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Abstract. Bandyopadhyay, Dacorogna, Matveev and Troyanov conjectured
that a closed manifold admitting a flat, non-negative definite metric of constant
rank m should be finitely covered by a fiber bundle over the m-torus. We give a
counter-example to this statement and we discuss the link between this problem
and the study of transversely flat Riemannian foliations.

1. Introduction

An arbitrary (0, 2)-tensor h on a manifold M is said to have flat coordinates if
around any point there exist coordinates for which h is a constant matrix. We will
say in this case that h is a flat bilinear form. In [3], Bandyopadhyay, Dacorogna,
Matveev and Troyanov studied the conditions under which h is flat, generalizing
the approach of Riemann in his introductory lecture of 1861, where he solved the
case of a symmetric, positive definite (0, 2)-tensor (see the two references cited
in [3], i.e. the original papers of Riemann [7, 8]). The authors also opened some
questions about the global structure of manifolds admitting flat (degenerate) met-
rics, stating in particular the following conjecture:

Conjecture 1.1. Suppose a closed manifold M has a flat (possibly degenerate)
non-negative definite metric g of rank m. Then, it is finitely covered by a manifold
which is diffeomorphic to a fiber bundle over an m-dimensional torus.

This conjectured was considered as a potential generalization of Bieberbach’s fa-
mous theorem [4] about cocompact groups of isometries acting on Rn.

Our aim in this note is to provide a counter-example to this conjecture, by
constructing a closed manifold with a flat metric of rank 3, obtained as a suspension
of the 4-torus over S1. This manifold is then covered by a fiber bundle over the
4-torus, but it is not finitely covered by any fiber bundle over the 3-torus.

Before proceeding with the construction of this example, we believe that it could
be enlightening to establish some link between this conjecture and an intensively
studied field of mathematics, the one of Riemannian foliations. The interested
reader could find a very detailed introduction to this topic in the classical book of
Molino [6].
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Given a foliation F on a manifold Mn, we say that F is transversely Riemann-
ian if there exists a fiber bundle metric on the normal bundle TM/TF → of F,
which is projectable to the local quotient manifolds of the foliation. Now, we
consider a manifold M with a flat, non-negative definite (degenerate) metric g of
constant rank m. Around any point of M , there exist coordinates in which g is
a constant matrix, thus the isotropy cone Cg of g does not depend on the point
in these coordinates. In particular, Cg is an involutive distribution on M , which
induces a foliation F. In addition, the metric g projects to a Riemannian metric
on the local quotient manifolds of this foliation because g is constant along the
leaves of F (indeed, it is a constant matrix in the coordinates considered before).
Consequently, g defines a transverse Riemannian structure on (M,F) having the
additional property that its induced transverse Levi-Civita connection is flat. It is
obvious, conversely, that a flat transverse Riemannian structure on (M,F) induces
a non-negative definite metric on M which is flat in the sense of [3].

Altogether, we can reformulate the conjecture 1.1 in the following way: if (M,F)
is a closed foliated manifold with a flat transverse Riemannian structure, then M
is finitely covered by a fiber bundle over the q-torus, where q is the codimension of
F. However, such structures have already been studied by several authors. Indeed,
they correspond to (Isom(Rq),Rq)-transverse structures. A first interesting result
in this direction is given by Yves Carrière in [5, Theorem 4.2] (an english version
can be found in [6, Appendix A, Theorem 4.2]), which states that in the case of
an oriented one-dimensional foliation, M is either diffeomorphic to T k × P where
k > 1 and P is a flat manifold, or M is a Seifert fibration. Nevertheless, this result
does not contradict Conjecture 1.1. Other works on transverse (G, T )-structures
have been carried out, studying more generally the transversely flat similarity
structures (see [1, 2] for example).

Our example, constructed in the next section, relies more on number theory in
order to find a well-behaving diffeomorphism of the 4-torus. To relate the con-
struction to our previous discussion, we emphasize that this example is a compact
manifold of dimension 5 endowed with a foliation of codimension 2 admitting a
transversely flat Riemannian structure.

Acknowledgments. I would like to thank Vladimir S. Matveev for suggesting
me to work on this problem. I also thank Abdelghani Zeghib for his helpful
indications concerning references on transversely flat Riemannian foliations.
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2. Construction of the counter-example

We define the matrix A ∈ GL(Z4) to be the companion matrix of the irreducible
(over Q) polynomial P (X) := X4 − 2X3 − 2X + 1, i.e.

