Parallelizing and Scaling Tensor Computations*

Muthu Baskaran, Benoit Meister, Richard Lethin

Reservoir Labs

* Patent Pending Technology

Introduction

ENSIGN (Exascale Non-Stationary Graph Notation)

- Goal
 - Optimized tensor toolbox for dynamic graph analytics
 - Produce/provide optimized tensor computations for large-scale parallel systems
- Features
 - High-performance implementation of different variants of tensor decomposition methods
 - Scalable optimizations for tensor computations
 - Automatic parallelization and data locality optimizations
 - Inter-operate with Reservoir Labs' auto-parallelizing compiler
 R-Stream

Presentation Roadmap

About ENSIGN Tensor Toolbox

Optimization and Parallelization Techniques

Performance Evaluation

Summary & Forward Work

ENSIGN Tensor Toolbox

Available in two versions

- ETTB++v3.5.1
 - Accelerated C++ version of tensor toolbox built on top of Sandia National Laboratories C++ Tensor Toolbox v1.0.2
- ETTB v1.0
 - Accelerated C version of tensor toolbox

Toolbox of core algorithms

- CP decomposition variants
 - CP-ALS, CP-APR¹, CP-APR-PDNR², INDSCAL
- Tucker decomposition variants
 - H00I, memory-efficient H00I³
- Methods for "low-rank updates"⁴
- Coupled (Joint) tensor decomposition⁵
- Standardized tensor decomposition⁶

¹[Chi, Kolda 2012], ²[Hansen et al, 2014], ³[Kolda et al, 2008], ⁴[Ohara 2010], ⁵[MATLAB CMTF Toolbox, Acar], ⁶[Brown et al, 2014]

Presentation Roadmap

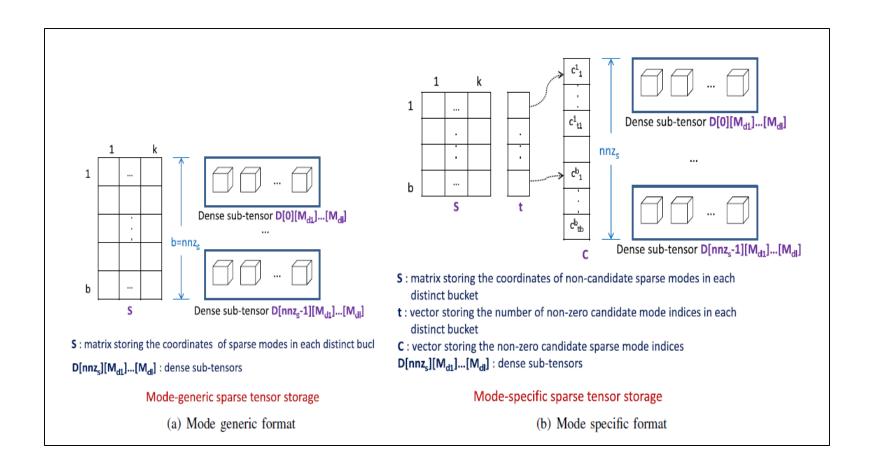
About ENSIGN Tensor Toolbox

Optimization and Parallelization Techniques

Performance Evaluation

Summary & Forward Work

New Data Structures for Scaling the Computations

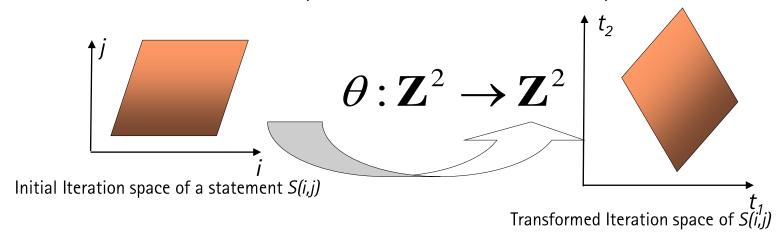


Optimizing Dense Computations

R-Stream optimizations

- State-of-the-art polyhedral compiler algorithms
- Optimize dense computations automatically
- Advanced compiler techniques using "polyhedral model" for
 - Parallelization, Locality, Contiguity, Vectorization, ...
 - "Affine" transformations of arbitrary loop nests

