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Abstract. A compact manifold M together with a Riemannian metric h on its universal
cover M̃ for which π1(M) acts by similarities is called a similarity structure. In the case where

π1(M) ̸⊂ Isom(M̃, h) and (M̃, h) is reducible but not flat, this is a Locally Conformally
Product (LCP) structure. The so-called characteristic group of these manifolds, which is
a connected abelian Lie group, is the key to understand how they are built. We focus
in this paper on the case where this group is simply connected, and give a description of
the corresponding LCP structures. It appears that they are quotients of trivial Rp-principal
bundles over simply-connected manifolds by certain discrete subgroups of automorphisms. We
prove that, conversely, it is always possible to endow such quotients with an LCP structure.

1. Introduction

A similarity structure on a compact manifold M is the data of a Riemannian metric h
on its universal cover M̃ for which the deck-transformations are similarities (also called ho-
motheties). Similarity structures can be divided in two families: those coming from lifts of
Riemannian metrics on M to M̃ , for which the deck-transformations are isometries, and those
where at least one of these transformations is a strict similarity with ratio less than 1. In
the first case, the structure is said to be Riemannian and its study belongs to Riemannian
geometry. The second case, in which we will be interested in this article, is a pure subject of
conformal geometry. We then restrict ourselves to the non-Riemannian case.

Similarity structures are quite rigid from the point of view of the holonomy group of (M̃, h),
and until very recently only flat and irreducible examples were known. This observation
together with a previous result from Gallot [6] on Riemannian cones led Belgun and Mo-
roianu [3] to formulate the conjecture that those where the only possibilities, a statement
that they proved under an additional assumption on the existing-time of geodesics. However,
it appeared that a third case can occur, closing the list of possible holonomies as shown by
Matveev and Nikolayevsky [10, 11] in the analytic case and by Kourganoff [8] in the smooth
case. The last possible family actually contains manifolds such that (M̃, h) is reducible and
admits a de Rham decomposition with two factors. More precisely, (M̃, h) = Rq × (N, gN)
where Rq is an Euclidean space and (N, gN) is irreducible and incomplete. The manifolds
belonging to this family are called Locally Conformally Product manifolds (which will be
shortened to LCP in the sequel). LCP manifolds are also characterized as the ones whose
similarity structure has reducible holonomy and is a Riemannian product with one of the fac-
tors being a complete Euclidean space [4], thanks to a classification of flat similarity structures
by Fried [5].
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One can give a different approach of LCP manifolds using conformal geometry, which is
equivalent to the previous exposition. Indeed, a non-Riemannian similarity structure can be
defined by endowing the compact manifold M with a conformal structure c and a connection
D on M preserving the conformal class, such that D is always locally but not globally the
Levi-Civita connection of a metric in c. The lifted connection D̃ on M̃ is then globally
the Levi-Civita connection of a metric h in the lifted conformal class c̃, uniquely defined up
to a multiplication by a constant. This point of view enlighten some similarities with the
intensively studied Locally Conformally Kähler (LCK) manifolds. For this reason, one of
the first known examples of LCP manifolds was a subfamily of the OT-manifolds [13], where
the algebraic number field used for the construction has exactly 2 complex embeddings. In
this case, one can define a Kähler potential on the universal cover of the manifold inducing
a non-Riemannian similarity structure with reducible non-flat holonomy. This example was
further studied in [4] where it was shown that all the OT-manifolds admit LCP structures.

The OT-manifolds are moreover the only known examples of LCP manifolds admitting a
compatible LCK structure. However, they do not admit a Kähler metric belonging to the
induced conformal class. It has been proved in [2] that the conformal class of an LCP manifold
does not contain a Kähler or an Einstein metric, illustrating again the strong rigidity of these
structures.

One can then observe that for a compact manifold to admit a non-Riemannian similarity
structure already imposes important constraints, but the LCP manifolds are even more re-
strictive, and only few examples were given until a previous work of the author [4]. It seems
that, despite the variety of examples that one can construct, we always need the same basic
ingredients, giving hope for the possibility of finding a general construction pattern providing
a good understanding of these structures. In particular, all examples come from solvmani-
folds, a track which was followed by Andrada, del Braco and Moroianu [1] in order to describe
the LCP manifolds arising from solvable unimodular Lie algebras up to dimension 5. Our goal
in this paper is to continue investigating, in order to obtain a general construction. For this,
we will start from objects introduced in previous works and characterizing LCP structures.

In order to prove that the number of possibilities for the holonomy of (M̃, h) is limited,
Kourganoff [8] used an important tool on LCP manifolds, which is the restriction P of the
fundamental group π1(M) to the non-flat part N . The closure P̄ of this restriction is a
subgroup of the group of similarities of (N, gN), and its identity component P̄ 0 is an abelian
Lie group containing only isometries. The group Rq × P̄ 0, where Rq has to be understood
as the translations of the Euclidean space, is called the characteristic group. It consists of
isometric transformations of (M̃, h) and encodes important information on the LCP structure.
In particular it helps understanding the action of the fundamental group. For instance, using
the action of π1(M) by conjugation on the characteristic group, it was shown in [4] that the
similarity ratios of elements of π1(M) are units of an algebraic number field.

The characteristic group being a connected abelian Lie group, it is a product between an
Euclidean space and a torus. However, all examples provided so far have simply connected
characteristic group, suggesting the significance to understand this particular case. In this
article, we then focus on giving a description of LCP manifolds with simply connected charac-
teristic groups, using the remarkable fact that this group then acts freely and properly on the
manifold M̃ , thus implying the existence of a new decomposition of M̃ as a product Rp × C
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with Rq ⊂ Rp, no longer adapted to the metric, but allowing a nice understanding of the
action of π1(M).

A glance at the known examples lets us expect that the deck-transformations admit the
following description: there exists a discrete group H acting freely, properly and co-compactly
on the factor C and a subgroup Ω of GLp(Z)×H such that

(1) π1(M) = Zp ⋊ Ω,

where Zp acts on Rp by translations. However, the situation appears to be less ideal, and
the group Ω can take values in the automorphisms of the trivial (S1)p-principal bundle over
C, lifted to Rp × C. The group π1(M) is then not always a semi-direct product. Moreover,
the action of the group Ω on C is not necessarily free, turning C/Ω into a good compact
orbifold rather than a manifold (see Theorem 4.4). It is then natural to ask if, given a good
compact orbifold together with a suitable lift of its fundamental group to the automorphisms
of a trivial torus bundle over its universal cover, one can in turn construct an LCP manifold.
The answer is positive, as we show in Theorem 4.10. In this process, we also describe all
the possible LCP structures by providing a way to construct the metrics for which the deck-
transformations act by similarities. In the last section, we discuss new examples and open
questions, showing why some results we could conjecture are actually false. We also give a
necessary and sufficient condition for the construction of an LCP structure when C/Ω is a
manifold (see Proposition 5.7).

Acknowledgements. The author thanks Andrei Moroianu for some helpful comments dur-
ing the preparation of this paper.

2. Preliminaries

LetM be a manifold endowed with a conformal structure, i.e. a set c of Riemannian metrics
such that for all g, g′ ∈ c, there exists f : M → R satisfying g = e2fg′.

A Weyl connection on the conformal manifold (M, c) is a a torsion-free connection D such
that D preserves c in the sense that for any g ∈ c, there exists a 1-form θg ∈ Ω1(M) with

(2) Dg = −2θg ⊗ g.

In this case, θg is called the Lee form of D with respect to g.

If there is g ∈ c such that θg is closed, then θg′ is closed for any metric g′ ∈ c because these
two 1-forms differ by an exact 1-form. In addition, this is equivalent to D being locally the
Levi-Civita connection of a metric in c, which means that for any x ∈ M there is an open set
U ⊂ M with x ∈ U and a metric g ∈ c such that the Levi-Civita connection of g coincides
with D on U . The Weyl connection D is then said to be closed. This statement holds globally
if and only if there is a metric g ∈ c such that θg is exact and in this case, D is said to be
exact.

We recall that a similarity (also called a homothety) between two Riemannian manifolds
(M1, g1), (M2, g2) is a diffeomorphism φ : M1 → M2 satisfying

(3) φ∗g2 = λ2g1

for some λ > 0 called the similarity ratio of φ. A similarity structure on M , as defined
in [8], is a metric h on the universal cover M̃ such that π1(M) acts by similarities on (M,h).
When π1(M) acts only by isometries, this similarity structure is called Riemannian. If the



4 BRICE FLAMENCOURT

Weyl connection D is closed, its lift D̃ to the universal cover M̃ of M together with the
lifted conformal class c̃ is an exact Weyl connection, and there exists a metric hD ∈ c̃, unique
up to multiplication by a constant, such that D̃ is the Levi-Civita connection of hD. The
fundamental group π1(M) acts on (M̃, hD) by similarities, defining a similarity structure
on M . As it was discussed in [4], there is a one-to-one correspondence between similarity
structures up to mutiplication by a constant and closed Weyl structures on M . Through this
identification, Riemannian similarity structures correspond to exact Weyl structures.

From now on, we consider a compact conformal manifold (M, c) endowed with a closed,
non-exact Weyl connection D, which is non-flat and has reducible holonomy. The structure
(M, c,D) is called a Locally Conformally Product structure (or LCP for short) [4]. A theorem
due to Kourganoff [8, Theorem 1.5] allows one to understand the structure of these LCP
manifolds by looking at the Riemannian metric hD induced on M̃ by D.