A :=


0 0 0 −1
1 0 0 2
0 1 0 0
0 0 1 2

 . (1)

In particular, A is diagonalizable, and its eigenvalues are the roots of P . But one
has

P (X) = (X2 + (
√
3− 1)X + 1)(X2 − (

√
3 + 1)X + 1) (2)

and (
√
3− 1)2 − 4 < 0 and (

√
3 + 1)2 − 4 > 0, so P has two complex roots λ, λ̄ of

modulus 1 and two real roots α, 1/α different from ±1. Let H be the plane of R4

defined by H := ker(A2 + (
√
3− 1)A+ 1) and let E := ker(A2 − (

√
3 + 1)A+ 1),

so R4 = H ⊕ E.

We now consider the manifold M̃ := R4 × R and the group

Γ := Z4 ⋊ ⟨R4 × R ∋ (x, t) 7→ (Ax, t+ 1)⟩ ≃ Z4 ⋊ Z

acting on M̃ , where Z4 acts as the standard lattice on R4. The restriction of A to
H is diagonalizable in C and has two distinct eigenvalues of modulus 1, so it is an
isometry for a positive definite quadratic form q on H. We define the non-negative
definite metric

g̃ := (q ⊕ 0E) + dt2 (3)

on M̃ , where we use the decomposition M̃ ≃ (H ⊕ E)× R and t is the canonical
coordinate of the last factor.

By construction, Γ acts by isometries on (M̃, g̃). Moreover, Γ acts properly
discontinuously, freely and cocompactly on M̃ , so M := M̃/Γ is a compact mani-
fold and g̃ descends to a non-negative definite metric g on M . This metric is flat
because g̃ is flat and it has rank 3.

Our goal is to prove that M is not finitely covered by a fiber bundle over the
3-torus T 3.

Lemma 2.1. A subgroup of Γ is a semi-direct product of the form L ⋊K where
L is a subgroup of Z4 and K is either the trivial group or the group generated by
an element of Γ which does not lie in Z4.

Proof. Let Ω be a subgroup of Γ. One has that Ω∩Z4 is a subgroup of Z4. Now,
any element of Ω which does not lie in Z4 is of the form nk where n ∈ Z4 and
k ∈ {0}⋊ Z ⊂ Γ is a non-trivial element. We consider

E := {k ∈ {0}⋊ Z ⊂ Γ | ∃n ∈ Z4, nk ∈ Ω}. (4)
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It is obvious that E is a subgroup of Z in the decomposition Γ = Z4⋊Z, thus there
exists k0 ∈ E such that E = ⟨k0⟩. Consequently, one can find n0 ∈ Z4 such that
n0k0 ∈ Ω and any element of Ω can be written uniquely as n(n0k0)

m for elements
n ∈ Z4 and m ∈ Z. □

From Lemma 2.1, we deduce that any subgroup Ω of Γ with finite index is of
the form L⋊K with L a sublattice of Z4 and K ≃ Z is generated by a non-trivial
element not lying in Z4. In particular, Ω ≃ Z4 ⋊ Z.

We assume by contradiction that M is finitely covered by a fiber bundle over T 3

and we denote by M̄ this finite cover. Since π1(M̄) is a subgroup of Γ with finite
index, one has π1(M̄) ≃ L ⋊ K with K ≃ Z using the notations of the previous
discussion. We write the long sequence of homotopy groups of F → M̄ → T 3

(where F is the typical fiber):

π2(T
3) → π1(F ) → π1(M̄) → π1(T

3) → π0(F ), (5)

which becomes a short exact sequence:

0 → π1(F ) → L⋊K → Z3 → 0. (6)

This means that π1(F ) is a normal subgroup of L ⋊K. Since (L ⋊K)/π1(F ) ≃
Z3 is abelian, π1(F ) should contain the commutator subgroup of Z4 ⋊ Z. If we
denote by k0 a generator of the group K, the commutator subgroup contains all
the elements of the form n−1k−1

0 nk0 for n ∈ L. But k0 is a map of the form
R4 ×R ∋ (x, t) 7→ (Amx+ τ, t+m) for some m ∈ Z \ {0} and τ ∈ Z4. We deduce
that n−1k−1

0 nk0(x, t) = (x+ (Amn)− n, t) = (x+ (Am − I4)n, t). By construction,
Am has all its eigenvalues different from 1, so Am − I4 is non-singular, implying
that (Am − I4)L is a sublattice of Z4 (in particular, it is an abelian group of rank
4). The rank of the abelian group (Z4 ⋊ Z)/π1(F ) ≃ Z3 should thus be less than
1, which is a contradiction.
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