . » 150} » 150}

2 ° 2 2

o 10} o 100} o 100}

Q ® Q O

(0] (0] (0]

® 5} . ® 50t ® 50t

s & ¢
ol—e ) ol ]
NCG LBFGS SNOPT NCG LBFGS SNOPT NCG LBFGS SNOPT
I \CG
100 T [ |]LBFGS
. I sNnoPT
2
>
g 50
-}
(&)
Q
©
0

[20 20 20 20] [50 50 50 50] [100 100 100 100]



UNIVERSITY OF COPENHAGEN

Application: Joint analysis of LC-MS and NMR measurements

[Acar et al., BMC Bioinformatics, 2014]
Goal: To identify shared/unshared factors in each data set 1591
Data: 29 mixtures measured using DOSY-NMR and LC-MS. chemical shifts
Mixtures are prepared using the following five chemicals:
» Val-Try-Val

168 peaks

0
0
*Trp - Gly o o 5
. Phe Visible by LC-MS and NMR N -E 8
- Maltoheptaose E g';:e'eelgt
« Propanol —> Visible by NMR only

Cq 06
N i %All—bl_i__,__i_)\ﬁld)ﬁ
aq a6

2
min _ [|X = [AA,B,Cl |7+ | Y - ASDT |* +5I1AllL + Bllollx
AB,CD,X )\

s.t.|lar|l2 = [[br||l2 = [[er|l2 = ||dr|l2 = 1,for r =1,.., R

Val-Tyr-Val Trp-Gly

05 o 04
v v v v v < . b - N T a4 ao:
09 B 1 Og N\ 1o : |
"o 2 4 “’b 8 019 10 20 30 025 0 30
07 ppm M Mo~
1 ( 0.4, 0.6
C1 o5 AS o 04
0.5 0 v v a_3 o a4:.z
1 2 3% 5 6 7 8 0 0
0.3 02 “‘&adient Level 1t C— o2t C— -
d - PO i i
0.1 -1 Og os
| - ago:
Val-Tyr-Val Trp-Gly Phe. Malto. Propanol  Noise 0 50 100 150 5 o

Components
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Need better ways for dealing with the initialization problem!

Weights
. : x ; ; | I

0.9 -

0.7

0.5

0.3

> :II Il II I.

Val-Tyr-Val Trp-Gly Phe. Malto. Propanol Noise

Components

« The minimum function value: f(X\,=,A,B,C,D) =0.0134
« Out of 1000 runs with random initializations, we get the minimum function value 98 times.

800 L L} L L L} L I
= 64 cores fitting the model with
2 600 different starting points to get these
o results ...

2 400} -
0N
(0]
£
s 200 -
H
/O/I I I I L L l I L
01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

These are the runs

int tl function value (f)
we interpret!
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Summary

- Goal: Joint analysis of heterogeneous data sets
- Our Approach: Coupled matrix and tensor factorizations
- Original formulation assuming all components are shared

- Reformulation of the original model to identify
shared/unshared factors accurately

>> All can handle missing data!
- Algorithmic Approach: All-at-once optimization
- Unconstrained optimization
- Constrained optimization
- Applications:
- Chemometrics/Metabolomics
- Social network analysis

- Open issues:

- More flexible structure-revealing data fusion models, e.g., constraints [Acar,
Nilsson, and Saunders, EUSIPCO, 2014], flexible couplings [Farias et al., LVA/ICA,
2015]...

- More robust and/or computationally efficient approaches
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Thank you!
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