Affine Schedule ϑ maps iterations to multi-dimensional space-time



Optimizing Sparse Computations

Challenge: Optimizing "sparse" computations

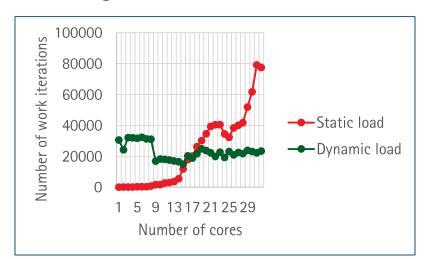
- A "data-driven" scheduling problem
- Need to efficiently handle irregular memory accesses
- Current parallelization efforts (including R-Stream) have scope for improvement
 - Parallelism, synchronization, data locality, etc.

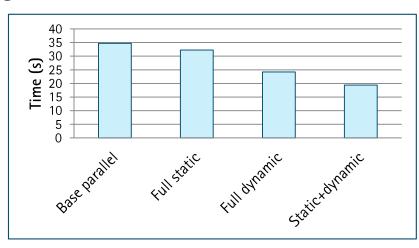
Goals of our improvisation techniques

- Uncover more concurrency
- Reduce synchronization
- Improve data locality
- Achieve load balance
- Reduce scheduling overhead

Mixed Static and Dynamic Runtime Scheduling

- Static scheduling poor load balance, low scheduling overhead
- Dynamic scheduling good load balance, high scheduling overhead
- Our Approach Achieves the pros of both schemes
 - One dynamic scheduling iteration to get a load balanced pattern
 - Static scheduling using the pattern for later iterations
 - good load balance, low scheduling overhead





Baskaran et al., "Low-overhead Load-balanced scheduling for Sparse Tensor Computations," IEEE HPEC 2014.

Improved Data Locality

- Memory-hierarchy aware approach
 - Task distribution across processor cores in the dynamic scheduling iteration governed by
 - Data touched by them
 - Memory in which data resides
 - Over-loaded cores "steal" tasks from "topologically" closer neighbors that are under-loaded
 - NUMA topology in shared memory systems
 - Facilitate data sharing across cores

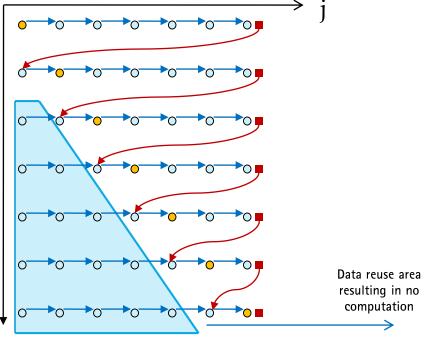
Baskaran et al., "Low-overhead Load-balanced scheduling for Sparse Tensor Computations," IEEE HPEC 2014.

Optimizing Tucker Decomposition Data Reuse Optimization

Tucker decomposition algorithm (HOOI method)

repeat

for n = 1...N do $\emptyset = \mathfrak{X} \times_1 \mathbf{A}^{(1)T} \cdots \times_{n-1} \mathbf{A}^{(n-1)T} \times_{n+1} \mathbf{A}^{(n+1)T} \cdots \times_N \mathbf{A}^{(N)T}$ $\mathbf{A}_n = J_n \text{ leading left singular vectors of } \mathbf{Y}_n$ end for $\mathfrak{G} = \mathfrak{Y} \times_N \mathbf{A}^{(N)T}$ until convergence



