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Abstract. We give a “conceptual” approach to Kourganoff’s results about foli-
ations with a transverse similarity structure. In particular, we give a proof, under-
standable by the targeted community, of the very important result classifying the
holonomy of the closed, non-exact Weyl structures on compact manifolds, from
which arose the notion of locally conformally product structures. We also extract
from the proof several results on foliations admitting locally metric transverse
connections.
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1. Introduction

Foliations on manifolds are studied using the structures carried by their transversals,

where a transversal is a manifold which is at each point transverse to the foliation

and which intersects each one of the leaves. However, foliations admitting a global

connected transversal are quite rare, and a way to overcome this difficulty is to find

a natural identification between local transversals meeting a same leaf. This is done

using the so-called holonomy pseudo-group, which consists of germs of diffeomorphisms

of the transversal obtained by sliding along leaves following a pre-defined path. Once

we have this identification, the G-structures (i.e. the reductions of the frame bundle)

carried by the transversal which are holonomy-invariant are of great help to understand

the underlying geometry of the foliation.
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Among these structures, the Riemannian ones, defining what is called a Riemannian

foliation, are probably the best understood. A very detailed presentation of this particu-

lar case can be found in the book of Molino [21]. A slightly more general case is the one

of transverse similarity structures, where the Riemannian metric of the transversal is de-

fined, only locally, up to an homothety and is preserved by the holonomy pseudo-group

only up to a positive multiplicative constant, i.e. this group acts by similarities (which

are often called homotheties). These structures have been studied by Kourganoff [16],

who proved that the foliation is then Riemannian unless it is transversally flat. How-

ever, the analysis carried out by Kourganoff involved highly technical tools which have

not been fully understood by the targeted public. The aim of this article is to provide

a much more conceptual proof, avoiding technicalities while going a little bit further

concerning the results that can be inferred.

Although we are essentially following the same broad lines, the whole idea of this

new proof is to linearize the holonomy. Indeed, the holonomy pseudo-group can be

understood infinitesimally as the parallel transport along leaves according to a special

class of connections, called Bott connections. Yet, this is not sufficient in general

to get the full picture. Being able to linearize the holonomy exactly means that the

diffeomorphisms of the holonomy pseudo-group are completely determined by their one-

jet at a point. In particular, we can analyze the geometry of the foliation by looking at

its normal bundle endowed with the Bott connection induced by the transverse similarity

structure. This linearization is done using a Heafliger structure [13, 17], which is more

general than a foliation and corresponds to a foliation on a neighbourhood of the zero-

section of the normal bundle of the initial foliation. The holonomy pseudo-group of

this new foliation is then equivalent to the initial holonomy pseudo-group, but we are

now in presence of a (locally) foliated bundle, which is easier to understand. The

last ingredient of this analysis is then the existence of a holonomy-invariant transverse

connection, which allows to linearize the holonomy of the Heafliger structure.

The first motivation to study transverse similarity structures in [16] was the so-called

Belgun-Moroianu conjecture, formulated in [7]. This conjecture concerns conformal

geometry, and more specifically Weyl connections on compact conformal manifolds.

A Weyl connection is a generalization of the notion of Levi-Civita connection to the

conformal case: it is a torsion-free connection which preserves the conformal class.

The Weyl structure is said to be closed when it is locally the Levi-Civita connection

of a metric in the conformal class, and exact when this property holds globally. The

Belgun-Moroianu conjecture stated that a closed, non-exact Weyl connection on a

compact conformal manifold is flat or has irreducible reduced holonomy. However, this

was disproved by a counter-example constructed by Matveev and Nikolayevsky [19],

who showed additionally that, in the analytic case, when the holonomy is reducible

and non-flat, the universal cover of the compact manifold has a natural structure of a

Riemannian product when endowed with a Riemannian metric canonically induced by

the Weyl connection [20].
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The work of Kourganoff in [16] allowed to extend this theorem to the smooth case and

has been the starting point of the study of Locally Conformally Product (LCP) structures

(see for example [4, 6, 10, 22]). For this reason, the comprehension of this result is

really significant for the authors working on LCP structures, but, as we explained above,

the technicalities of foliation theory and certain proofs left to the reader in Kourganoff’s

text have been an obstacle to the proper spread of this knowledge. For this reason,

we try here to have a more invariant approach to the problem, using for example the

tools introduced in the book of Molino [21] in order to see transverse geometry as

the examination of the normal bundle of the the foliation. Yet, when speaking of the

holonomy pseudo-group, some issues arise, since, as we already discussed, the holonomy

is not linear. The intervention of the Heafliger structures is then a way to avoid a choice

of a particular complete transversal, which led to technicalities in the original proof.

The organization of the paper goes as follow. In Section 2 we introduce the notions

needed for the analysis of foliations and we state the main results of the paper about

foliations and de Rham decomposition of manifolds admitting a locally metric connec-

tion. Sections 3 and 4 are devoted to the linearization of the holonomy in our particular

setting by use of a Heafliger structure and well-chosen coordinates for the transversals

of the foliation. In Section 5 we look at the equicontinuity domain of a foliation en-

dowed with a similarity structure, and we provide an example showing that the results

we obtain here cannot be generalized when we only have an holonomy-invariant trans-

verse connection. The equicontinuity is the key to prove that a transverse similarity

structure can be changed into a transverse Riemannian structure. Section 6 contains

the proofs of the main theorems about foliations. Finally, we discuss in Section 7 an

application of the previous results, reproving the striking result of [16, Theorem 1.5]

about the holonomy decomposition of compact manifolds with a closed, non-exact Weyl

structure.

2. Preliminaries

In all this text, M is a connected manifold endowed with a foliation F of codimension

q. Our goal is to study the case where M is compact and the foliation F admits

a holonomy-invariant transversal Riemannian similarity structure [g], that is [g] is a

class up to homothety of Riemannian metrics, defined locally on each transversal, and

invariant under any holonomy transformation of F . However, we do not assume that

M is compact or that F carries a particular structure for the moment, and we will add

new assumptions throughout the text.

We recall that the holonomy pseudo-group of the foliation F is the pseudo-group

of diffeomorphisms of local quotient manifolds of the foliation defined by sliding along

leaves. More precisely, if x, y ∈ M are in the same leaf of F and c : [0, 1] → M is

a path from x to y staying in the same leaf, c defines an element of the holonomy

pseudo-group by choosing two local transversals Tx and Ty at x and y respectively (i.e.

Tx and Ty are manifolds which are everywhere transverse to the foliations and x ∈ Tx
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and y ∈ Ty). If Tx and Ty are small enough, one can divide c into sub-paths which are

each contained in the domain of a foliated chart of (M,F). In each of these domains,

the sub-path of c is canonically lifted to all the leaves of the domain and sliding along

the leaves just means following these lifts. Sliding the points of Tx until we reach Ty

defines a local diffeomorphism from Tx to Ty. This does not depend on the chosen

sequence of foliated charts we used. A more detailed discussion about the holonomy

pseudo-group can be found in [21].