Theorem 2.1 (Kourganoff). Let D be a closed, non-exact Weyl structure on a compact
conformal manifold (M, c). Assume moreover that D is non-flat and has reducible holonomy.
Then, there exists q ≥ 1 and an irreducible incomplete Riemannian manifold (N, gN) such
that the universal cover M̃ of M endowed with the metric hD induced by D is isometric to
the Riemannian product Rq × (N, gN).

It was proved in [4] that (M, c,D) is an LCP structure if and only if (M̃,D) is reducible
and has a Riemannian factor which is an Euclidean space. This fact will be often used in
order to show that the examples we will give are indeed LCP manifolds.

According to Theorem 2.1, one has (M̃, hD) ≃ Rq × (N, gN), where Rq and (N, gN) will
respectively be called the flat part and the non-flat part of M̃ . This can be reformulated by
saying that (M̃, hD) has a de Rham decomposition with 2 factors, and since π1(M) preserves
the connection D̃, it must preserves the de Rham decomposition up to the order of the factors,
but it must also preserve the flat factor Rq. Consequently, the elements of π1(M) preserve
the de Rham decomposition, and any γ ∈ π1(M) can be written as γ =: (γE, γN) where γE
and γN are similarities of Rq and N respectively. We then define P := {γN | γ ∈ π1(M)}, and
we denote by P̄ the closure of P in Sim(N, gN) with respect to the compact-open topology.

The connected component of the identity in P̄ is denoted by P̄ 0. It has been shown
in [8, Lemma 4.1] that P̄ 0 is an abelian Lie group, satisfying P̄ 0 ⊂ Iso(N, gN). In particular,
it is the product of a real vector space and a torus.

The decomposition M̃ = Rq × N induces a natural foliation F̃ on M̃ via the submersion
M̃ → N , whose leaves are the sets F̃x := Rq ×{x} for x ∈ N . In turn, the foliation F̃ induces
a foliation F on the compact manifold M . The closures of the leaves of F define a singular
Riemannian foliation F̄ on M [8, Theorem 1.9], and if one denotes by πM : M̃ → M the
canonical projection, the leaves of F̄ are exactly the sets πM(Rq × P̄ 0x) for x ∈ N [8, Lemma

4.11]. In view of this last property we define for x ∈ N the set C̃Fx := Rq × P̄ 0x, so that

C̃F = {C̃Fx | x ∈ N} is a singular foliation of M̃ . Since P̄ 0 is an abelian Lie group which
acts by isometries on (N, gN), the Riemannian manifolds Rq × P̄ 0x, x ∈ N , with the metric
induced by gN are products of an Euclidean space with a flat torus, as it was noticed in [8]
and [4], however their dimensions depend on x a priori.
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We call a lattice of an abelian Lie group G any discrete subgroup H of G. If G/H is
compact, then H is called a full lattice. It was shown in [8, Lemma 4.18] that the group

(4) Γ0 := π1(M) ∩ (Sim(Rq)× P̄ 0)

is a full lattice of Rq×P̄ 0. In particular, it is an abelian subgroup of Isom(M̃, hD). In addition,
it was shown in [4, Lemma 2.10], by adapting the incorrect proof of [8, Lemma 4.17], that P
is isomorphic to π1(M). Since P̄ 0 is a normal subgroup of P̄ , being its identity component,
Γ0 is a normal subgroup of π1(M) by definition.

We will study in this article the case where P̄ 0 ≃ Rp−q for some p ≥ q, in order to give a
precise description of these manifolds.

3. General results

3.1. Properties of some group actions on LCP manifolds. Let (M, c,D) be an LCP
manifold. We keep the notations of the preliminary section. The group Γ0 is a finitely
generated abelian group since it is a lattice of Rq × P̄ 0, thus Γ0 = Γtor

0 ⊕ Zp where Γtor
0 is

the torsion subgroup of Γ0 and p ≥ q. Our first goal in this section is to give a special
decomposition of the universal cover M̃ of M . For this purpose, we consider a representative
ΓF
0 of Γ0/Γ

tor
0 ≃ Zp in Γ0 with basis (γ1, . . . , γp). We denote by ”exp” the exponential map

of the Lie group Rq × P̄ 0, and we consider (X1, . . . , Xp) ∈ (Te(Rq × P̄ 0))p, where e is the
neutral element, such that γi = exp(Xi) for any 1 ≤ i ≤ p. The subgroup exp−1(Γ0) is a full
lattice of Te(Rq × P̄ 0) and one easily sees that exp−1(Γ0) = ⟨X1, . . . , Xp⟩ ⊕ exp−1(Γtor

0 ), thus
Te(Rq × P̄ 0) = Span(X1, . . . , Xp)⊕ Span(exp−1(Γtor

0 )).

We define the subgroup F of Rq × P̄ 0 by

(5) F := exp(Span(X1, . . . , Xp)).

We claim that exp : Span(X1, . . . , Xp) → F is an isomorphism. Indeed, it is sufficient to
prove that the map is injective. But for any X ∈ Span(X1, . . . , Xp) such that exp(X) = 0,
one has X ∈ exp−1(Γtor

0 ) ∩ Span(X1, . . . , Xn) = {0}, so X = 0 and we deduce the injectivity.

In addition, F is a closed subgroup. Indeed, if we write Rq × P̄ 0 as the product Rp× (S1)m

of an Euclidean space and a torus, the projection of the basis (γ1, . . . , γp) onto Rp is a basis
of Rp because otherwise Γ0 would not be a full lattice of Rq × P̄ 0. From the point of view of
the Lie algebra, it implies that the projection of (X1, . . . , Xp) onto the Lie algebra of Rp is a
basis. We then easily define a continuous bijection between Rp and Span(X1, . . . , Xp) ≃ F ,
proving that Rp ≃ F and that F is closed.

The group F thus represents the non-compact part of the group Rq × P̄ 0. In order to show
that F acts freely on M̃ , we first prove two technical lemmata:

Lemma 3.1. Let Γ ⊂ Γ′ be two full lattices of Rp. Then, for any γ ∈ Γ′ there exists r ≥ 1
such that γr ∈ Γ.

Proof. The space Rp/Γ is a covering of Rp/Γ′ with fiber Γ′/Γ. This is a finite covering
because both spaces are compact, thus Γ′/Γ is finite and each one of its elements has finite
order, proving the lemma. □

Lemma 3.2. Let M be a smooth manifold on which acts the group Rp. Assume that a full
lattice of Rp acts freely and properly on M. Then, Rp acts freely on M.
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Proof. We denote by Γ the full lattice of the statement. Let x ∈ M and consider the set Rp ·x.
Let S(x) = {a ∈ Rp | a · x = x} be the stabilizer of x in Rp. Then one has Rp · x ≃ Rp/S(x).
We want to prove that S(x) only contains the identity.

By definition, the free abelian group Γ is a full lattice of Rp and Γ acts freely and properly
on M. Since Γ stabilizes Rp ·x, one has that Γ acts freely and properly on Rp ·x, so it is a full
lattice of the abelian group Rp/S(x). A lattice of an abelian Lie group has a rank not higher
than the dimension of the group, so p ≤ dim(Rp/S(x)), and moreover dim(Rp/S(x)) ≤ p
because dim(Rp) = p, thus dim(Rp/S(x)) = p and S(x) is a discrete subgroup of Rp.

One has (Rp · x)/Γ ≃ Rp/⟨S(x),Γ⟩, where ⟨S(x),Γ⟩ is the group generated by S(x) and Γ.
In particular ⟨S(x),Γ⟩ is a full lattice of Rp.

We now pick a ∈ S(x). By Lemma 3.1 applied to the full lattices Γ ⊂ ⟨S(x),Γ⟩, there
exists r ≥ 1 such that ar ∈ Γ. Since ar · x = x and Γ acts freely, one has that ar = id. In
addition, S(x) has no torsion because it is a subgroup of Rp thus a = id and S(x) = {id}. □

Corollary 3.3. The group F acts freely on M̃ .

Proof. We apply Lemma 3.2 to the action of F ≃ Rp on M̃ , knowing that the full lattice ΓF
0

of F acts freely and properly on M̃ because ΓF
0 ⊂ Γ0 ⊂ π1(M). □

Corollary 3.4. If P̄ 0 is simply connected, then Rq × P̄ 0 acts freely on M̃ . In particular, P̄ 0

acts freely on N .

Proof. If P̄ 0 is simply connected, the group F defined in Equation (5) is equal to the whole
group Rq × P̄ 0, and by Corollary 3.3 it acts freely on M̃ . □

We now discuss a problem tackled in [8, Lemma 4.16], whose proof was shown to be
incorrect. We would like to understand the action of the group P on N . As we explained
before, it is known that P is isomorphic to π1(M). However, we don’t know if the action of
P is free. We give here a first result which states that this is true if and only if the restricted
action of Γ0 is free.

Proposition 3.5. The group P acts freely on N if and only if the restriction of Γ0 to N ,
which coincides with P ∩ P̄ 0, acts freely.

Proof. If P acts freely on N , then it is easily seen that the restriction of Γ0 to N acts freely.
It remains to prove the converse.

