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Tensor contractions

For some s, t , v � 0, a tensor contraction of tensors A and B is

C~i~j =
X

~k

A~i~k · B~k~j , alternatively written, C~i
~j
=

X

~k

A~i
~k
· B~k

~j
,

where~i = {i1, . . . , is},~j = {j1, . . . , jt}, and ~k = {k1, . . . , kv}.

Matrix/vector examples:
(s, t , v) = (0, 0, 1) vector inner product
(s, t , v) = (1, 0, 1) matrix-vector multiplication
(s, t , v) = (1, 1, 0) vector outer product
(s, t , v) = (1, 1, 1) matrix-matrix multiplication
(s, t , v) = (s, 1, 1) tensor-times-matrix
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Applications of higher-order tensor contractions

Some applications of contractions of tensors of order at least three:
tensor factorization algorithms, e.g. alternating least squares
deep learning convolutional neural networks
higher-order analysis of probabilistic correlation
post-Hartree-Fock electronic structure, e.g. coupled cluster
density matrix renormalization group (DMRG)
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Contractions in Coupled Cluster (CCSD method)
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where Px
y f (x , y) := f (x , y)� f (y , x)
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Exploiting symmetry in tensor contractions

Tensor symmetry (e.g. Aij = Aji ) reduces memory and cost
for order d tensor, d ! less memory
dot product

P
i,j AijBij = 2

P
i<j AijBij +

P
i AiiBii

matrix-vector multiplication (Aij = Aji )

ci =
X

j

Aijbj =
X

j

Aij(bi + bj)�
✓X

j

Aij

◆
bi

Aijbj 6= Ajibi but Aij(bi + bj) = Aji(bj + bi) ! (1/2)n2 multiplies
partially-symmetric case: T ab

ij = �T ab
ji

W ak
ic =

X

j

X

b

T ab
ij V jk

bc

=
X

j

✓X

b

T ab
ij (V ik

bc + V jk
bc)

◆
�
X

b

✓X

j

T ab
ij

◆
V ik

bc

Z ak
ijc =

P
b T ab

ij (V ik
bc + V jk

bc) = �Z ak
jic ! 2x fewer operations
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Symmetry preserving algorithms

By exploiting symmetry, reduce multiplies (but increase adds)
rank-2 vector outer product

Cij = aibj + ajbi = (ai + aj)(bi + bj)� aibi � ajbj

squaring a symmetric matrix A (or AB + BA)

Cij =
X

k

AikAkj =
X

k

(Aik + Akj + Aij)
2 � . . .

fully symmetric contraction of order s + v and v + t tensors

(s + t + v)!
s!t!v !

fewer multiplies

e.g. cases above are
(s, t , v) = (1, 1, 0) ! reduction by 2X
(s, t , v) = (1, 1, 1) ! reduction by 6X
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Applications of symmetry preserving algorithms

Extensions and applications:
numerically stable by forward error bounds and experiments
for Hermitian tensors, multiplies cost 3X more than adds

Hermitian matrix multiplication and tridiagonal reduction (BLAS and
LAPACK routines) with 25% fewer operations

cost reductions in partially-symmetric coupled cluster contractions:
2X-9X for select contractions, 1.3X, 2.1X for CCSD, CCSDT
(2/3)n3 multiplies for squaring a nonsymmetric matrix

XSY :=
1
2
(X + X T), XAS :=

1
2
(X � X T),

C = AB + (ATBT)T = AB + BA
= (ASYBSY)SY + (ASYBAS)AS + (AASBSY)AS + (AASBAS)SY

four invocations of (s, t , v) = (1, 1, 1), squaring when A = B
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Symmetry preserving blocking (sketch)

Multiplication of a symmetric matrix A and a nonsymmetric matrix B:
classical approach, two choices:

1 treat A as nonsymmetric (unpack if stored as symmetric)
2 multiply by lower-triangle of A then by its transpose

proposed new approach
fold n ⇥ n matrix A into

p
p ⇥ np

p ⇥p
p ⇥ np

p tensor T

note that T ij
kl = T ji

lk , define partially-symmetric Y ij
kl = T ij

kl + T ij
lk and

partially-antisymmetric Sij
kl = T ij

kl � T ij
lk

use symmetry preserving alg. over indices of dims
p

p ⇥p
p, results

in p subproblems with symmetric matrices with dims np
p ⇥ np

p

food for thought: keep folding/symmetrizing to 2 ⇥ · · ·⇥ 2 tensors
! Hankel matrices (modulo sign interchanges)
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Bilinear algorithms