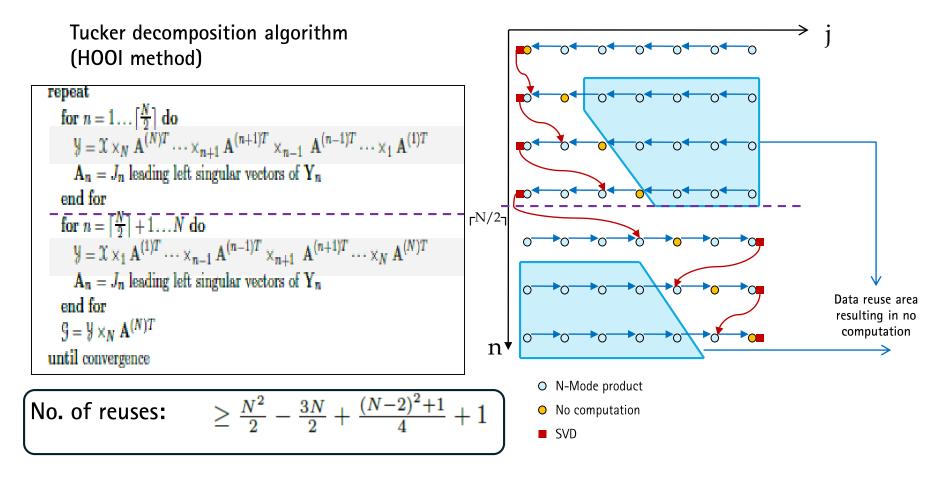
No. of reuses : $\frac{N^2}{2} - \frac{3N}{2} + 1$

O N-Mode product

No computation

SVD

Optimizing Tucker Decomposition Data Reuse Optimization



Optimizing Tucker Decomposition Memory-efficient Scalable Optimization

Memory blowup problem in Tucker decomposition

- Intermediate tensors in computation
 - Storage vs computation trade-off
- Uses mode-generic sparse formats for intermediate tensors in computation
 - State-of-the-art approach uses dense formats for intermediate tensors
- Optimally categorizes modes as *elementwise* and *standard* based on available memory (similar to Kolda et al. 2008)
 - Optimal order of n-Mode products in a sequence that reduces total computation cost and total memory consumption
- Uses data reuse optimization

Presentation Roadmap

About ENSIGN Tensor Toolbox

Optimization and Parallelization Techniques

Performance Evaluation

Summary & Forward Work

Performance Evaluation

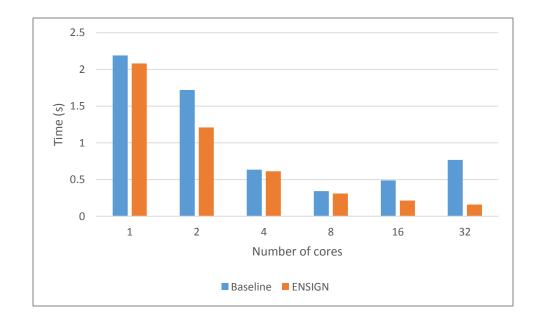
Benchmarked different methods on different sized datasets

Intel Xeon E5-4620 2.2 GHz (Quad socket 8-core)

Reservoir Labs TensorstationTM

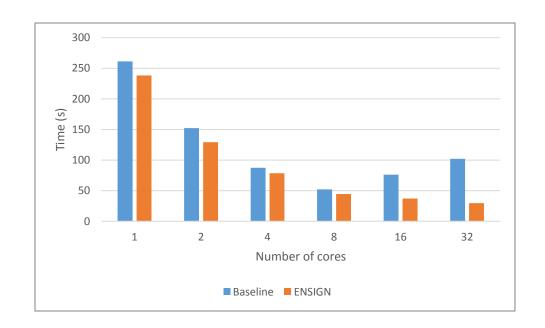
Performance Evaluation CP-ALS evaluation