2.1. Foliations with transverse holonomy-invariant connection. A transverse con-

nection ∇ on M is a linear connection on the normal bundle NF := TM/TF of the

foliation F , such that for any vector fields (X, Ȳ ) ∈ TF ×NF , ∇X Ȳ coincides with

the projection of [X,Y ] on NF , where Y ∈ TM is any representative of Ȳ . Such con-

nections are also called Bott connections. This induces a connection on any transversal

of F in a natural way.

This connection is holonomy-invariant if for any x, y ∈ M , for any transversals Sx

and Sy at x and y respectively and for any holonomy map γ sending Sx to Sy (up to

a restriction of the definition sets), one has ∇|Sx = γ∗(∇|Sy ). This amounts to saying

that ∇ is projectable, i.e. it projects to a connection on the local quotient manifolds

of the foliation (see [21, Lemma 2.3]).

Remark 2.1. Note that the torsion of a transverse connection is well-defined because

one can construct a transverse fundamental form θT from Fr(NF) to Rq, also called

a solder form, defined at the point p ∈ Fr(NF) by:

(θT (X))p := p−1(π∗(X)p) ∀X ∈ TFr(NF),(1)

where p is seen as a map from Rq to NF and π is the canonical projection Fr(NF) →
M . The torsion is the covariant exterior derivative of θT .

Definition 2.2. We consider any Bott connection. This induces a connection of the

principal bundle Fr(NF). We consider the distribution on Fr(NF) containing the

horizontal tangent vectors which project into TF . This distribution is involutive and

it induces a foliation called the lifted foliation. This definition does not depend on the

chosen connection.

The lifted foliation is right-invariant and has the same dimension as the original

foliation. It can also be defined as the distribution containing all the vectors X ∈
TFr(NF) such that ιXθT = 0 = ιXdθT , where θT is the fundamental transverse form.

A detailed discussion can be found in [21].

Definition 2.3. A transverse G-structure on (M,F) is a G-reduction of the frame

bundle of the normal bundle NF which is invariant by the lifted foliation (i.e. the

vectors tangent to the lifted foliation are tangent to the G-reduction).
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We call a transverse metric on (M,F) any Riemannian bundle metric on the normal

bundle NF → M of F . A transverse Riemannian metric gT on (M,F) is said to be

holonomy-invariant if, when one denotes by g the degenerate metric on TM given by

the composition of the projection TM × TM → NF × NF together with gT , then

LXg = 0 for any X ∈ Γ(TF). Endowed with such a structure, it exists a unique

torsion-free transverse connection which preserves gT , called the transverse Levi-Civita

connection of gT . This connection is projectable, i.e. holonomy-invariant. Equivalently,

a transverse holonomy-invariant metric is a transverse O(q)-structure.

Since Riemannian holonomy-invariant metrics are significant structures on foliations,

they deserve a name:

Definition 2.4. A Foliation admitting a transverse holonomy-invariant Riemannian

structure is called a Riemannian foliation.

Remark 2.5. The informed reader who knows the classical book of Molino [21] should

be aware of a small difference we make in the vocabulary used here. Indeed, what we

call a transverse holonomy-invariant metric is what Molino simply names a transverse

metric. The reason we make this difference is that we may subsequently talk about

non-holonomy-invariant objects.

We introduce a particular class of connections on manifolds:

Definition 2.6. A linear connection ∇ on a manifold is said to be locally metric if its

torsion vanishes and its reduced holonomy group Hol0(∇) is compact.

We have an equivalent notion for transverse connections:

Definition 2.7. A transverse connection is said to be locally metric if its torsion vanishes

and its reduced holonomy group Hol0(∇) is compact.

Remark 2.8. A transverse locally metric connection induces a Riemannian bundle

metric on the pull-back of the normal bundle NF → M to the universal cover M̃ of

M (which is actually the normal bundle TM̃/T F̃ → M̃ of the pulled-back foliation

F̃). Indeed, Since Hol0(∇) is compact, it is conjugated to a compact subgroup of the

orthonormal group O(q) where q is the codimension of F . Consequently, denoting by

∇̃ the lift of the connection, the ∇̃-holonomy bundle of an arbitrary point in the frame

bundle Fr(TM̃/T F̃) is a reduction of structure group included in O(q) and it is stable

by the ∇̃-holonomy. This implies ∇̃ preserves an O(q)-subbundle of Fr(TM̃/T F̃), and

it is also a transverse connection. In addition, this subbundle is invariant by the lifted

connection. Altogether, this means that ∇ is the Levi-Civita connection of a transverse

Riemannian metric gT . If we assume moreover that this connection is irreducible, since

any element γ of π1(M) act on (M̃, F̃ , ∇̃) by transverse affine transformations, then

γ∗gT = λgT for some λ > 0, and π1(M) acts on (M̃, F̃ , gT ) by transverse similarities.

The transverse metric then defined on TM̃/T F̃ is always holonomy-invariant by

definition of a transverse connection.
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Of course, the same applies in the easier situation where we consider a (non-

transverse) locally metric connection ∇, i.e. there exists a metric h on the universal

cover M̃ of M such that the lifted connection ∇̃ is the Levi-Civita connection of h.

We recall the definition of a de Rham decomposition:

Definition 2.9. A de Rham decomposition of a Riemannian manifold (M, g) is a

product of manifolds (M0, g0) × . . . × (Mp, gp) isometric to M such that (M0, g0) is

flat and the other factors are irreducible.

A direct consequence of the study of transverse similarity structures we will carry

out is the following general result:

Theorem 2.10. Let F be a foliation with a transverse holonomy-invariant locally metric

connection on a compact manifold. If the transversal foliation has no flat factor in its

local de Rham decomposition, then F is a Riemannian foliation.

In the general case, consider a transversal τ , and its de Rham decomposition τ =

τ0 × τ∗, where τ0 corresponds to the flat factor, and τ∗ corresponds to all the other

factors (we will precise what me mean exactly by this decomposition in Section 6.3).

By taking the inverse images by the local submersions defining F of τ0 and τ∗, one gets

foliations F0 and F∗, with transversal holonomy-invariant metric connections modeled

on τ∗ and τ0 respectively. For instance, F0 is obtained by saturating F with τ0, and

similarly for F∗, thus F appears as the intersection of F0 and F∗.

Observe that the previous theorem applies to F0, implying:

Theorem 2.11. Let F be a foliation on a compact manifold together with a transverse-

holonomy-invariant metric connection, and let F0 be the saturation of F by the flat

factor of the de Rham decomposition of the transversal connection. Then F0 is a

Riemannian foliation.