Bilinear algorithms1 for symmetric contractions
a bilinear algorithm is defined by matrices F (A),F (B),F (C),

c = F (C)[(F (A)Ta) � (F (B)Tb)]

where � is the Hadamard (pointwise) product

the number of rows in each matrix corresponds to the number of
inputs (dimensions of a and b) and outputs (dimension of c)
for clasiscal n ⇥ n matrix multiplication F (A),F (B),F (C) are n2 ⇥ n3

and have one unit entry per column
number of columns in F (A),F (B),F (C) is the bilinear algorithm rank

1
Pan, How to Multiply Matrices Faster, Springer, 1984
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Bilinear algorithms as tensor factorizations

A bilinear algorithm corresponds to a CP tensor decomposition
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kr

For multiplication of n ⇥ n matrices,
T is n2 ⇥ n2 ⇥ n2

classical algorithm has rank R = n3

Strassen’s algorithm has rank R ⇡ nlog2(7)
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Bilinear algorithms as tensor factorizations

A bilinear algorithm corresponds to a CP tensor decomposition
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◆
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◆
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X

j

X

k

Tijkajbk where Tijk =
RX

r=1

F (C)
ir F (A)

jr F (B)
kr

For symmetric tensor contractions (not counting diagonals)
T is

� n
s+t

�
⇥
� n

s+v
�
⇥
� n

v+t
�

classical algorithm has rank R =
�n

s
��n

t
��n

v
�

symmetry preserving ! R ⇡
� n

s+t+v
�
, that is (s+t+v)!

s!t!v ! less
11 / 14 Fast Algorithms for Symmetric Tensor Contractions



Expansion in bilinear algorithms

Given ⇤ = (F (A),F (B),F (C)), ⇤sub ✓ ⇤ if 9 projection matrix P, so

⇤sub = (F (A)P,F (B)P,F (C)P),

the projection matrix extracts #cols(P) columns of each matrix.

A bilinear algorithm ⇤ has expansion bound E⇤ : N3 ! N, if for all

⇤sub := (F (A)
sub ,F

(B)
sub ,F

(C)
sub ) ✓ ⇤

we have

rank(⇤sub)  E⇤
⇣

rank(F (A)
sub ), rank(F (B)

sub ), rank(F (C)
sub )

⌘

For matrix mult., Loomis-Whitney inequality ! EMM(x , y , z) =
p

xyz
For sym. pres. E(s,t ,v)

SP (x , y , z) = O
⇣

min
�
x

s+t+v
s+v , y

s+t+v
t+v , z

s+t+v
s+t

�⌘
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Communication in symmetry preserving algorithms

Communication lower bounds based on bilinear algorithm expansion
horizontal comm. – max data sent or received
vertical comm. – max data moved between memory and cache

For contraction of order s + v tensor with order v + t tensor
matrix-vector-like algorithms (min(s, t , v) = 0)

vertical communication dominated by largest tensor
horizontal communication asymptotically greater if only unique
elements are stored and s 6= t 6= v

matrix-matrix-like algorithms (min(s, t , v) > 0)
vertical and horizontal communication costs asymptotically greater
for symmetry preserving algorithm when s 6= t 6= v
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Conclusion
Summary:

symmetry preserving algorithms reduce cost of contractions

they have been tested using Cyclops Tensor Framework
https://github.com/solomonik/ctf

rank structure of bilinear algorithms yields communication bounds

Future work:

communication lower bounds for partially-symmetric cases

high performance implementation

Related work: J. Noga and P. Valiron, Improved algorithm for triple-excitation contributions
within the coupled cluster approach, Molecular Physics, 103 (2005).
References (for more, email solomonik@inf.ethz.ch):

E.S. and J. Demmel; Contracting symmetric tensors using fewer multiplications; ETH
Zurich, 2015