Assume that there is γ ∈ π1(M) \ {id} and x ∈ N such that γN(x) = x (we recall that

γN is the part of γ acting on N). The transformation γ stabilizes the closed leaf C̃Fx. Since
π1(M) acts freely and properly discontinuously on M̃ , the group π1(M)/Γ0 acts freely and
properly discontinuously on M̃/Γ0 (see [4, Proposition 4.1] for example). We denote by γ̄ the

equivalence class of γ in π1(M)/Γ0. As γ̄ stabilizes the compact set C̃Fx/Γ0 (which is compact

because Γ0 is a full lattice of Rq × P̄ 0 and C̃Fx = Rq × P̄ 0x), the set {γ̄m(0, x) | m ∈ N} is
finite because π1(M)/Γ0 acts properly on M̃/Γ0. Thus there exists m ∈ N \ {0} such that
γ̄m(0, x) = (0, x), but π1(M)/Γ0 acts freely, so γ̄m = id and γm ∈ Γ0.

The restriction γE of γ to the flat part Rq is of the form Rq ∋ a 7→ Aa+b where A ∈ GLq(R)
and b ∈ Rq. Since γ has no fixed point and γN(x) = x, γE has no fixed point. One has
that γm

E is a translation because γm ∈ Γ0, so Am = Iq, and considering the polynomial
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Xm − 1 =: (X − 1)R(X) one has Rq = ker(A − Iq) ⊕ kerR(A) =: V1 ⊕ V2. According
to this decomposition, b =: b1 + b2, and (Iq − A)|V2 being invertible there exists a unique
v2 ∈ V2 such that (Iq − A)v2 = b2. One then has γE(v2) = v2 + b1, implying that b1 ̸= 0.
Hence γm(v2, x) = (v2 +mb1, x) giving that γm is a non-trivial element of Γ0. Since π1(M) is
isomorphic to P , (γm)N is a non-trivial element of P , which is the restriction of an element
of Γ0 to N and which has x as a fixed point. □

Corollary 3.6. If P̄ 0 is simply connected, then P acts freely on N .

Proof. Assume that P̄ 0 is simply connected. By Corollary 3.4, P̄ 0 acts freely on N . In
particular, the restriction of Γ0 to N , which is contained in P̄ 0, acts freely and Proposition 3.5
implies that P acts freely on N . □

The results of Corollaries 3.4 and 3.6 motivate the following definition:

Definition 3.7. The group Rq×P̄ 0 will be called the characteristic group of the LCP manifold.
The LCP structure (M, c,D) is said to be simple if its characteristic group is simply connected.

Remark 3.8. The action of the group π1(M) on M̃ descends to an action of π1(M)/Γ0 on
N/P̄ 0 ≃ M̃/(Rq×P̄ 0) because Rq×P̄ is stable under conjugation by elements of π1(M). By the
proof of Proposition 3.5, we know that this action is proper. Indeed, ifK is a compact subset of
N/P̄ 0, the set E := {γ̄ ∈ π1(M)/Γ0 | (γ̄K)∩K ̸= ∅} is equal to {γ̄ ∈ π1(M)/Γ0 | (γ̄K ′)∩K ′ ̸=
∅} where K ′ is the inverse image of K by the projection M̃/Γ0 → N/P̄ 0, and K ′ is compact
because (Rq × P̄ 0)/Γ0 is compact, thus the set E is finite.

We finally prove a useful property, which can be used to identify the characteristic group
in some special situations.

Proposition 3.9. The image of Rq in the torus (Rq × P̄ 0)/Γ0 is dense.

Proof. Let (a, p) ∈ Rq × P̄ 0 and let U , V be neighborhoods of a and p respectively. Since
P ∩ P̄ 0 = Γ0|N is dense in P̄ 0, there exists γ0 ∈ Γ0 such that γ0 ∈ Rq × V , and then one can
find a′ ∈ Rq such that a′ + γ0 ∈ U × V . This implies that ⟨Rq,Γ0⟩ is dense in Rq × P̄ 0, and
thus the image of Rq in (Rq × P̄ 0)/Γ0 is dense. □

3.2. Finite coverings of LCP manifolds. In [8, Theorem 1.10], it was shown using Sel-
berg’s lemma that there exists a finite covering M ′ of M such that the closures of the leaves
of the foliation F′ induced by F on M ′ are flat tori. In particular, M ′ is still an LCP manifold.
We recall here the key point of the proof for the convenience of the reader, and also because
we will use it later.

Proposition 3.10. Let (M, c,D) be an LCP structure. Then, up to a finite covering of M ,
the action of π1(M) on the characteristic group by conjugation has no torsion.

Proof. The action of π1(M) on the characteristic group by conjugation is well-defined, be-
cause P̄ 0 is a normal subgroup of P̄ , and the restriction of π1(M) to Rq contains only
similarities which are in particular affine maps of the form A := Rq ∋ a 7→ Ra + t with
(R, t) ∈ GLq(R) × Rq. For any b ∈ Rq, if we define the translation τb : Rq ∋ a 7→ a + b, one
has AτbA

−1 = (Rq ∋ a 7→ a+Rb) =: τRb.

We then define J : π1(M) → Aut(Rq × P̄ 0), γ 7→ (γ0 7→ γγ0γ
−1). For all γ ∈ π1(M),

J(γ) preserves Γ0, which is a full-lattice of Rq × P̄ 0. This implies that J(γ) descends to an



8 BRICE FLAMENCOURT

automorphism of the torus (Rq × P̄ 0)/Γ0, and J(γ) defines a unique linear transformation
J̃(γ) on the universal cover Rp of Rq × P̄ 0, which preserves the full-lattice given by the lift of
Γ0. Up to a linear transformation, one can assume that this lattice is the canonical lattice Zp

of Rp. It follows that J̃(γ) ∈ GLp(R). The map J̃ : γ 7→ J̃(γ) is then a group homomorphism,

and by Selberg’s lemma there exists a subgroup G of J̃(π1(M)) with finite index and without
torsion element. Thus J̃−1(G) is a subgroup of π1(M) of finite index, such that J(J̃−1(G))
has no torsion element. □

The question of wether this finite cover M ′ can always be taken to be M was raised, since
this result is true when F is of dimension 1. Here we answer negatively by providing a
counter-example.

Example 3.11. Let M̃ := R4 × R∗
+. We consider the matrices

A :=


1 2 0 0
2 3 0 0
0 0 1 2
0 0 2 3

 , B :=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

The matrices A and B commute and A is symmetric so they can be diagonalized in a common
basis (X1, Y1, X2, Y2) where (X1, Y1) ∈ (R2×{0}2)2 and (X2, Y2) ∈ ({0}2×R2)2. In this basis,
A is written as Diag(λ,−λ−1, λ,−λ−1) with λ = 2 +

√
5 > 1 and B remains the same. We

define a group G of transformations of M̃ by

(6) G := ⟨Z4, TA : (a, t) 7→ (Aa, λt), TB : (a, t) 7→ (Ba+ (0, 1/2, 0, 0)T , t)⟩,
where Z4 is the standard lattice acting on R4. Simple computations provide

TA ◦ TB(a, t) = TB ◦ TA(a, t) + ((1, 1, 0, 0)T , 0), T 2
B(a, t) = (a+ (0, 1, 0, 0)T , t).(7)

Let now (a, t) ∈ M̃ and g ∈ G such that g(a, t) = (a, t). According to the relations (7) one
has that there exist δ ∈ {0, 1}, n ∈ Z and Z ∈ Z4 such that

(8) g = Z ◦ T δ
B ◦ T n

A,

implying

(9) (a, t) = g(a, t) = (BδAna+ (0, δ/2, 0, 0)T + Z, λnt).

From the identity t = λnt it follows that n = 0, and Bδa + (0, δ/2, 0, 0)T + Z = a gives
Z = 0 and δ = 0, so we conclude that g = id and that G acts freely. In order to prove
that G acts properly discontinuously, it is sufficient to notice that M̃/Z4 ≃ (S1)4 × R∗

+ and
G/Z4 acts properly on (S1)4 × R∗

+ since the class of TA acts by multiplication by λ on the

coordinate t and TB has order 2. Consequently, M := M̃/G is a manifold, and it is compact
since G([0, 1]4 × [1, λ]) = M̃ .

We consider the Riemannian metric h on M̃ given by

(10) h := dx2
1 + dx2

2 + t4(dy21 + dy22) + dt2

where (x1, y1, x2, y2) are the coordinates in the basis (X1, Y1, X2, Y2) of R4 and t is the param-
eter of the factor R∗

+. For any g ∈ G, if we use the decomposition g = Z ◦T δ
B ◦T n

A given by (8),

we have g∗h := λ2nh, meaning that G acts on M̃ by similarities which are not all isometries.
The Levi-Civita connection of h thus descends to a connection D on M while h induces a
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conformal class c on M . The triple (M, c,D) is an LCP structure. From the point of view of
the universal cover M̃ , the flat part of this LCP structure is identified to the subspace of R4

given by Span(X1, X2), and its non-flat part is identified to the manifold Span(Y1, Y2)× R∗
+.

It is easily seen that the group P̄ 0 in this case consists of all the translations lying in
Span(Y1, Y2), and thus for any (y1, y2, t) in the non-flat part, one has C̃F(y1,y2,t) = R4 × {t}.
We deduce that the closed leaf πM(C̃F(y1,y2,t)) is diffeomorphic to R4 × {t}/S (see [4, Lemma
3.5] for additional details), with S := {g ∈ G | ∀(x1, x2) ∈ R2, g(x1, x2, y1, y2, t) ∈ R4×{t}} =
⟨Z4, TB⟩, where the last equality comes from the decomposition (8). Since S acts freely and

properly discontinuously on R4 × {t} ≃ R4, one has π1(πM(C̃F(y1,y2,t))) ≃ S, but S is not

abelian, so πM(C̃F(y1,y2,t)) is not a torus.