2.2. Foliations with a transverse holonomy-invariant similarity structure. In the

course of our analysis, we will have to deal with closures of leaves of the foliation F .

However, such a closure is not necessarily a manifold, since there could be a subset

where the leaves accumulate. In order to overcome this technical difficulty, we consider

the more general concept of lamination. A lamination on a topological space X is a

collection of charts (Ui, φi), where Ui is a covering of X, such that the maps φi are

homeomorphisms from Ui to Vi ×Xi, with Vi a subset of an Euclidean space and Xi

a subspace of X, and the transition maps φi ◦ φ−1
j preserve the Euclidean factor.

If the topological space X admits a distance d, we define the bi-equicontinuity

domain of the lamination as the set of points x ∈ X such that there exists δ(x) > 0,

for any holonomy map γ from a transversal Tx of x to a transversal Ty at a point

y ∈ X, for any z1, z2 ∈ Tx,

1

δ(x)
d(z1, z2) ≤ d(γ(z1), γ(z2)) ≤ δ(x)d(z1, z2).
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This set is more often called the equicontinuity domain, but we use this terminology in

order to avoid confusion in the sequel, adopting the convention that bi-equicontinuity

means that we have both the lower and the upper bound, while equicontinuity means we

only have the upper bound. We now define precisely the structure we will be interested

in, namely a transverse holonomy-invariant (Riemannian) similarity structure.

Definition 2.12. A transverse similarity structure on the foliated manifold (M,F) is a

maximal open covering {Ui}i∈I of M together with, for any i ∈ I, a set of homothetic

metrics Gi := {λgi, λ > 0} where gi is a transverse Riemannian metric on (Ui,F|Ui
)

with the property that for any i, j ∈ I, Gi|Ui∩Uj
= Gj |Ui∩Uj

. This transverse similarity

structure is holonomy-invariant if the sets Gi are preserved by the holonomy pseudo-

group, i.e. for any holonomy map γ defined from a connected transversal T i ⊂ Ui to

a connected transversal T j ⊂ Uj , γ
∗(gj |T j ) = λgi|T i for some λ ∈ R.

A holonomy-invariant transverse similarity structure induces a natural holonomy-

invariant transverse connection. Indeed, on a sufficiently small open foliated domain

on which one can choose a globally defined holonomy-invariant transverse metric of

the similarity class, and the transverse Levi-Civita connection of this metric is actually

independent of this choice. Consequently, if one defines a connection in such a way

around each point, we just remark that these connections coincide on the intersections

of the open sets because of the compatibility condition of Definition 2.12.

The main goal of our study of foliations is the following structure theorem:

Theorem 2.13. Let F be a foliation on a compact manifold, endowed with a holonomy-

invariant similarity structure. If F contains a closed invariant subset where it is an

equicontinuous lamination, then F is a Riemannian foliation.

If F is not Riemannian, then it is transversely flat, i.e. transversely modelled on

(Sim(Rq),Rq).

Remark 2.14. Observe that we are making use above of a “metric” equicontinuity

notion rather than a “topological” one, to mean that we have here Lipschitz estimates

instead of just a rough uniform modulus of continuity. This was to simplify exposition,

and also because of equivalance of these equicontinuity concepts in our framework of

foliations endowed with a transverse holonomy-invariant connection, and again as we

will see it later in Section 6.1, this is equivalent to be Riemannian (in the classical

sense). In the general case, variants of “topological Riemannian” foliations were rel-

atively recently introduced and studied from the point of view of their leaf closures

and their relationships with the classical “smooth Riemannian” foliations. The history

started with questions asked by E. Ghys [21, Appendix E], and some answers by Kellum

[15]. As more recent references, we can quote: [1, 2, 3].

Remark 2.15. Theorem 2.10 says that among foliations with a transverse holonomy-

invariant locally metric connection, only the flat case is relevant in the sense that it may
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have a strong non-Riemannian dynamics. Here flat means the foliation is transversally

modelled on (Aff(Rq),Rq). This is a completely open research domain, even in the

dimension 0 case, that is that of compact locally flat manifolds, for which there is

the huge classification conjectures by Marcus and Auslander. A more tamed situation

is that of foliations with of transvere flat similarity structure, i.e. those modelled on

(Sim(Rq),Rq). The dimension 0 case is classified by Fried [11]. In the non-trivial

codimension cases, most investigations concern the cases q = 1, that is (Aff(R),R)
and q = 2, which actually reduces (up to orientation) to the 1-dimensional complex

situation (Aff(C),C). Let us quote the following works around this problem: [5, 8, 12,

14, 18, 23, 25, 26]

2.3. De Rham decomposition. The final step of our analysis is to prove the existence

of a de Rham decomposition on the universal cover M̃ of a compact manifold M

admitting a locally metric connection ∇.

The main issue is that the classical de Rham theorem does not apply since this metric

is not complete in general. With these notations, our main result is:

Theorem 2.16 (De Rham decomposition). Let M be a compact conformal manifold

together with a locally metric connection ∇. Then, the Riemannian manifold (M̃, h)

admits a de Rham decomposition, where h is any metric for which ∇̃ is the Levi-Civita

connection of ∇̃ on M̃ . Furthermore, the flat factor is complete.

3. Construction of a Heafliger structure

From now on, we assume that the manifold M is compact.

The usual definition of the holonomy starts with taking a complete transversal sub-

manifold T to F and considering the holonomy transformations as local diffeomor-

phisms of T . One can take for instance T to be a union of small local transversals in

a family of flow boxes covering M . Changing T to T ′ induces an equivalence between

the two pseudo-groups of local diffeomorphisms of T and T ′. All this, is quite delicate

to formalize and manipulate. There is in particular the problem of artificial blow up

of the holonomy maps due to the choice of T (in particular when approaching the

T -boundary). There is however the nice situation where F admits a supplementary

foliation, and holonomy maps are viewed as local diffeomorphisms of this foliation. A

strong simple and “talking” sub-case is that of foliated (also said flat) bundles where

the holonomy is globally defined. Here, M fibers over a typical leaf F with fiber T
and the foliation F is transversal to fibers. If c is a path in F with endpoints x, y,

then the associated holonomy is a map Hc : Tx → Ty given by lifting c tangentially to

TF . In other words, TF as a supplementary of the vertical space of the fibration is

seen as the horizontal space of a connection, and since it is integrable, this (non-linear)

connection is flat, and Hc is the holonomy of this connection. The holonomy is given
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by a representation ρ : π1(F ) → Diff(T ) and the total space is the suspension of ρ,

namely the quotient of F̃ × T by the diagonal action of π1(F ).

In fact, the idea of Heafliger structures (even though motivated by other consid-

erations), exactly allows one to maneuver to bring himself back to this situation of

foliated bundles, but locally. We give the general idea in the following lines. For a

more detailed expose about these structures, see for example [17, Section 1.3] and the

references therein.