Tensor	Size	Non-zeros	#iterations timed
Facebook	63891 x 63891 x 1591	737934	50



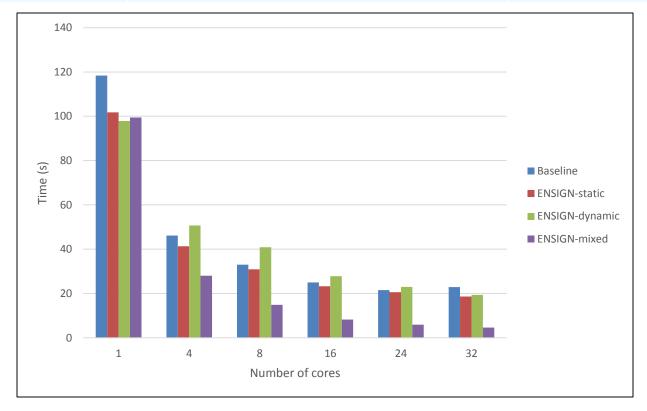
Performance Evaluation CP-ALS evaluation

Tensor	Size	Non-zeros	#iterations timed
Cyber	565872 x 795 x 13868 x 21862	4865458	50



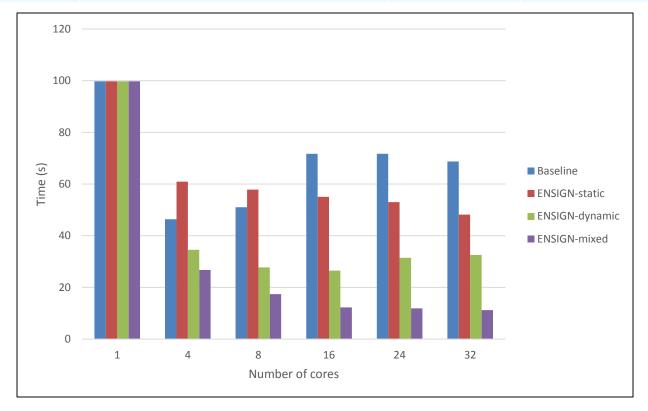
Performance Evaluation CP-APR evaluation

Tensor	Size	Non-zeros	#iterations timed
Facebook	63891 x 63891 x 1591	737934	190



Performance Evaluation CP-APR evaluation

Tensor	Size	Non-zeros	#iterations timed
Cyber	14811811 x1899 x1899 x 3 x 6067	2085108	50



Performance Evaluation Tucker evaluation

- Timed all but one sequence of tensor matrix products
- Data set
 - Number of modes: 4
 - dimensionality of input tensor: 1000 x 1000 x 1100 x 200
 - Number of non-zeros = 5.5M

Version	Time (s)
Baseline	175.17
Kolda et al. Approach	21.79
Our Approach (partial data reuse)	9.29
Our Approach (optimal data reuse)	7.12

Our sequential version: 3x over existing approach

Time for one iteration; typically 75–100 iterations

Performance Evaluation Tucker evaluation

Timed parallel code (with optimal data reuse)

Number of cores	Time (s)
1	7.12
2	6.25
4	3.80
8	2.57

Our parallel version: 8.5x over existing approach's sequential version

Presentation Roadmap

About ENSIGN Tensor Toolbox

Optimization and Parallelization Techniques

Performance Evaluation

Summary & Forward Work

Summary of ENSIGN Techniques

Performance:

- Developed techniques to effectively parallelize and scale large sparse and dense tensor computations
 - New efficient sparse formats
 - Extract maximal parallelism
 - Extract data locality & data reuse
 - Reduce data movement
 - Reduce/Avoid unnecessary computations

Capability:

- Software released to customers
- Demonstrated on real-world problems

Ongoing and Forward Work

More focus on applying ENSIGN on real-world problems

- Genomics
- Cyber security

Enhancing usability of the tool

- Graphical User Interface
- Visualization of decompositions

Distributed-memory versions of tensor methods