We now come back to the finite cover M ′ of M introduced before. From the proof of [8,

Theorem 1.10] already cited above, we have the following property: denoting by P̄ ′0 the

equivalent of the group P̄ 0 for M ′ (since M ′ is also an LCP manifold), one has P̄ ′0 = P̄ 0 and

the action of π1(M
′) ⊂ π1(M) on Rq × P̄ ′0 by conjugation has no torsion. This motivates the

following definition:

Definition 3.12. We say that the LCP structure (M, c,D) is torsion-free if the action of
π1(M) by conjugation on the characteristic group has no torsion.

4. Simple LCP manifolds

In this section we give a description of simple LCP manifolds (i.e. with simply connected
characteristic group). In a first part, we study the structure of such manifolds to derive the
existence of necessary conditions, and we prove in a second part that any manifold satisfying
these conditions can be endowed with an LCP structure.

4.1. Analysis of the LCP structure. Let (M, c,D) be an LCP manifold. We keep the
notations of the preliminary section, and we assume that P̄ 0 ≃ Rp−q for some p ≥ q, i.e. that
the LCP structure is simple and its characteristic group is isomorphic to Rp. By Corollary 3.4
this group acts freely on M̃ . Moreover, we obtain the following result:

Proposition 4.1. If (M, c,D) is simple, then for any x ∈ N , the Riemannian manifold

C̃Fx = Rq × P̄ 0x is isometric to the Euclidean space Rp.

Proof. Let x ∈ N . By Corollary 3.4, the group P̄ 0 acts freely on N , so C̃Fx = Rq × P̄ 0x ≃
Rq × P̄ 0 ≃ Rp. Moreover, we recall that P̄ 0 is a subgroup of the isometries of (N, gN), hence

the metric hD restricted to F̃x is invariant by the group Rq × P̄ 0 ≃ Rp, which implies that
C̃Fx is an Euclidean space isometric to Rp. □

Corollary 3.4 gives that the group P̄ 0 acts freely on N . It has been shown in [8, Lemma 4.9]
that P̄ acts properly on N , and so does P̄ 0 as a closed subgroup of P̄ . Consequently, by [9,
Theorem 21.10] the quotient C := N/P̄ 0 is a smooth manifold. The canonical submersion
πN : N → C is a Riemannian submersion because P̄ 0 acts by isometries on (M̃, hD), and it
defines a Rp−q-principal bundle. Here, we do not need to specify whether the action of Rp−q

is on the right or the left because the group Rp−q is abelian. In particular, the fibers of the
principal bundle π : M̃ → C are contractible and by [15, Corollary 29.3] this bundle admits
a section, so it is trivial because it is a principal bundle. Thus we can write N ≃ Rp−q × C.
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The metric gN is invariant under the action of the group P̄ 0 ≃ Rp−q (which consists of
isometries of gN), thus it is a Rp−q-invariant metric of the principal bundle Rp−q × C → C.

We now study the action of π1(M). One has M̃ ≃ Rq × N ≃ Rp × C by the previous
analysis, and since Γ0 is a full-lattice of Rq × P̄ 0 ≃ Rp it induces a full-lattice on each fiber
of the Rp-principal bundle M̃ → C = N/P̄ 0. Let us fix a basis of Γ0. Using this basis,
we can now identify Rp with Rq × P̄ 0 in such a way that Γ0 is the canonical lattice Zp of
Rp. Under this identification, Rq and P̄ 0 are vector subspaces Eq and Ep−q of Rp satisfying
Rp = Eq ⊕Ep−q. We will from now on identify Γ0 with the canonical full-lattice Zp of Rp and
M̃ with Rp × C.

For any a ∈ Rp, we denote by τa the action of a on M̃ . We recall that γ acts by conjugation
on Rp. Indeed, the action of γN by conjugation on Ep−q ≃ P̄ 0 is well-defined, because
P̄ 0 is a normal subgroup of P̄ , so it is stable by the action of P by conjugation. This
transformation is an automorphism of the group Ep−q, and in particular it is a linear invertible
map of Ep−q viewed as a vector space. Moreover, γE acts on Eq as an affine transformation
Ep−q ∋ v 7→ Rγv + tγ, where (Rγ, tγ) ∈ GL(Eq) × Eq. Consequently, if for any u ∈ Eq we
denote by t(u) the translation by u in Eq, one has γEt(v)γ

−1
E = t(Rγv). Altogether, there

exists a matrix Aγ ∈ GLp(R) such that for any a ∈ Rp one has γτaγ
−1 = τAγa, and Aγ

preserves the decomposition Rp = Eq ⊕ Ep−q.

The matrix Aγ stabilizes Γ0 ⊂ Rp because it is a normal subgroup of π1(M), and so
does (Aγ)

−1 = Aγ−1 , thus it is an element of GLp(Z). In addition, the transformation γ

on M̃ descends to a transformation γ̄ on N/P̄ 0, because for any (a, y) ∈ Rp × N one has
γτa(0, y) = (γτaγ

−1)γ(0, y), thus γτa(0, y) and γ(0, y) are in the same coset modulo P̄ 0 since
γτaγ

−1 = τAγa ∈ Rp. We deduce that for any (a, x) ∈ Rp × C, one has

(11) γ(a, x) = γτaγ
−1γ(0, x) = τAγaγ(0, x) = (Aγa+ fγ(x), γ̄(x)),

where fγ : C → Rp is a function whose projection on Rq is constant, because γ preserves

the product structure M̃ ≃ Rq × N . Consequently, γ is an automorphism of the trivial
Rp-principal bundle Rp × C → C (see [7, Section 5] for the definition). Moreover, since
A ∈ GLp(Z), the map γ descends to an automorphism of the trivial (S1)p-principal bundle
(Rp/Zp)×C ≃ (S1)p×C → C. The only elements of π1(M) which descend to the identity this
way are the elements of Zp ≃ Γ0 ⊂ π1(M), thus π1(M)/Γ0 is a subgroup of the automorphisms
of (S1)p × C → C.

We introduce the following definitions:

Definition 4.2. For any principal bundle P → B, we denote by Aut(P → B) the set of its
automorphisms.

An automorphism of the trivial Rp-principal over C can be written as a map Rp × C ∋
(a, x) 7→ (Aa + f(x), φ(x)) where A ∈ GLp(R), f ∈ C∞(C,Rp) and φ ∈ Diff(C). We call A
the linear part of the automorphism and f its translation part. We define AutZEq(Rp×C → C)
as the set of automorphisms of Rp × C → C such that A ∈ GLp(Z) and f composed with the
projection onto Eq parallel to Ep−q is constant.

We identify the automorphisms of (S1)p with the matrices of GLp(Z). An automorphism
of the trivial (S1)p-principal bundle over C can be written as (S1)p × C ∋ (ā, x) 7→ (Aā +
f̄(x), φ(x)) where A ∈ GLp(Z), f̄ ∈ C∞(C, (S1)p) and φ ∈ Diff(C). Since the manifold
C is simply-connected, any element of Aut((S1)p × C → C) can be lifted to an element of
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Aut(Rp×C → C), uniquely defined up to a choice of base-points (we will omit this choice since
it does not impact our results). We define AutEq((S1)p×C → C) as the set of automorphisms
of the trivial (S1)p-principal bundle over C whose lifts lie in AutZEq(Rp × C → C).

With these definitions, we deduce from the previous discussion that π1(M) is a subgroup
of AutZEq(Rp ×C → C) and π1(M)/Γ0 is a subgroup of AutEq((S1)p ×C → C). This implies
that, if we consider the projection

P : AutZEq(Rp × C → C) → AutEq((S1)p × C → C),

one has π1(M) = P−1(π1(M)/Γ0) because Zp ≃ Γ0 ⊂ π1(M).

We know from Remark 3.8 that π1(M)/Γ0 is a discrete group acting properly on C, so
N/P̄ ≃ C/(π1(M)/Γ0) has an orbifold structure. Since C is a simply connected manifold,
this orbifold is good, and it is compact because, M being compact, the projection onto C of
any compact fundamental domain for the co-compact action of π1(M) on M̃ is a compact
fundamental domain for the action of π1(M)/Γ0 on C.

We assume from now on that π1(M) acts on P̄ 0 without torsion element, which is always
possible up to a finite covering as explained in Section 3.2. We recall here the definition of a
good orbifold that we will use below:

Definition 4.3. An orbifold is good if it is the quotient of a manifold by a discrete group. If
moreover this group is finite, then the orbifold is said to be very good.

If we pick γ ∈ π1(M) such that γ̄ ∈ π1(M)/Γ0 acts as the identity on C, we know thanks to
Remark 3.8 that γ has finite order, thus Aγ = Ip because Aγ cannot be a torsion element, and
the translation part fγ has to be constant because it exists k ≥ 1 such that kfγ ∈ Γ0 ≃ Zp.
Hence fγ is an element of P̄ 0 and γ ∈ Γ0 by definition. We conclude that the only elements
of π1(M) whose induced action on C is the identity are the elements of Γ0. Consequently, the
group π1(M)/Γ0 acts effectively on C, and it can be identified to the fundamental group of
the good orbifold N/P̄ . Thus there is a short exact sequence

(12) 0 → Zp → π1(M) → π1(N/P̄ ) → 0.