We endow M with an auxiliary Riemannian metric k, which will be often implicit

and whose choice does not matter.

We consider N := TF⊥ ≃ TM/TF , the normal bundle of F . By compactness,

there exists an open neighbourhood O of the zero-section of N , such that the expo-

nential Riemannian map of k, denoted by ϕ : O → M , once restricted to the fiber over

a point x ∈ M , i.e. ϕx : Ox = O ∩ Nx → M , is a diffeomorphism onto a transversal

Tx to F passing through x.

We can then consider F̂ := f∗F , the pull back by ϕ of F . This F̂ is transversal to

the fibers of the fibration N → M (but only locally, i.e. along O), and thus this looks

like to a foliated (flat) bundle.

The F̂-leaves are tubular neighbourhoods of the F-leaves. More precisely, F is

gotten as the intersection of F̂ with the 0-section (of the fibration N → M), and

each F̂-leaf retracts naturally to a F-leaf which is its intersection with the 0-section.

For this, when speaking of holonomy of F̂ , we can restrict ourselves to F-paths, i.e

F̂-paths contained in M . We will in fact often identify x ∈ M with its image 0x by

the 0-section.

The philosophy is that F and F̂ have the same holonomy maps, which can be seen as

local diffeomorphisms between the family of F̂-transversals {Ox}x∈M , or alternatively

between the family of F-transversals {Tx}x∈M . More precisely, if x, y ∈ M are in the

same leaf F of F and c is a path in F joining x and y, the holonomy map induced by

c, denoted by H̄c : Tx → Ty coincides with ϕy ◦Hc ◦ ϕ−1
x defined on a neighbourhood

of 0x in the fiber Ox to Oy, where Hc is the holonomy map induced by c on (O, F̂).

Observe that the domain of definition of Hc is not the full Ox, since Hc is obtained by

considering horizontal lifts of c, but this does not necessarily exist for all time, e.g. O

is not compact.

The infinitesimal holonomy map hc : Nx → Ny is the derivative dxHc. It also equals

the usual holonomy of the Bott connection ∇B on the normal bundle N , defined by

∇B
XY := [X,Y ]N , ∀X ∈ Γ(TM),∀Y ∈ Γ(N ),(2)

where the N -exponent stands for the projection onto the normal bundle. Indeed, this

connection is flat and its holonomy bundle through x is exactly the leaf containing x.
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4. Holonomy-invariant transversal connection

We now assume that (M,F) carries a holonomy-invariant transverse connection ∇,

and we keep all the notations introduced in the previous section. This connection

induces a connection ∇x on each transversal Tx in a natural way.

Observe that ϕ and accordingly F̂ is by no means unique, but any choice of F̂ shares

with F the same holonomy pseudo-group (up to equivalence in this category). We will

in fact keep Tx, but modify ϕx : Ox → Tx to become the exponential map for ∇x.

Indeed, the tangent space TxTx coincides with Nx, and thus the exponential map for

∇x sends a neighbourhood of 0x (identified to x) to a neighbourhood of x in Tx. So,
up to a restriction of O, we can assume that the new ϕ is this exponential map.

Now, the holonomy map H̄c sends a neighbourhood of x in Tx to a neighbourhood of

y in Ty and sends ∇x to ∇y because the transverse connection is holonomy-invariant.

But a connection-preserving map becomes equal to its derivative in exponential coor-

dinates. This means precisely that Hc coincides on appropriate neighbourhoods with

its derivative, the infinitesimal holonomy hc.

It is also true, conversely, that F has a holonomy-invariant transversal connection if

there is an associated F̂ having such a “linear” holonomy.

4.1. Equicontinuity domain. For any x ∈ M , we denote by Γx(F) the set of all paths

emanating from x and contained in the leaf passing through x. One can define the

(infinitesimal) equicontinuity domain as the set

{x ∈ M | ∃f(x) > 0, ∀c ∈ Γx(F), ∥ hc ∥≤ f(x)},

where the operator norm is defined by means of an auxiliary metric k. However, we

will need a “bi-equicontinuity” condition, where we also want hc to have a bounded

contraction. To this purpose, we define E to be the (infinitesimal) bi-equicontinuity

domain:

E = {x ∈ M | ∃δ(x) > 1,∀u ∈ Ox, ∀c ∈ Γx(F),
∥u∥
δ(x)

≤ ∥hc(u)∥ ≤ δ(x)∥u∥}.

In the similarity case, on which we will focus below, this is equivalent to:

1

δ(x)
≤∥ hc ∥≤ δ(x)

(or equivalently 1
η(x) ≤ det(hc) ≤ η(x) where η(x) is a power of the previous δ(x)

depending on the codimension).

It is obvious that the bi-equicontinuity domain E is F-invariant by definition. Our

aim is to show that in the situation at hand, i.e. when the transversal has a holonomy-

invariant Riemannian similarity structure, it is the whole manifold M . Since M is

connected, an easy strategy is to prove that E is both open and closed. The openness

is just a consequence of the existence of the holonomy-invariant transverse connection.
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Proposition 4.1. [Propagation of equicontinuity] The bi-equicontinuity domain E is

open. Furthermore, the leaves admit compact invariant neighbourhoods in E . In par-

ticular, the saturation of a compact subset in E is relatively compact in E .

Proof. Let x ∈ E , ϵ > 0. Consider the ball B(0x, ϵ) (with respect to the metric k) and

its saturation by the holonomy pseudo-group of F̂ :

S(x, ϵ) :=
⋃

c∈Γx(F)

Hc(B(0x, ϵ)).

Since the holonomy is linear (that is Hc = hc), and by definition of δ(x),

S(x, ϵ) ⊂
⋃

y∈Fx

B(0y, δ(x)ϵ),

hence, for ϵ small one has S(x, ϵ) ⊂ O. The holonomy maps are thus defined for all

times if one starts with a sufficiently small ball B(0x, ϵ), and in addition the image of

the saturation S(x, ϵ) by ϕ is a relatively compact F-invariant neighbourhood of Fx.

For u ∈ B(0x, ϵ) near 0x, u in the bi-equicontinuity domain of (O, F̂) by linearity of

the holonomy. Now, if as previously announced we want to restrict ourselves to the

holonomy of F-leaves (instead of F̂), we use ϕ : O → M , and see that z = ϕ(u)

belongs to the F-bi-equicontinuity domain, which is therefore open. □

5. Holonomy-invariant transversal similarity structure

We now endow the foliation F with a transverse (Riemannian) similarity structure

in the sense of Definition 2.12. This in turn gives us a holonomy-invariant transverse

connection ∇ as explained in the line following the definition. In particular, all the

constructions and results of the previous sections still hold, and we keep the same

notations. Our goal is to prove the closeness of E under this assumption.

