Parallelizing and Scaling Tensor Computations*

Muthu Baskaran, Benoit Meister, Richard Lethin

Reservoir Labs

* Patent Pending Technology

Reservoir Labs 17t SIAM Conference on Parallel Processing for Scientific Computing



Introduction

ENSIGN (Exascale Non-Stationary Graph Notation)

® (Goal

— Optimized tensor toolbox for dynamic graph analytics

* Produce/provide optimized tensor computations for large-scale
parallel systems

® Features

— High-performance implementation of different variants
of tensor decomposition methods
* Scalable optimizations for tensor computations

— Automatic parallelization and data locality optimizations

* Inter-operate with Reservoir Labs' auto-parallelizing compiler
R-Stream
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ENSIGN Tensor Toolbox

Available in two versions
® ETTB++v3.5.1

* Accelerated C++ version of tensor toolbox built on top of
Sandia National Laboratories C++ Tensor Toolbox v1.0.2

e ETTB v1.0
e Accelerated C version of tensor toolbox

Toolbox of core algorithms
® (P decomposition variants
- CP-ALS, CP-APR', CP-APR-PDNR?, INDSCAL
® Tucker decomposition variants
— HOOI, memory-efficient HOOI3
® Methods for “low-rank updates"*
® Coupled (Joint) tensor decomposition®
® Standardized tensor decomposition®

[Chi, Kolda 2012], 2[Hansen et al, 2014], 3[Kolda et al, 2008], 4[Ohara 2010], S[MATLAB CMTF Toolbox, Acar], é[Brown et al, 2014]
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New Data Structures for Scaling the Computations
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Baskaran et al., "Efficient and Scalable Computations with Sparse
Tensors", IEEE HPEC 2012.
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Optimizing Dense Computations

R-Stream optimizations

® State-of-the-art polyhedral compiler algorithms

® (Optimize dense computations automatically

® Advanced compiler techniques using "polyhedral model” for
— Parallelization, Locality, Contiguity, Vectorization, ...
— "Affine" transformations of arbitrary loop nests

Affine Schedule & maps iterations to multi-dimensional space-time
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Optimizing Sparse Computations

Challenge: Optimizing “sparse” computations
® A "data-driven” scheduling problem
® Need to efficiently handle irreqular memory accesses

® Current parallelization efforts (including R-Stream) have
scope for improvement

— Parallelism, synchronization, data locality, etc.

Goals of our improvisation techniques
— Uncover more concurrency

— Reduce synchronization

- Improve data locality

— Achieve load balance

— Reduce scheduling overhead
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Mixed Static and Dynamic Runtime Scheduling

® Static scheduling - poor load balance, low scheduling overhead
® Dynamic scheduling - good load balance, high scheduling overhead
® Qur Approach - Achieves the pros of both schemes

— One dynamic scheduling iteration to get a load balanced pattern

— Static scheduling using the pattern for later iterations

— good load balance, low scheduling overhead

40

a 100000 2

i) — 30

5 80000 = o

e v 20

= 60000 £ s

5 _ =10

2 40000 —e—Static load 5

S : 0

_‘E 20000 —e—Dynamic load %é & ({\\c ({\\c
£ @ ENg S Q
2z 0 ¥ O S S

15 91317212529 g S RS
®
Number of cores

Baskaran et al., “Low-overhead Load-balanced scheduling for Sparse Tensor
Computations,” IEEE HPEC 2014.
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Improved Data Locality

® Memory-hierarchy aware approach

— Task distribution across processor cores in the dynamic
scheduling iteration governed by
* Data touched by them
* Memory in which data resides

— Over-loaded cores “steal” tasks from "topologically” closer
neighbors that are under-loaded
* NUMA topology in shared memory systems

— Facilitate data sharing across cores

Baskaran et al., "Low-overhead Load-balanced scheduling for Sparse Tensor
Computations,” IEEE HPEC 2014.
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Optimizing Tucker Decomposition
Data Reuse Optimization

Tucker decomposition algorithm

ool methed P
repeat —P0—>0 >0 »0 0 %0
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Data reuse area
resulting in no
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Baskaran et al., "Efficient and Scalable Computations with Sparse
Tensors", IEEE HPEC 2012.
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Optimizing Tucker Decomposition
Data Reuse Optimization

Tucker decomposition algorithm PRSP
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Baskaran et al., "Efficient and Scalable Computations with Sparse
Tensors", IEEE HPEC 2012.
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Optimizing Tucker Decomposition
Memory-efficient Scalable Optimization

Memory blowup problem in Tucker decomposition

Intermediate tensors in computation

— Storage vs computation trade-off

Uses mode-generic sparse formats for intermediate tensors
In computation

— State-of-the-art approach uses dense formats for
intermediate tensors

Optimally categorizes modes as elementwise and standard

based on available memory (similar to Kolda et al. 2008)

— Optimal order of n-Mode products in a sequence that

reduces total computation cost and total memory
consumption

Uses data reuse optimization

Baskaran et al., “Efficient and Scalable Computations with Sparse
Tensors", IEEE HPEC 2012.
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Performance Evaluation

Benchmarked different methods on different sized datasets
® |ntel Xeon E5-4620 2.2 GHz (Quad socket 8-core)

Reservoir Labs Tensorstation™
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Performance Evaluation

CP-ALS evaluation
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Performance Evaluation

Tensor

Cyber

CP-ALS evaluation
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Performance Evaluation
CP-APR evaluation
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Performance Evaluation
CP-APR evaluation

Tensor

Cyber
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Performance Evaluation
Tucker evaluation

® Timed all but one sequence of tensor matrix products
® Data set
— Number of modes: 4

— dimensionality of input tensor: 1000 x 1000 x 1100 x 200
— Number of non-zeros = 5.5M

Version Time (s)

Kolda et al. Approach 21.79 version: 3x over
_ existing

Our Approach (partial data reuse) 9.29 AT

Our Approach (optimal data reuse) 7.12

Time for one iteration; typically 75-100 iterations
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Performance Evaluation

Tucker evaluation

® Timed parallel code (with optimal data reuse)
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Summary of ENSIGN Techniques

Performance:

® Developed techniques to effectively parallelize and scale
large sparse and dense tensor computations

— New efficient sparse formats
— Extract maximal parallelism

- Extract data locality & data reuse
* Reduce data movement

— Reduce/Avoid unnecessary computations

Capability:
® Software released to customers
® Demonstrated on real-world problems

Reservoir Labs 17t SIAM Conference on Parallel Processing for Scientific Computing

23



Ongoing and Forward Work

More focus on applying ENSIGN on real-world problems
® (Genomics
® (Cyber security

Enhancing usability of the tool
® Graphical User Interface
® \/isualization of decompositions

Distributed-memory versions of tensor methods
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