Altogether, we have proved the following theorem:

Theorem 4.4. Let (M, c,D) be a simple LCP manifold. Then, there exists a simply connected
manifold C and an integer p ≥ 2 such that M̃ ≃ Rp × C. There is a discrete subgroup Ω of
AutEq((S1)p × C → C) such that, if we consider the canonical projection

P : AutZEq(Rp × C → C) → AutEq((S1)p × C → C),

one has π1(M) = P−1(Ω), and the action of Ω restricted to C is proper and co-compact.
Moreover, there is a decomposition Rp = Eq ⊕Ep−q, such that dimEq = q, Eq is the flat part
of the LCP manifold, and the linear part (see Definition 4.2) of Ω preserves this decomposition.

If in addition the LCP manifold is torsion-free, then the group Ω acts effectively on C, so
it can be identified to the fundamental group of the compact good orbifold C/Ω, and there is
a short exact sequence 0 → Zp → π1(M) → Ω → 0.

Remark 4.5. From the discussion of Section 3.2, for any LCP structure (M, c,D), up to
considering a finite cover ofM one can assume that π1(M) acts by conjugation on Rq×P̄ 0 ≃ Rp

without torsion. This means exactly that the linear part of Ω is a group with no torsion
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element and that the LCP structure is torsion-free. Then, up to a finite covering, Ω is
isomorphic to π1(C/Ω).

4.2. Construction of an LCP structure from admissible data. We now investigate the
converse of the above statement, i.e. we consider a simply connected manifold C, an integer
p ≥ 2 and a discrete subgroup Ω of the automorphisms of (S1)p × C → C satisfying the
hypotheses of Theorem 4.4 and we will construct an LCP structure on M := (Rp × C)/Ω.
More precisely, we assume that there exists a decomposition Rp = Eq ⊕ Ep−q with Eq a
q-dimensional subspace of Rp, Ω is a subgroup of AutEq((S1)p × C → C), the linear part of
Ω preserves the decomposition Eq ⊕ Ep−q and its restriction to Eq contains only similarities
with respect to a given scalar product gEq , not all being isometries. We also assume that Ω
restricted to C acts properly and co-compactly (but not necessarily effectively), and for any
element ω ∈ Ω \ {id} with a fixed point x ∈ C, ω acts on Rp × {x} (which is preserved by
the transformation ω) with no fixed point. This last condition is implicit in the conclusion of
Theorem 4.4 since π1(M) acts freely on M̃ .

Remark 4.6. In view of Remark 4.5, we could assume that the linear part of Ω is a group with
no torsion element. In this case, for any x ∈ C and ω ∈ Ω \ {id} in the isotropy group of x,
this subgroup of Ω being finite because the action is proper, ω has finite order. Consequently,
the linear part of ω is the identity, and the last condition listed above just means that the
translation part does not vanish at x.

The first step is to find a candidate for the fundamental group of the LCP manifold. For
this, we introduce a group G of transformations of M̃ := Rp × C. If

P : AutZEq(Rp × C → C) → AutEq((S1)p × C → C)

denotes the canonical projection, we define the subgroup G of AutZEq(Rp × C → C) by

(13) G := P−1(Ω),

which clearly contains Zp.

Lemma 4.7. The group G acts freely, properly discontinuously and co-compactly on Rp ×C.

Proof. According to [4, Proposition 4.1], since Zp ⊴ G by construction, G acts freely and
properly discontinuously on Rp ×C if and only if Zp acts freely and properly discontinuously
on Rp × C and G/Zp acts freely and properly discontinuously on (Rp × C)/Zp ≃ (S1)p × C.
The first claim is obvious, so we are left to check the second one.

Let ω ∈ Ω which has a fixed point (ā, x) ∈ T p×C. Then, the restriction of ω to C satisfies
ω(x) = x, so ω is in the isotropy group of x, and by assumption ω|Rp×{x} would have no fixed
point if ω ̸= id, thus ω = id since ω has a fixed point.

The projection map (S1)p × C → C is proper, so the action of G/Zp on T p × C → C is
proper since Ω acts properly on C.

The co-compactness of the action is easily checked by choosing a compact elementary
domain D of C for the action of Ω and considering D′ := [0, 1]p ×D. Then one has G(D′) =
Rp × C. □

From Lemma 4.7, we know that M := (Rp×C)/G is a compact manifold. In order to define
an LCP structure on M , it remains to construct a Riemannian metric h on its universal
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cover M̃ := Rp × C, which is G-equivariant (in the sense that G acts by similarities on
(M̃, h)) and with reducible holonomy. This second point is the easiest: using the hypothesis
made at the beginning of this section concerning the restriction of Ω to Eq and writing
M̃ = Eq × (Ep−q × C), the metric should be of the form gEq + gN where gEq was introduced
before, and gN is a metric on N := Ep−q×C. The action of G preserves the product structure,
and its restriction to Eq consists only on similarities, not all being isometries. Hence we can
define the group homomorphism ρ̃ : G → R∗

+ which gives the similarity ratio of any element
of this restriction.

We will now describe all possible Riemannian metrics for gN such that the group Ep−q

acts by isometries. For such a metric, the group Zp acts by isometries on M̃ and ρ̃ descends
to a group homomorphism ρ : Ω → R∗

+. These metrics are given in a basis adapted to the
decomposition Ep−q × C by fields of matrices over C of the form(

Q bFB

bBF gB

)
(14)

with gB being a Riemannian metric on C, Q being a field of positive definite quadratic forms
on Ep−q, and bFB : Ep−q ×TC → R and bBF : TC ×Ep−q → R are two bilinear forms related
by the symmetry of the metric, i.e. bFB is determined by bBF .

Let ω ∈ Ω and we denote by A ∈ GLp(Z) its linear part and by f ∈ C∞(C,Ep−q) the
Ep−q-component of its translation part. The representatives of ω in G (i.e. the elements of
P−1({ω})) all have the same differential, since they differ only by a translation element of Zp,
thus the group Ω acts on TN by push-forward. The restriction of ω∗ to Ep−q is a constant
matrix corresponding to the linear part A of ω restricted to Ep−q and for any X ∈ TC, one
has ω∗X = dω(X) +X(f). In particular, the transformation ω∗ is Ep−q-invariant because f
is, and so is the action of Ω by push-forward.

The admissible metrics on M̃ should be G-equivariant, which is equivalent to the metric
gN under the form (14) being Ω-equivariant, i.e. the admissible metrics correspond to the
positive definite matrices satisfying:

ω∗
(

Q bFB

bBF gB

)
= ρ(ω)2

(
Q bFB

bBF gB

)
, ∀ω ∈ Ω,(15)

where the pull-back is well-defined by the previous discussion on the action of Ω by push-
forward. We thus need to construct such an invariant metric. Using the fact that Ω acts
co-compactly on C, there exists a compact K ⊂ C such that C = Ω · K. By compactness,
there is a finite cover (Ui)i∈I of K by open sets whose closures are contained in charts of C
and are closed ball of the Euclidean space in these charts, so in particular each Ui is relatively
compact. Defining U = ∪i∈IUi, it is easily seen that U is a relatively compact open set such
that K ⊂ U ⊂ Ū . On each Ui one can construct a Riemannian metric gi of the form (14) (by
taking bBF and bFB to be zero for example), and one can find a function χi : M̃ → R with
support lying in Ūi such that χi > 0 on Ui. The metric g :=

∑
i∈I

χigi is then of the form (14)

and is a Riemannian metric on U . We now define gN by the formula:

(16) gN :=
∑
ω∈Ω

ρ(ω)−2ω∗g.
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Lemma 4.8. The metric gN given by Equation (16) is well-defined and is a Ω-invariant
Riemannian metric on Ep−q × C. Moreover, any Ω-invariant metric arises from this con-
struction.

Proof. First, we prove that gN is well-defined. It is sufficient to prove that the sum has only
a finite number of non-zero terms on any sufficiently small neighborhood of a point in C.

Let x ∈ C. Since C = Ω · K̄ ⊂ Ω · U , there exists a small open subset V of U and ω0 ∈ Ω
such that x ∈ ω0 · V . For any ω ∈ Ω, the term ω∗g is not identically vanishing on ω0 · V only
if ω · ω0 · V ∩ Ū ̸= ∅. The group Ω acts properly on C, so the set of elements ω′ ∈ Ω such
that ω′ · V̄ ∩ Ū ̸= ∅ is finite because Ū is compact, thus the set of elements ω ∈ Ω such that
ω ·ω0 ·V ∩ Ū ̸= ∅ is finite. This implies that gN is a sum of a finite number of terms on ω0 ·V ,
so it is well-defined and smooth on this neighborhood of x. This analysis holds for any point,
hence gN is well-defined and smooth.

As a sum of positive-definite or null terms, gN is positive definite or null at any point of
C. We need to prove that it is non-zero everywhere. But for any x ∈ C there exists ω ∈ Ω
and y ∈ U such that ω(y) = x and ω∗g(x) is non-zero. Thus gN is a Riemannian metric on
Ep−q × C.

We now check the equivariance property (15). Let ω0 ∈ Ω. One has:

ω∗
0gN = ω∗

0

∑
ω∈Ω

ρ(ω)−2ω∗g = ρ(ω0)
2
∑
ω∈Ω

ρ(ω · ω0)
−2ω∗

0ω
∗g = ρ(ω0)

2
∑
ω∈Ω

ρ(ω)−2ω∗g = ρ(ω0)
2gN .

To prove that any equivariant metric is obtained by this construction, we first consider
a non-negative smooth function χ with support in Ū and such that χ > 0 on U . Such a
function exists due to the way we constructed U . For any ω ∈ Ω, let χω := ω∗χ. With the
same arguments we used for the metric gN , one can prove that χT :=

∑
ω∈Ω

χω is well-defined,

positive, smooth and Ω-invariant. Now, let g be any Ω-equivariant metric, and we define

∀ω ∈ Ω, gω :=
χω

χT

g.