As above, we can assume that for any x ∈ M , ϕx : Ox → Tx is the exponential map

of ∇x, up to a restriction of O.

We can define a transverse Riemannian metric g on (M,F) by taking around each

point x ∈ M a local transverse metric gVx
on TF/TM belonging to the transverse

similarity class and restricting it to TxM/TxF . In order to insure smoothness of this

family we fix a volume element on the normal bundle N ≃ NF → M .

Note that g is not holonomy-invariant in general, since it depends strongly on the

chosen volume element.

5.1. Singular metric. Let R be the curvature tensor of the bundle N → M endowed

with the connection ∇ (seen as a map from Γ(TM) × Γ(N ) to Γ(N )). We restrict

it to Γ(N ) × Γ(N ) and we consider the function w : M → R>0 which associates to

x ∈ M the norm of R with respect to g at x.

The function w : O → R≥0 is continuous because it is the norm of a smooth

function. In particular, since M is compact, w has a maximum maxM w. The (non-

smooth) transverse metric m, defined by m := wg, is a holonomy-invariant singular

transverse metric.
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Proposition 5.1. Let U = {x ∈ M, w(x) ̸= 0}. Then, U is contained in the bi-

equicontinuity domain E .

Proof. Let x ∈ U and let c : [0, 1] ∋ t 7→ c(t) ∈ Fx be a path joining x = c(0)

to y := c(1). Let a := w(x), b := w(y). Assume a > b, say, more precisely, that

b = inf{w(c(t)), t ∈ [0, 1]}. The infinitesimal holonomy from Nc(t) to Nc(s) is a

homothety of ratio
√

w(c(t))
w(c(s)) with respect to the metric g. In particular, since b realizes

the minimum of w on c, there exists ϵ > 0 (which can be taken uniform because M is

compact) such that for any t ∈ [0, 1], the F̂-holonomy B(0y, ϵ) → B(0c(t), ϵ) is well

defined and contracting.

Thus, if w vanishes somewhere on ϕ(B(0y, ϵ)), then the same holds on ϕ(B(0x, ϵ)).

Assuming ϵ is small enough, w does not vanish on ϕ(B(0x, ϵ)) neither on ϕ(B(0y, ϵ)).

In particular, the ϵ/2-tubular neigbhourhood of the zero-section in N is sent by the

exponential map ϕ onto a subset of M whose closure does not meet the null locus of

w. Consequently, w has a non-zero infimum on Fx, and the homothety ratios
√

w(x)
w(z)

are bounded by two positive bounds for all z ∈ Fx. Therefore, x ∈ E . □

5.2. Dichotomy. It remains to prove that E is closed, which would lead to the following

result:

Proposition 5.2. A Foliation with a transverse holonomy-invariant similarity structure

is everywhere bi-equicontinuous whence it is bi-equicontinuous at some point, that is,

if E is non-empty, then E = M .

Proof. Let A := Ē −E be the boundary of E (this a an F-invariant subset of M), B an

ϵ-neighbourhood of A (for the metric g, and taking ϵ small enough) and C := E −B.

Thus, by Proposition 4.1 the saturation U of C is an invariant subset whose closure Ū

is a saturated compact subset of E .
Assume by contradiction that A is non-empty. Let x ∈ A. There is a maximal

transverse open ball ϕ(B(0x, ϵx)) contained in M − Ū , with ϵx ≤ ϵ. Moreover, since Ū

is compact and does not meet the boundary of E , there exists ϵ0 > 0 such that ϵx ≥ ϵ0.

If a holonomy map is defined on ϕ(B(0x, ϵx)), then its image is a ball ϕ(B(0y, ϵ
′)) with

y ∈ A and ϵ′ ≤ ϵy ≤ ϵ (since otherwise we meet points of the invariant set U). This

implies that the holonomy map has derivative of bounded distortion ϵ/ϵx ≤ ϵ/ϵ0, which

does not depend on the point x.

Now, let c be a path emanating from x, i.e. c(0) = x, with c(1) = y. For small

t, the holonomy from c(0) to c(t) is defined on the whole ϕ(B(0x, ϵx)). Its image is

contained in ϕ(B(c(t), ϵc(t))) ⊂ ϕ(B(c(t), ϵ)). Thus, this is defined for all t.

It follows that x ∈ E : contradiction. This means that E is closed in M , and since it

is also open and M is connected, either E = M or E = ∅. □

5.3. Remark: non-similarity case. This dichotomy is no longer true for general folia-

tions with a transversal connection. An example of a transversally Lorentzian foliation
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of dimension 1 in a manifold of dimension 3, with a proper domain of equicontinuity,

is given in [9]. We outline the construction here.

In order to give a first feeling of the example, we describe a simple construction

which will not lead to a counter-example but provides the general idea. Let Σ be a

closed surface and let f : Σ → R1,1 be a smooth map, where R1,1 is the Minkowski

plane endowed with the Lorentz metric dxdy. Consider the map d : Σ× R ∋ (z, t) 7→
ht(f(z)) ∈ R1,1, with ht(x, y) = (etx, e−ty).

Assume that f is chosen so that d is a submersion, hence we can consider the foliation

defined by the level-sets of d. One has d(z, t+n) = ϕn(d(z, t)), where ϕ := h1, so the

foliation descends to a foliation of dimension 1 on Σ× S1 ≃ Σ× (R/Z).
In this way, Σ×S1 has a transverse structure modelled on R1,1 and its cover Σ×R has

d as a developing map, and holonomy ϕ. More precisely the holonomy homomorphism

π1(Σ× S1) = π1(Σ)× Z → Isom(R1,1) is trivial on π1(Σ) and sends the generator of

Z to ϕ.

Recall that d is defined as d : Σ×R ∋ (z, t) 7→ ht(f(z)) ∈ R1,1. If we want d to a be

a submersion, we exactly need the image of Dzf to be transversal to V (f(z)), where

V is the vector field generating the one parameter group ht (So V (x, y) = (x,−y)).

In particular the boundary of f(Σ) must be transverse to V , but this is not possible.

Indeed, if we take the furthest (to 0) non-straight curve of the h-flow passing through

a point f(z) of f(Σ), if Dzf were transverse to V , then there would exist a point close

to f(z) on a more distant flow curve.

We need to modify the constriction as follows. Instead of R1,1, we will consider

the 2-torus endowed with the product SL(2,R)× SL(2,R)-action, that is the Eisntein

universe Eins1,1 endowed with the Moebius group action. A model for this manifold is

the compactification of the Minkowski space R1,1 together with the conformal structure

given by the Lorentzian metric. More precisely, R1,1 embeds into the torus T 2 using

for example the map φ : R1,1 ∋ (x, y) 7→ (arctanx, arctan y) ∈ T2 ≃ (R/πZ)2. The

infinitesimal generator V of the one-parameter group ht then induces a one-parameter

group on the image of φ, still denoted by ht. This one-parameter group extends uniquely

to T2 since φ(R1,1) is T2 minus two circles, and is then dense. The 1-parameter group

of transformations ht has two attracting points, say A1 and A2.