E.S., J. Demmel, and T. Hoefler; Communication lower bounds for tensor contraction
algorithms; ETH Zurich, 2015
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Backup slides
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Stability of symmetry preserving algorithms
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Symmetry preserving algorithm vs Strassen’s
algorithm
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A library for tensor computations

Cyclops Tensor Framework
implicit for loops based on index notation (Einstein summation)
matrix sums, multiplication, Hadamard product (tensor
contractions)
distributed symmetric-packed/sparse storage via cyclic layout

Jacobi iteration (solves Ax = b iteratively) example code snippet

Vector <> Jacobi(Matrix <> A, Vector <> b, int n){
... // split A = R + diag (1./d)
do {

x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual

} while (r.norm2() > 1.E-6); // check for convergence
return x;

}
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Coupled cluster using CTF

Extracted from Aquarius (Devin Matthews’ code,
https://github.com/devinamatthews/aquarius)

FMI["mi"] += 0.5*WMNEF["mnef"]*T2["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T2["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T2["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T2["afin"];

Z2["abij"] = WMNEF["ijab"];
Z2["abij"] += FAE["af"]*T2["fbij"];
Z2["abij"] -= FMI["ni"]*T2["abnj"];
Z2["abij"] += 0.5*WABEF["abef"]*T2["efij"];
Z2["abij"] += 0.5*WMNIJ["mnij"]*T2["abmn"];
Z2["abij"] -= WAMEI["amei"]*T2["ebmj"];

CTF is used within Aquarius, QChem, VASP, and Psi4
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Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum
chemistry method suite

provides Coupled Cluster methods: CCSD and CCSDT
derives equations via Tensor Contraction Engine (TCE)
generates contractions as blocked loops leveraging Global Arrays
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Coupled cluster on IBM BlueGene/Q and Cray XC30
CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZa
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Coupled cluster methods

Coupled cluster provides a systematically improvable approximation to
the manybody time-independent Schrödinger equation H| i = E | i

the Hamiltonian has one- and two- electron components
H = F + V
Hartree-Fock (SCF) computes mean-field Hamiltonian: F , V
Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) consider
transitions of (doubles, triples, and quadruples) of electrons to
unoccupied orbitals, encoded by tensor operator,
T = T1 + T2 + T3 + T4

they use an exponential ansatz for the wavefunction,  = eT�
where � is a Slater determinant
expanding 0 = h�0|H| i yields nonlinear equations for {Ti} in F ,V

0 = V ab
ij + P(a, b)

X

e
T ae

ij F b
e � 1

2
P(i , j)

X

mnef

T ab
im V mn

ef T ef
jn + . . .

where P is an antisymmetrization operator
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Vertical communication in bilinear algorithms

Any schedule on a sequential machine with a cache of size H for
⇤ = (F (A),F (B),F (C)) with expansion bound E⇤ has vertical
communication cost,

Q⇤ � max


2 rank(⇤)H
Emax
⇤ (H)

,#rows(F (A)) + #rows(F (B)) + #rows(F (C))

�

where Emax
⇤ (H) := max

c(A),c(B),c(C)2N,c(A)+c(B)+c(C)=3H
E⇤(c(A), c(B), c(C))
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Vertical communication in matrix multiplication

For the classical (non-Strassen-like) matrix multiplication algorithm of
m-by-k matrix A with k -by-n matrix B into m-by-n matrix C,

EMM(c(A), c(B), c(C)) = (c(A)c(B)c(C))1/2

further, we have

Emax
MM(H) = max

c(A),c(B),c(C)2N,c(A)+c(B)+c(C)3H
(c(A)c(B)c(C))1/2 = H3/2

so we obtain the expected bound,

QMM � max


2 rank(MM)H
Emax

MM(H)
,#rows(F (A)) + #rows(F (B)) + #rows(F (C))

�

= max


2mnkp
H

,mk + kn + mn
�
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Horizontal communication in bilinear algorithms

Any load balanced schedule on a parallel machine with p processes of
⇤ = (F (A),F (B),F (C)) with expansion bound E⇤ has horizontal
communication cost,

W⇤ � c(A) + c(B) + c(C)

for some (communicated amounts) c(A), c(B), c(C) 2 N such that,

rank(⇤)/p  E⇤(c(A) +#rows(F (A))/p,

c(B) +#rows(F (B))/p,

c(C) +#rows(F (C))/p)