Then for any ω ∈ Ω one has gω := ω∗gid. This yields:

g =
∑
ω∈Ω

χω

χT

g =
∑
ω∈Ω

ω∗gid

and g is constructed in the same way as gN . □

The previous discussion together with Lemma 4.8 allows us to define an LCP structure on
M induced by the Riemannian structure (M̃, gEq + gN). The flat part of this LCP manifold
contains Eq and we can prove the following:

Proposition 4.9. If Eq is exactly the flat part of the LCP structure, then the characteristic
group of the LCP manifold is the smallest vector subspace F of Rp containing Eq and generated
by a subfamily of Zp. In particular, the projection of Eq onto Rp/Zp is dense in the projection
of F .

Proof. Since we are working on an LCP manifold, we will use the notations of Section 2 in
this proof. A reasoning similar as the one of Section 3.2 allows us to consider, up to a finite
covering, that the linear part of Ω has no torsion, without changing the characteristic group
and the lattice Γ0.
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We first prove that the vector subspace F introduced in the statement of this proposition
is unique and well-defined. In order to do so, it is sufficient to prove that the intersection of
two subspaces F1, F2 of Rp containing Eq and generated by subfamilies B1 and B2 of Zp still
has this property. The fact that Eq ⊂ F1 ∩ F2 is obvious, so it remains to prove that F1 ∩ F2

is generated by a subfamily of Zp. Denote by F ′
1 and F ′

2 the Q-subspaces of Qp generated by
B1 and B2 respectively, so that F1 = F ′

1 ⊗Z R and F2 = F ′
2 ⊗Z R. Then one has

F1 ∩ F2 = (F ′
1 ⊗Z R) ∩ (F ′

2 ⊗Z R) = (F ′
1 ∩ F ′

2)⊗Z R,

and any Q-basis of F ′
1 ∩ F ′

2 gives a basis with vectors in Zp after multiplying each vector by
a suitable integer. This induces a basis of F1 ∩ F2 with elements in Zp.

The non-flat part of the LCP manifold is N := Ep−q × C since Eq is exactly the flat part
and N is orthogonal to Eq. By definition, P̄ 0 is the connected component of the identity in
P̄ , the closure of the restriction of G to N .

Let ω ∈ Ω such that ω|N ∈ P̄ 0. There exists a continuous path σ : [0, 1] → P̄ 0 such that
σ(0) = id and σ(1) = ω|N . Let x ∈ C. The set σ([0, 1])|C({x}) is a path-connected subset
of C. Since the compact-open topology on metric spaces is characterized by the uniform
convergence on compacts and the elements of P̄ 0 are in the closure of G|N , the closure of
G|N({(0, x)}) (where 0 ∈ Ep−q) must contain σ([0, 1])({(0, x)}), so the closure of G|C({x})
must contain σ([0, 1])|C({x}). Yet, G|C({x}) = Ω|C({x}) is a discrete subset of C because Ω
acts properly discontinuously on C. Thus, σ([0, 1])|C({x}) is reduced to a single point, yielding
x = σ(0)|C(x) ∈ σ([0, 1])|C({x}) = {x}, and we deduce that σ(1)|C(x) = x. It follows that
σ(1)|C = id and σ(1) ∈ Ep−q because the linear part of Ω has no torsion. Consequently, the
elements of G ∩ (Eq × P̄ 0) = Γ0 are translations of Rp and there exists m ∈ N such that
Γ0 ⊂ 1

m
Zp because G acts properly discontinuously on Rp × C.

We can now prove that F = Eq × P̄ 0. Indeed, the vector space Eq × P̄ 0 admits Γ0 ⊂ 1
m
Zp

as a full lattice, so it is generated by a subfamily of Zp, thus it contains F . On the other hand,
Eq/Γ0 has to be dense in (Eq × P̄ 0)/Γ0 by Proposition 3.9, so it is dense in (Eq × P̄ 0)/(mΓ0).
In particular, if F ′ is a subspace of Rp generated by a subfamily of Zp with F ⊂ F ′, then F/Zp

and F ′/Zp are two sub-tori of Rp/Zp with F/Zp ⊊ F ′/Zp, but the image of Eq is contained
in F/Zp, so it is not dense in F ′/Zp. We conclude that Eq × P̄ 0 = F and the image of Eq in
Rp/Zp is dense in the image of F because it is dense in (Eq × P̄ 0)/Γ0. □

The whole discussion of this section is summarized in the following theorem:

Theorem 4.10. Let C be a simply connected manifold. Let p ≥ 2 be an integer and Ω be
a discrete subgroup of AutEq((S1)p × C → C) whose restriction to C acts properly and co-
compactly (i.e. C/Ω is a compact good orbifold). Assume that there exists a decomposition
Rp = Eq ⊕ Ep−q with dim Eq = q preserved by the linear part of Ω, and such that the
restriction of this linear part to Eq contains only similarities with respect to a given scalar
product gEq , not all being isometries. We also assume that for any element ω ∈ Ω \ {id} with
a fixed point x ∈ C, ω|Rq×{x} has no fixed point. Then, considering the canonical projection
(see Definition 4.2)

P : AutZEq(Rp × C → C) → AutEq((S1)p × C → C),

the group G := P−1(Ω) acts freely, properly and co-compactly on M̃ := Eq × N where N :=
Ep−q × C, and there exists a Riemannian metric gN on N such that G acts by similarities,
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not all being isometries on (M̃, h := gEq + gN). All such metrics gN are constructed as in
Equation (16). This induces an LCP structure on M := M̃/G.

5. Discussion on the hypotheses and further examples

Theorem 4.4 together with Theorem 4.10 give a description of simple LCP manifolds. How-
ever, there are still open questions concerning the hypotheses and possible simplifications that
one could make in these statements. Indeed, the existence of the group Ω in Theorem 4.10
is the only obstruction for the construction of an LCP manifold starting from a simply con-
nected manifold C. In this section we discuss cases where one can construct such a group
and we provide examples proving that some hypotheses cannot be removed. We will use the
notations of these two theorems in the following section.

5.1. The orbifold hypothesis and the structure of the fundamental group. We begin
this section by providing an example satisfying the hypotheses of Theorem 4.10 where C/Ω
is a compact orbifold which is not a manifold, i.e. Ω acts effectively on C with fixed points.

Example 5.1. Consider C := S2×R ⊂ R3×R and the group Ω ≃ Z/2Z×Z of automorphisms
of (S1)2 × C → C acting for any (ā, (x, y, z), s) ∈ (S1)2 × S2 × R, and for all m ∈ Z as:

(1̄, 0) · (ā, (x, y, z), s) = (ā+ (0, 1/2)T , (−y,−x, z), s),

(0̄,m) · (ā, (x, y, z), s) =
((

1 2
2 3

)m

ā, (x, y, z), s+m

)
,

i.e. (1̄, 0) is the rotation of axis z and angle π on S2. One easily check that this satisfies all
the necessary hypotheses, since the matrix is diagonalizable with real eigenvalues different
from ±1, and the elements (1̄,m) for m ∈ Z have non-zero translation part. The orbifold
C/Ω is not a manifold since the point ((0, 0, 1), 0) has a non-trivial isotropy group.

Example 5.1 proves that we cannot drop the case where C/Ω is an orbifold. However, in
this example there is a finite covering (or equivalently a subgroup Ω′ of Ω with finite index)
of the LCP manifold constructed via Theorem 4.10 such that C/Ω′ is a manifold, since C/Ω
is actually very good, being finitely covered by S2 × S1. One can then ask whether for any
LCP manifold it is possible to find a finite covering such that C/Ω is always a manifold
in Theorem 4.4. The answer is positive when C/Ω is the product of a manifold with a
2-dimensional orbifold for example, because any good compact 2-orbifold is very good [14,
Theorem 2.5]. We do not know if there exists a counter-example to this statement, so this
question is still open. (This question has been answered in [12], where some examples of good
but not very good orbifolds have been constructed. However, we do not know if they satisfy
the additional conditions needed for the construction of LCP manifolds.)

Another natural question is the following: is the group G defined in Theorem 4.10 always
a semi-direct product Zp ⋊ Ω, as it is in all the examples we gave so far? The answer to this
question is no, as shown by Example 5.2 below.

Example 5.2. Consider C := R2 and Ω ≃ Z2 the group of automorphisms of (S1)2×C → C
given by:

(m1,m2) · (ā, (x, y)) := (Am1 ā+m2τ, (m1x,m2y)), ∀(ā, (x, y)) ∈ (S1)2 × R2,(17)
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where

A :=

(
−1 1
1 −2

)
, τ :=

1

5

(
3
1

)
.

This group is well-defined and satisfies the hypotheses of Theorem 4.10 since the matrix A is
diagonalizable with real eigenvalues different from±1. Now, for the groupG defined by (13) to
be a semi-direct product, there should exist a subgroup H of G such that H∩Z2 = {id} and H
is isomorphic to Ω ≃ Z2. However, for such a subgroup to exist, one should find representatives
of (1, 0) and (0, 1) whose commutator is zero since Ω is Abelian. This is equivalent to finding
τ1, τ2 ∈ Zp so that the affine transformations of R2 given by (A, τ1), (I2, τ +τ2) ∈ GL2(R)⋉R2

commute. We have

(A, τ1)
−1 · (I2, τ + τ2)

−1 · (A, τ1) · (I2, τ + τ2) = (I2, (A− I2)(τ + τ2)) = (1, 0)T + (A− I2)τ2.