We claim that ht preserves a lorentzian metric on Eins1,1−{A1, A2}. To prove this,

it is enough to find a metric on R1,1, which will be conformal to the standard one and

defines a metric on Eins1,1 − {A1, A2} by pull-back (after extension to the set where

the metric is not defined). One can take g := dxdy
1+x2y2 , which satisfies this condition.

Now, we can find small discs around A1 and A2 which are transverse to the vector

field generating ht. Removing them, we get a 2-punctured torus T̈2 with boundary

S1 ∪ S1. We now consider the surface Σ obtained by gluing smoothly two copies of

this punctured torus along their boundaries. In order to define a suitable function f , we

write Σ = T̈2∪ T̈2∪GZ where GZ is the gluing zone. We define f to be the canonical
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A2

A1

Figure 1. The unfolded Einstein universe, together with the vector
field induced by ht.

projection onto T2 on each copy of T̈2 and it is easy to see that we can chose f so

that its set of critical points is just two circles, projecting onto two disjoint small circles

around A1 and A2 (see Figure 2 below). But such circles are transverse to the vector

field generating the flow ht, hence the map d : Σ× R ∋ (z, t) 7→ ht · f(z) ∈ Eins1,1 is

a submersion.

As before, we obtain a foliation on Σ× S1 given by the level-sets of d and with ho-

lonomy ϕ := h1. The holonomy morphism sends the generator of Z to ϕ, as previously.

The holonomy on this foliation preserves the Lorentzian metric g, hence it preserves

the induced Levi-Civita connection on Eins1,1. The equicontinuity domain is non-empty

but also proper since it consists of all the points outside of the two points where the

flow ht is hyperbolic and the straight lines of the flow emanating from them (in other

words, all the straight lines drawn on Figure 1).

6. Proofs of Theorems 2.10, 2.11, 2.13, 2.16

6.1. Equicontinuity implies Riemannian. So far, we have proved that a compact

foliated manifold admitting a transverse holonomy-invariant similarity structure is either

flat, or everywhere equicontinuous using Proposition 5.1 and Proposition 5.2. In order

to complete the proof of Theorem 2.10, it remains to show that the foliation is then

Riemannian.

Theorem 6.1. A foliation with a transverse holonomy-invariant connection on a com-

pact manifold is Riemannian once it is equicontinuous.
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A1

f

S

A2

Figure 2. The map f from Σ to Eins1,1. Note that the drawing is
not faithful since there should be no self-intersection, but this is an
immersion of Σ into R3.

Our proof will follow closely the one of [27]. Before proceeding with the proof, we

recall a few notions and a fundamental structure theorem.

Definition 6.2. On a foliated manifold (N,G), a vector field Y is said to be foliate if

for any X ∈ TG one has [X,Y ] ∈ TG.

Definition 6.3. A foliation is said to be parallelizable if it admits a transverse {e}-
structure, where {e} is the trivial group with one element. The parallelism is said to

be transversely complete if for any any vector X̄ ∈ TM/TF of the parallel basis, there

exists a complete vector field X ∈ TM which projects to TM .

Theorem 6.4. [21, Theorem 4.2’] Let (N,G) be a foliation of codimension q admitting

a transversely complete parallelism. Then, then closure of the leaves of G define a

foliation Ḡ of codimension qb which is induced by a submersion π : N → W , where W

is a manifold. Moreover, for any z ∈ W , the foliation induced by G on Ḡz := π−1(z)

has dense leaves and the space of foliate transverse vector fields of (Ny,G|Ḡz
) is a Lie

algebra of dimension q − qb. In particular, if a transverse foliate vector field of the

foliation G tangent to Ḡz vanishes at a point, then it is zero on all Ḡz.

Proof of Theorem 6.1. We consider a compact manifold Nn together with a foliation

of codimension q, endowed with a transverse holonomy-invariant connection. Let ωT

be the corresponding connection form on the frame bundle Fr(TN/TG) and let θT be

the transverse fundamental form of Fr(TN/TG).
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We consider the lifted foliation F1 on Fr(TN/TG). It admits a transverse parallelism

{λ1, . . . , λn2 , u1, . . . , un} defined by

ωT (λi) = Ei, θT (λi) = 0 and ωT (uj) = 0, θT (uj) = ej ,

where (E1, . . . , En2) and (e1, . . . , ej) are the canonical bases of gln(R) and Rq re-

spectively. This is a transverse parallelism because the connection is projectable (i.e.

holonomy-invariant). In addition, this parallelism is complete because the λi’s are ob-

viously complete and the uj ’s are represented by complete vector fields. Indeed, choose

an arbitrary Riemannian metric on N and identify TN/TG with the orthogonal of

TG. The connection ωT defines a connection on TG⊥ which can be extended to a

connection ∇ on TN . Take the representative ũj of uj given by the identification

TG⊥ ≃ TN/TG, then its integral curves project on M to geodesics of ∇, which are

defined for all times. Consequently, the foliation G1 admits a complete transverse par-

allelism, and we can apply Theorem 6.4: the closures of the leaves give a foliation Ḡ1

induced by a submersion π : Fr(TN/TG) → W .

In addition, the foliation G has an equicontinuous holonomy pseudo-group. This

implies that for any x ∈ N , the intersection of a leaf of G1 with the fiber over x is a

relatively compact subset. Since N is compact, the closure of a leaf of G1 is therefore

compact. The action of G := GLq(R) on Fr(TN/TG) sends the closure of a leaf to the

closure of a leaf, so it descends to an action on W , and this action is proper because

the closures of the leaves are compact.

We now construct a fiber bundle E over W whose fiber over z ∈ W is the set of

transverse foliate vector fields tangent to π−1(z) (which is a finite-dimensional vector

space of dimension independent of z according to Theorem 6.4). Since G preserves the

set of foliate vector fields tangent to the closure the leaves, E admits a proper action

of G.