25 / 14 Fast Algorithms for Symmetric Tensor Contractions



Horizontal communication in matrix multiplication

For the classical (non-Strassen-like) matrix multiplication algorithm of
m-by-k matrix A with k -by-n matrix B into m-by-n matrix C on a
parallel machine of p processors,

WMM = ⌦ (WO(min(m, n, k),median(m, n, k),max(m, n, k), p))

where

WO(x , y , z, p) =

8
>>><

>>>:

⇣
xyz
p

⌘2/3
: p > yz/x2

x
⇣

yz
p

⌘1/2
: yz/x2 � p > z/y

xy : z/y � p
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Communication lower bounds for direct evaluation of
symmetric contractions

An expansion bound on  (s,t ,v) is

E(s,t ,v)
 (c(A), c(B), c(C)) = q

⇣
c(A)c(B)c(C)

⌘1/2
,

where q =
h�s+v

s
��v+t

v
��s+t

s
�i1/2

.

Therefore, the same (asymptotically) horizontal and vertical
communication lower bounds apply for  (s,t ,v) as for a matrix
multiplication with dimensions ns ⇥ nt ⇥ nv .
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Communication lower bounds for direct evaluation of
symmetric contractions

Another expansion bound on  (s,t ,0) (when v = 0) is

E(s,t ,0)
 (c(A), c(B), c(C)) =

✓✓
!

s

◆
�1

◆
c(C)+min

✓
(c(A))!/s, (c(B))!/t , c(C)

◆

There are also symmetric bounds when s = 0 or t = 0.
When exactly one of s, t , v is zero, any load balanced schedule of
 (s,t ,v) on a parallel machine with p processors has horizontal
communication cost,

W = ⌦
⇣
(n!/p)max(s,t ,v)/!

⌘

This can be greater than the corresponding nonsymmetric bound,

W = ⌦
⇣
(n!/p)1/2

⌘
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Communication lower bounds for the symmetry
preserving algorithm

An expansion bound on �(s,t ,v) is

E(s,t ,v)
� (c(A), c(B), c(C)) = min

✓✓✓
!

t

◆
c(A)

◆ !
s+v

,

✓✓
!

s

◆
c(B)

◆ !
v+t

,

✓✓
!

v

◆
c(C)

◆ !
s+t

◆

This yields communication bounds with  := max(s + v , v + t , s + t),

Q� = ⌦

✓
n!H
H!/

+ n

◆
W� =

(
⌦
�
(n!/p)/!

�
: s, t , v > 0

⌦
�
(n!/p)max(s,t ,v)/!� :  = !
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Nesting of bilinear algorithms

Given two bilinear algorithms:

⇤1 =(F (A)
1 ,F (B)

1 ,F (C)
1 )

⇤2 =(F (A)
2 ,F (B)

2 ,F (C)
2 )

We can nest them by computing their tensor product

⇤1 ⌦ ⇤2 :=(F (A)
1 ⌦ F (A)

2 ,F (B)
1 ⌦ F (B)

2 ,F (C)
1 ⌦ F (C)

2 )

rank(⇤1 ⌦ ⇤2) = rank(⇤1) · rank(⇤2)
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Communication lower bounds for nested algorithms

Conjecture: if bilinear algorithms �1 and �2 have expansion bounds E1
and E2, then �1 ⌦ �2 has expansion bound, E12(c(A), c(B), c(C))

= max
c(A)

1 ,c(B)
1 ,c(C)

1 ,c(A)
2 ,c(B)

2 ,c(C)
2 2N

c(A)
1 c(A)

2 =c(A),c(B)
1 c(B)

2 =c(B),c(C)
1 c(C)

2 =c(C)


E1(c

(A)
1 , c(B)

1 , c(C)
1 )E2(c

(A)
2 , c(B)

2 , c(C)
2 )

�

Simplified conjecture: consider matrices A and B, such that for some
↵,� 2 [0, 1] and any k 2 N

any subset of k columns of A has rank at least k↵

any subset of k columns of B has rank at least k�

then any subset of k 2 N columns of A ⌦ B has rank at least kmin(↵,�)

The first conjecture would provide lower bounds for the nested
algorithms we wish to use for partially-symmetric coupled-cluster
contractions.
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