For the commutator to be zero, we should thus have (1, 0)T = (I2 − A)τ2, and writing τ2 =:
(a, b)T one obtains the system {

−2a+ b = 1
a− 3b = 0

,

which has no solution for a, b ∈ Z. Thus, the group G is not a semi-direct product of the
form Zp ⋊ Ω.

5.2. The linear part of Ω. In order to understand which manifold can lead to the con-
struction of an LCP manifold, it is important to know what the possible groups Ω are, and
in particular what their linear part is. We study here the subgroups of GLp(Z) appearing as
the linear part of Ω. These groups should be finitely generated because the LCP manifold
is compact, they should preserve a decomposition Eq ⊕ Ep−q of Rp with dim(Eq) = q, their
restriction to Eq consisting only of similarities for a given scalar product on Eq, but not
all being isometries. Moreover, in regard of Proposition 4.9 together with Theorem 4.4 we
can assume that the image of Eq is dense in Rp/Zp since we want to describe exactly the
characteristic groups of LCP manifolds. Let U be such a group.

The elements of U have the following property, which is a consequence of the Jordan-
Chevalley decomposition:

Proposition 5.3. All the elements of U are semi-simple.

Proof. Let A ∈ U . Since Q is a perfect field, A admits a Jordan-Chevalley decomposition
A =: D + N where D ∈ Mp(Q) is semi-simple, N ∈ Mp(Q) is nilpotent and [D,N ] = 0.
There exists an integer m ∈ N such that mD ∈ Mp(Z) and mN ∈ Mp(Z). The linear
transformations mA = mD + mN and mD descend to two group endomorphisms of the
p-torus Rp/Zp, because they are matrices of Mp(Z).

Since A|Eq is a similarity, there exists (λ,O, P ) ∈ R∗
+ ×O(q)×GLq(R) such that

(18) A|Eq = λP−1OP

and in particular, A|Eq is diagonalizable in C, thus semi-simple. The Jordan-Chevalley de-
composition of A|Eq is given by D|Eq+N |Eq , so we have N |Eq = 0 because A|Eq is semi-simple,
implying A|Eq = D|Eq . Consequently, the endomorphisms of Rp/Zp induced by mA and mD
coincide on the image of Eq in Rp/Zp, which is dense, so they are equal by continuity. We
conclude that mA = mD and A = D, so A is semi-simple. □
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Corollary 5.4. There exists a basis of Rp containing only vectors of Zp such that in this basis
the matrix A is diagonal by blocks, where the diagonal blocks have irreducible characteristic
polynomial in Z.

Proof. We will work in the Q-vector space Qp, in which A is a well-defined linear transfor-
mation, and we will extend the result to Rp.

The characteristic polynomial χA of A can be decomposed into monic irreducible factors
over Z as

(19) χA =
m∏
k=1

Pαk
k ,

where the polynomials Pk are pairwise coprime. This gives a decomposition of Qp into invari-
ant subspaces

(20) Qp =
m⊕
k=1

ker Pαk
k :=

m⊕
k=1

kerEk,

and the projections onto the Pαk
k are polynomials in A with coefficients in Q, so they are

matrices with coefficients in Q. Let 1 ≤ k ≤ m. The vector space Ek admits as a basis any
basis Bk of the full-lattice given by Zp ∩Ek. For a vector v ∈ Bk, Av ∈ Zp ∩Ek and then Av
is a linear combination of elements of Bk with coefficients in Z. This means that the matrix
of A|Ek

written in Bk has coefficients in Z. If we define the basis B of Qp as the concatenation
of the bases Bk, then A is diagonal by blocks with coefficients in Z.

It remains to look at what happens for the restriction to each Ek, so we can assume that
χA = Pα where P is an irreducible polynomial in Z. Since A is semi-simple by Proposition 5.3,
P is the minimal polynomial of A. The Frobenius decomposition gives the existence of a
decomposition of the ambient vector space

⊕ℓ
k=1 Fk where the Fk are cyclic, stable by A and

the characteristic polynomial of A|Fk
is P . The same argument as in the first part of the

proof then gives us a basis of vectors with coefficients in Z adapted to the decomposition, in
which A|Fk

has coefficients in Z for each k. □

Let A ∈ U , and assume that A|Eq is not an isometry for the scalar product given on Eq, i.e.
λ ̸= 1 in equation (18). Using Corollary 5.4, we can write A under the form Diag(A1, . . . Am),
where the blocks Ak have irreducible characteristic polynomials. The subspace Eq is spanned
by real and complex part of complex eigenvectors of A (since Eq and Ep−q are stable by A),
i.e. it is a subspace of the sum of the eigenspaces of A1, . . . , Am whose associated eigenvalues
have absolute value λ, which is stable by A. Moreover, the elements of U all commute with
the projector P on Eq parallel to Ep−q.

Conversely, starting from a matrix A ∈ GLp(Z) of the form of Corollary 5.4, we can give a
theoretical way of constructing an admissible group U . First, there should exist λ ̸= 1 such
that each block of A has at least one eigenvalue of absolute value λ. Choose a q-dimensional
subspace Eq of Rp stable by A, such that A|Eq has only eigenvalues with absolute value λ
and the image of Eq in Rp/Zp is dense (it is always possible, since we can just take the
space spanned by the real and complex parts of eigenvectors with eigenvalues of absolute
value λ). Since A is semi-simple, one can choose a stable space Ep−q supplementary to Eq,
inducing a projector P on Eq parallel to Ep−q. Let Com(P) := {M ∈ GLp(Z) | MP = PM}.
Let Θ : Com(P) → GLq(R), M 7→ | detM |Eq |−1M |Eq and S := Θ(Com(P)). Remark that
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| detA|Eq |−1A|Eq has only eigenvalues with absolute value 1, so it is contained into a maximal
compact subgroup H of GLq(R). This subgroup H is conjugated to O(q) and then defines a
scalar product on Eq. Taking U := Θ−1(H) defines an admissible group, and any admissible
group can be obtained by this construction, up to a choice of P, H and taking a subgroup of
U .

5.3. The non-constant translations. A visible difference between the group Ω introduced
in Theorem 4.10 and all the examples we gave so far is the presence of a possibly non-
constant translation part in an element of Ω. Nevertheless, one can easily obtain non-constant
translations from any example with constant translation part introduced before. For that, it
is sufficient to consider the trivial bundle Rp × C in Theorem 4.10 and the diffeomorphism

(21) φ : Rp × C → Rp × C, (a, x) 7→ (a+ s(x), x)

where s : C → Ep−q is any smooth function. Now, if one takes an element ω ∈ Ω which has
ω̃ = (Rp × C ∋ (a, x) 7→ (Aa+ b, ω|C(x))) as a lift, it follows:

φ−1ω̃φ(a, x) = (Aa+ b+ As(x)− s(ω|C(x)), ω|C(x)), ∀(a, x) ∈ Rp × C,

and taking a function s : C → Ep−q such that s is not equivariant will lead to non-constant
translations. The new LCP structure is then isomorphic to the modified one, and one can
then ask whether all the examples with non-constant translations arise from this construction.
In other words, is it always possible to find a function s : C → Ep−q such that for any ω ∈ Ω
with ω̃ = (Rp×C ∋ (a, x) 7→ (Aa+ f(x), ω|C(x)) as a lift, there exists a constant c ∈ Rp such
that

ω̃(s(x), x) = (s(ω|C(x)) + c, ω|C(x)), ∀x ∈ C.(22)

Indeed, using the diffeomorphism φ defined in (21) one has in this case:

φ−1ω̃φ(a, x) = (Aa+ c, ω|C(x)), ∀(a, x) ∈ Rp × C,

and all the translations are constant. Conversely, if there exists a diffeomorphism φ and
a section s as in (21) such that through this transformation the translation part of Ω only
contains constants, then s has to satisfy the condition given by Equation (22). Such a function
s does not always exists, as shown by the following example:

Example 5.5. We define the matrix

(23) A0 :=

(
1 1
1 2

)
.

This matrix is diagonalizable with eigenvalues λ := 3+
√
5

2
and λ−1. The matrix of eigenvectors

is

P :=

(
1+

√
5

2
1−

√
5

2
1 1

)
.

We consider the affine transformations of R4 depending on a parameter z ∈ R given by:

(24) α : X 7→
(
A0 0
0 A0

)
X, β1(z) : X 7→ X + (0, 0, z, 0), β2(z) : X 7→ X + (0, 0, 0, z).
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These maps canonically descend to (S1)4. One easily checks that the commutators of these
transformations are:

(25) [α, β1(z)] = β1(z)
−1β2(z), [α, β2(z)] = β1(z), [β1(z), β2(z)] = id.