Altogether, the vector bundles TW → W and E → W are both endowed with

a proper G-action, so they admit G-invariant bundle Riemannian metrics. Summing

these two metrics, we obtain a bundle Riemannian metric on TW ⊕ E → W that we

can pull-back to a bundle Riemannian metric on TFr(TN/TG)/TG1 → Fr(TN/TG).
The transverse metric defined this way is holonomy-invariant by definition. We reduce

the fiber of TFr(TN/TG)/TG1 → Fr(TN/TG) to the image of the horizontal vectors

with respect to the connection ωT , and the metric induced on this vector bundle is

G-invariant, so it descends to a transverse holonomy-invariant metric on (N,G). □

6.2. Proof of Theorem 2.13. We are now in a position to complete the proof of

Theorem 2.13. We assume that the foliation F on M admits a transverse holonomy-

invariant similarity structure. If there is a non-empty closed F-invariant subset of M

where F is an equicontinuous lamination, then the equicontinuity domain of M is non-

empty, and it is the whole manifold M by Proposition 5.2. Applying Theorem 6.1, the

foliation F is Riemannian.
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Conversely, if F is not Riemannian, its equicontinuity domain must be empty by

the contrapositions of Proposition 5.2 and Theorem 6.1. Using the contraposition of

Proposition 5.1, the curvature of the metric [gT ] is everywhere zero, i.e. it is a flat

transverse metric.

6.3. Proof of Theorems 2.10 and 2.11. Here, we assume that F admits a trans-

verse holonomy-invariant locally metric connection ∇. We first need to define precisely

what we mean by the de Rham decomposition of the transversal. By definition, ∇
is a connection on the normal bundle TM/F → M , so there is a decomposition

NF =: T ′
1 ⊕ . . . ⊕ T ′

m into ∇-invariant subspaces, i.e. invariant by the holonomy of

the connection ∇. Assume first that there is no flat factor in this decomposition. The

pre-images of these subspaces in TM are denoted by Ti and one has:

Lemma 6.5. The distribution Ti is involutive.

Proof. Let ∇F be any connection on TF . One has TM ≃ NF ⊕TF and we consider

the linear connection ∇0 := ∇ ⊕ ∇F . Let X,Y ∈ Ti. Since ∇ is torsion-free, the

torsion of ∇0 has values in TF and we deduce that there is Z ∈ TF such that

[X,Y ] = ∇XY −∇Y X + Z ∈ Ti. □

Let F ′ be the foliation induced by the distribution
⊕

i≥2 Ti ⊕ TF . The connection

∇ descends to a transverse connection ∇′ on the normal bundle TM/TF ′, which is

still locally metric and is preserved by the holonomy pseudo-group of the foliation TF ′.

Moreover, ∇′ has irreducible holonomy, and using Remark 2.8, there is a transverse

holonomy-invariant Riemannian metric g′T on the universal cover M̃ of M such that

the lifted connection ∇̃′ is the Levi-Civita transverse connection of gT for the lifted

foliation F̃ ′. Since π1(M) acts by transversal similarities on (M̃, F̃ ′, g′T ), g
′
T induces a

transverse similarity structure on M . For any holonomy map γ of the foliation F ′, γ

lifts to a holonomy map of F̃ ′ which acts as a transverse isometry, so γ preserves the

similarity structure which is then holonomy-invariant. It is also non-flat since we assume

there is no flat factor in the de Rahm decomposition. It remains to apply Theorem 2.10

to get that F ′ is Riemannian, and we obtain a Riemannian metric on the distribution

T ′
1.

Iterating this process for all i’s one after the other and summing the metric obtained

this way, we get a transverse holonomy-invariant Riemannian metric for the foliation

F , finishing the proof of Theorem 2.10.

To show Theorem 2.11, we remark that the pre-image of the flat distribution by

the projection onto TM/TF is again involutive, and we replace F by the foliation

F0 induced by this new distribution. The transverse holonomy-invariant locally metric

connection descends to the new transverse structure and has no flat factor in its de

Rham decomposition. We can apply Theorem 2.10 to conclude.
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6.4. Proof of Theorem 2.16. In this section, M is a compact manifold admitting a

locally metric connection ∇. By Remark 2.8, there exists metric on the universal cover

M̃ of M whose Levi-Civita connection is the lift ∇̃ of ∇. Let h be such a metric. Let

TM̃ =: T̃0 ⊕ T̃m be the decomposition of TM into ∇̃-holonomy-invariant subspaces

such that T̃0 is flat and the T̃i for i ≥ 1 are irreducible. If there is only one factor,

there is nothing to prove, so we assume this decomposition has at least two factors.

We define two transverse foliations F̃ and T̃ by T F̃ := T̃m and T T̃ :=
⊕m−1

i=0 Ti.

Since the elements of π1(M) act by affine transformations on (M̃, ∇̃), they preserves

this decomposition up to a permutation of the factors. There is a finite cover of M on

which the permutations are trivial, and we can assume without loss of generality that

M is this covering. Thus the distributions T̃i descend to distributions Ti on M and the

foliations F̃ and T̃ descend respectively to foliations F and T on M .

The connection ∇ descends naturally to a transverse locally-metric connection ∇T

for the foliation F . This connection ∇T is holonomy-invariant (with respect to the

holonomy pseudo-group of F). Indeed, for any point x ∈ M , one can take a small

neighbourhood U of x such that the metric h descends to a metric g on U , and

by the local de Rham theorem there exists, up to a restriction of U , an isometry

φ : (U, g) → (F, g|TF )×(T, g|TT ) where the product respects locally the two foliations

F and T (i.e. TF = TF and TT = TT ). Moreover, ∇T is the (transverse) Levi-Civita

connection of g|TT , so it is invariant by sliding along the leaves of F in U , thus globally

invariant by the holonomy pseudo-group.

Altogether, we have a compact manifold M with a foliation F and a transverse

locally metric holonomy-invariant connection ∇T . In addition, ∇T is non-flat and

irreducible, so we can apply Theorem 2.10 to obtain a transverse holonomy-invariant

Riemannian structure on (M,F), i.e. a holonomy invariant metric gm on Tm. Iterating

this construction by taking an arbitrary T̃i, i ≥ 1, for F̃ instead of Tm, one has

Riemannian metrics gi on all Ti’s, which are invariant by sliding along the leaves of the

other Tj for 0 ≤ j ≤ m. The singular metrics defined this way lift to metrics g̃i on M̃ .

Assume first that the flat factor is non-trivial. We will apply the following general-

ization of the de Rham decomposition theorem proved in [24, Theorem 1]:

Theorem 6.6 (Ponge-Reckziegel). Let (N, gN ) be a pseudo-Riemannian manifold with

two orthogonal foliations L and K. Assume that the leaves of L are totally geodesic

and geodesically complete and that the leaves of K are totally geodesic, then (N, gN )

is isomorphic to a product (N1, gN1
)× (N2, gN2

) such that L and K correspond to the

foliations induced respectively by N1 and N2 on N .

We consider the two foliations L and K on M̃ defined by TL :=
⊕

i≥1 T̃i and

TK := T̃0. We define a new metric h′ on M̃ by setting h′ = h|T0 ⊕ g̃1 ⊕ . . . ⊕ g̃m.

The foliations L and K are orthogonal and totally geodesic because (M̃, h′) is locally

a Riemannian products of integral manifolds of the two foliations. In addition, L

is geodesically complete because its geodesics descend to geodesics of the induced
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foliation on M together with the Riemannian structure we constructed above, and this

is geodesically complete by compactness of M .