We consider the manifold C0 := R2 × R∗
+ on which acts co-compactly, freely and properly

the group

H := ⟨T : (y, t) 7→ (A0y, λt), T1 : (y, t) 7→ (y + (1, 0)T , t), T2 : (y, t) 7→ (y + (0, 1)T , t)⟩,
where (y, t) ∈ R2 × R. Note that C0/H can actually be given the structure of an LCP
manifold. The universal cover of the compact manifold C0/H × S1 is C := C0 × R, and its
fundamental group is H × Z. We have the relations

(26) [T, T1] = T−1
1 T2, [T, T2] = T1, [T1, T2] = id,

so for any z ∈ R the groups H and ⟨α, β1(z), β2(z)⟩ are isomorphic via the isomorphism
ιz determined by ιz(T ) = α, ιz(Tj) = βj(z). We consider the subgroup Ω ≃ H × Z of
Aut((S1)4 × C → C) given by

(h, n) · (ā, (y, t)) = (ιz(h)ā, h(y, t), z), ∀(h, n) ∈ H × Z,∀(ā, (y, t), z) ∈ (S1)4 × C0 × R.
In order to prove that this group is well-defined, it is sufficient to show that the commutators
of the generators (T, 0), (T1, 0), (T2, 0), (id, 1) of Ω satisfy the suitable relations. It is easily
seen that

[(T, 0)·, (T1, 0)·] = (T−1
1 T2, 0)·, [(T, 0)·, (T2, 0)·] = (T1, 0)·, [(T1, 0)·, (T2, 0)·] = (id, 0)·

because these commutators can be computed at a fixed z ∈ R and then correspond to the
relations (26). We compute the remaining commutators. For any (ā, (y, t), z) ∈ (S1)4×C0×R
one has

[(T, 0)·, (id, 1)·](ā, (y, t), z) = (ā, (y, t), z)

[(T1, 0)·, (id, 1)·](ā, (y, t), z) = (ā+ (0, 0, 1, 0)T , (y, t), z) = (ā, (y, t), z)

[(T2, 0)·, (id, 1)·](ā, (y, t), z) = (ā+ (0, 0, 0, 1)T , (y, t), z) = (ā, (y, t), z),

then all these commutators are equal to the identity, proving that Ω is well-defined. Now, the
linear part of α is a matrix A, which is diagonalizable under the form Diag(λ, λ−1, λ, λ−1).
We choose a new coordinate system on R4 × C = R4 × R2 × R∗

+ × R in the following way: if
(x1, x2, y1, y2, r1, r2, t, z) is the canonical system of coordinates we set

u1

u2

v1
v2
w1

w2

t
z


=


P−1

P−1

P−1

1
1





x1

x2

y1
y2
r1
r2
t
z


In these new coordinates, A is diagonal and we define ∂

∂u
:= π ∂

∂u1
+ ∂

∂v1
, so that the image

of Span(u) under the canonical projection is dense in the torus R4/Z4 (written in the old
coordinates). The matrix A preserves the decomposition R4 = Span( ∂

∂u
)⊕Span( ∂

∂u2
, ∂
∂v1

, ∂
∂v2

).
This construction satisfies all the hypotheses of Theorem 4.10, so we obtain a group G such
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that (R4 × C)/G can be given an LCP structure with flat part containing Span( ∂
∂u
). In

particular, R4 is contained in the characteristic group by Proposition 4.9.

We consider the lift of (T1, 0) ∈ Ω and (id, 1) ∈ Ω respectively given by

ω̃1 = (R4 × C0 × R ∋ (a, (y, t), z) 7→ (β1(z)(a), T1(y, t), z)) ∈ G

and
ω̃ = (R4 × C0 × R ∋ (a, (y, t), z) 7→ (a, (y, t), z + 1)) ∈ G.

If there existed a section s satisfying (22), then using the transformation φ given by (21), one
would get that

φω̃1φ
−1 = (R4 × C0 × R ∋ (a, (y, t), z) 7→ (a+ c1, T1(y, t), z))

φω̃φ−1 = (R4 × C0 × R ∋ (a, (y, t), z) 7→ (a+ c2, (y, t), z + 1))

for c1, c2 ∈ R, so these two elements would commute. But one has

[φω̃1φ
−1, φω̃φ−1] = φ[ω̃1, ω̃]φ

−1 = (R4 × C0 × R ∋ (a, (y, t), z) 7→ (a+ (0, 0, 1, 0)T , (y, t), z)),

which is a contradiction. We can give an explicit metric on R4 × C which defines an LCP
structure: this metric is written in the coordinate system (u1, u2, v1, v2, w1, w2, t, z) as

(27)



2
π2 0 − 1

π
0 0 0 0 w1

π
0 t4 0 0 0 0 0 0
− 1

π
0 1 0 0 0 0 −w1

0 0 0 t4 0 0 0 −t4w2

0 0 0 0 1 0 0 0
0 0 0 0 0 t4 0 0
0 0 0 0 0 0 1 0
w1

π
0 −w1 −t4w2 0 0 0 t2 + w2

1 + t4w2
2


.

An orthonormal basis for this metric is given by:

π
∂

∂u1

+
∂

∂v1
, t−2 ∂

∂u2

,
∂

∂v1
, t−2 ∂

∂v2
,

∂

∂w1

, t−2 ∂

∂w2

,
∂

∂t
, t−1

(
w1

∂

∂v1
+ w2

∂

∂v2
+

∂

∂z

)
and the dual frame is

1

π
du1, t

2du2, dv1 −
1

π
du1, t

2(dv2 − w2dz), dw1, t
2dw2, dt, tdz.

Straightforward computations show that the flat part of this LCP structure is exactly the
integral manifold of the distribution spanned by ∂

∂u
. In addition, one has[

∂

∂w1

, w1
∂

∂v1
+ w2

∂

∂v2
+

∂

∂z

]
=

∂

∂v1
,

showing that the distribution orthogonal to the fibers of R4 × C → C is not integrable, and
in particular it is not possible to find a metric of the form (14) with bFB = 0.

However, it is always possible to remove the non-constant translation part when G is a
semi-direct product:

Proposition 5.6. Assume that in Theorem 4.10 G = Zp ⋊ Ω and Ω acts freely on C. Then
the translation part Ω can be assumed to contain only constants belonging to Eq up to a
diffeomorphism.
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Proof. The assumption G = Zp⋊Ω allows us to define a subgroup Ω̃ of G inducing a splitting
of the short exact sequence 0 → Zp → G → Ω → 0. In particular, there is an isomorphism
ι : Ω → Ω̃.

From the previous discussion, it is sufficient to find a function s : C → Ep−q which is
Ω-invariant, i.e. which satisfies Equation (22) with c ∈ Eq for any ω ∈ Ω. Since the linear
part of Ω preserves the decomposition Eq ⊕ Ep−q, it is sufficient to find s such that

ι(ω)|Ep−q×C(s(x), x) = (s(ω|C(x)), ω|C(x)), ∀ω ∈ Ω.(28)

Consider the associated bundle
B = C ×Ω Ep−q,

where Ω acts on C×Ep−q by its natural action. This is a bundle over C/Ω, which is a compact
manifold since Ω acts freely on C. Its typical fiber Ep−q is contractible, so it has a global
smooth section [15, Corollary 29.3]. By a standard result, the sections of B are in one-to-one
correspondence with the equivariant maps satisfying (28), which implies the existence of the
map s we were searching for. □

5.4. Existence of the group Ω. One question remains: when can one construct a group Ω
as in Theorem 4.10? We know that C/Ω is a good compact orbifold since Ω acts properly and
co-compactly on C. Thus, a way to answer this question is, starting from a good compact
orbifold C̄ = C/π1(C̄) (where C is the universal cover of C̄), to check if we can lift π1(C̄)
to a subgroup Ω of the automorphisms of a trivial principal torus bundle over C. We give
here a necessary condition for the existence of Ω, which turns out to be sufficient when C̄ is
manifold.

Proposition 5.7. Let C be a simply-connected manifold and Ω be a group as given in the
statement of Theorem 4.10. then Ω is isomorphic to a semi-direct product Ω′ ⋊Z where Ω′ is
a subgroup of Ω.

Conversely, if C̄ is a compact manifold with universal cover C such that π1(C̄) ≃ H⋊Z for a
subgroup H of π1(C̄), then there exists an integer p ≥ 2 and a group Ω ⊂ Aut((S1)p×C → C)
as in Theorem 4.10.

Proof. Let ρ : Ω → R∗
+ associating to ω ∈ Ω the similarity ratio of its linear part restricted

to Eq. The group ρ(Ω) is a subgroup of R∗
+ with finite rank, generated by a finite number

of independent elements. Let λ be one of these elements and let π1 : ρ(Ω) → ⟨λ⟩ be the
canonical projection. One has a short exact sequence

0 → ker(π1 ◦ ρ) → Ω → ⟨λ⟩ ≃ Z → 0,

and this sequence splits because one can find a section consisting of the map sending λ to an
element ω ∈ Ω such that ρ(ω) = λ. Thus Ω ≃ ker(π1 ◦ ρ)⋊ Z.

We now prove the converse part. We can take p = 2 and define Ω ≃ H ⋊ Z by ω = id for
ω ∈ H and ω = ((S1)p × C ∋ (ā, x) 7→ (Aā, ω(x))) for ω ∈ Z, where A is any suitable matrix
(take for example the matrix defined in (23)). □

Remark 5.8. if C/Ω is a manifold in Theorem 4.4, we can actually say more. Indeed, since
the fibration Rp×C → C is Riemannian, the metric h on Rp×C induces a metric gB on C (we
already emphasize this in this text). The fundamental group of the compact manifold C/Ω
acts by similarities, not all being isometries on (C, gB), so gB is a non-Riemannian similarity
structure on C/Ω. An application of Theorem 2.1 gives that (C, gB) is either flat (a case which
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is classified [5]), irreducible, or an LCP manifold. The two main conjectures remaining are
then the following: are all LCP manifolds simple? and given an LCP manifold, can we always
say, up to a finite cover, that C/Ω is a manifold? This last problem was tackled in section 5.1.
If the answers to these two questions are positive, then one could again decompose (C, gB)
using Theorem 4.4, and continue this process. This would end in a finite number of iterations,
because the flat part is of positive dimension, leaving us with a flat or an irreducible manifold
at the end.
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