Applying Theorem 6.6, the manifold (M̃, h′) is isometric to a product (M1, g1) ×
(M2, g2) where the foliations induced by M1 and M2 are respectively L and K. More-

over, (M1, g1) is simply-connected and complete, and the metric g1 is, by construction,

a local Riemannian product. Applying the usual de Rham decompostion theorem, we

obtain that M1 is a Riemannian product. Finally, taking the product decomposition of

M̃ obtained this way together with the metric induced by h on this decomposition, we

obtain the de Rham decomposition we were seeking.

In the case where the flat factor is trivial, we simply apply this last step of the proof.

This conclude this section.

7. Closed non-exact Weyl structures

In this section, we apply the result of Theorem 2.16, i.e. the existence of a de Rham

decomposition, in order to prove a remarkable structure theorem for compact conformal

manifolds admitting a particular connection called a Weyl connection. From now on,

M is a compact manifold, and we endow it with a conformal structure c in the following

sense:

Definition 7.1. A conformal structure on M is set c of Riemannian metrics such that

for any g, g′ ∈ c, there exists a smooth function f : M → R such that g = e2fg′.

Conformal manifolds admit a paricular class of connection, called Weyl connections

which generalize the notion of Levi-Civita connection in the conformal setting:

Definition 7.2. A Weyl connection on the conformal manifold (M, c) is a torsion-free

connection D such that D preserve the conformal structure, i.e. for any g ∈ c there

exists a 1-form θg on M such that Dg = −2θg ⊗ g. The 1-form θg is called the Lee

form of D with respect to g. The triplet (M, c,D) is called a Weyl connection.

A Weyl structure is said to be closed if its Lee form with respect to one metric, and

then to all metrics in c, is closed. In this case, D is locally the Levi-Civita connection

of a metric in c.

A Weyl structure is said to be exact if its Lee form with respect to one metric, and

then to all metrics in c, is exact. In this case, D is the Levi-Civita connection of a

metric in c.

We assume that there is a closed, non-exact Weyl connection D on the conformal

manifold (M, c). Once lifted to the universal cover M̃ of M , the conformal structure c

and the Weyl connection D induce a conformal structure c̃ and a Weyl connection D̃

on (M̃, c̃). If g is a metric in c, the Lee form of D̃ with respect to the lifted metric g̃ to

M̃ is the pull-back θ̃g of the Lee form θg to M̃ , which is then exact. This means that

D̃ is an exact Weyl connection, and there exists a metric h, unique up to a positive

mutiplicative constant, such that D̃ = ∇ where ∇ is the Levi-Civita connection of h.
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In particular, there exists f : M̃ → R such that h = e2f g̃ and θ̃g = df . If we pick any

γ ∈ π1(M), one has γ∗θ̃g = θ̃g, implying that γ∗df = df and γ∗f = f + λγ where

λγ ∈ R. Hence, π1(M) acts by similarities on (M̃, h), and these similarities are not all

isometries because otherwise h would descend to M , but this is impossible because D

is non-exact.

The Weyl connection D is a locally metric connection of M and h is a metric on

M̃ whose Levi-Civita connection is D̃, so we can apply Theorem 2.16 and we infer

that (M̃, h) has a de Rham decomposition (M0, h0)× . . .× (Mp, gp). We assume that

(M̃, h) is neither irreducible nor flat and we denote by (N,hN ) the Riemannian product

(M1, g1)× . . .× (MN , gN ).

Lemma 7.3. The Riemannian manifold (N,hN ) is irreducible.

Proof. By contradiction we assume that (N,hN ) is reducible, so it can be written as

a product (N1, h1) × (N2, h2) where N1 and N2 have positive dimension. Moreover,

the group π1(M) acts by similarities on (M̃, h), and in particular it contains only affine

maps, which then preserve the de Rham decomposition of (M̃, h) up to a permutation of

the factors. Thus π1(M) preserve the decomposition (M0, g0)× (N,hN ) so it projects

to a group Γ of similarities of (N,hN ).

Let γ be a non-isometric similarity in Γ, which exists because π1(M) does not only

contain isometries. We can assume, up to taking a power of γ, that γ preserves the

decomposition (N1, h1) × (N2, h2) and it can be written as (γ1, γ2) where γ1 and γ2

act on N1and N2 respectively. If (N1, h1) is complete, then γ1 has a fixed point, but

a manifold admitting a similarity with a fixed point is isometric to Rn, which is not

possible since (N,hN ) does not contain a flat factor. We can thus assume that (N1, h1)

and (N2, h2) are both incomplete.

We recall that the Cauchy border of a Riemannian manifoldN is ∂N := N̄ \N where

N̄ is the metric completion of N . The Cauchy border is preserved by any similarity of

N̄ , and any similarity of N extends to a similarity of N̄ by density.

Since Γ acts cocompactly on N , there exist compact subsets K1 and K2 of N1 and

N2 respectively such that Γ · (K1 × K2) = N1 × N2. By compactness, there exist

0 < α ≤ β such that, if we denote by d1 and d2 the induced distances on the metric

completions of N1 and N2 respectively, one has α ≤ di(Ki, ∂Ni) ≤ β for i = 1, 2.

Then if we define, for i = 1, 2,

Di := {x ∈ N̄i | α ≤ di(∂Ni, x) ≤ β}

one has Γ · (D1 × D2) = N1 × N2. We choose any (x1, x2) ∈ N1 × N2 such that

d1(∂N1, x1) = α/2 and d2(∂N2, x2) = 2β, which exists by connectedness of N and

because α is a similarity of ratio different from 1. By the cocompactness of the action

of Γ, there exists γ ∈ Γ such that (x1, x2) ∈ γ(K1 ×K2) and γ has ratio λ > 0. Since

the Cauchy border of N is preserved by γ, one has λα ≤ d1(∂N1, γ(K1)) ≤ λβ and

λα ≤ d2(∂N2, γ(K2)) ≤ λβ, hence λ ≤ 1/2 and 2 ≤ λ: contradiction. □
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Since we assumed that (M̃, h) is neither irreducible nor flat, N has positive dimension

and (M0, h0) is isometric to an Euclidean space Rq with q ≥ 1. Summarizing, we

proved:

Theorem 7.4. Let (M, c,D) be a compact conformal manifold endowed with a closed

non-exact Weyl structure. Let M̃ be the universal cover of M and let h be the metric

(unique up to a positive multiplicative constant) whose Levi-Civita connection is the

lift of the Weyl connection. Then one of the following cases occurs:

• (M̃, h) is flat;

• (M̃, h) is irreducible;

• (M̃, h) is isometric to Rq × (N, gN ) where q ≥ 1 and (N, gN ) is an irreducible

Riemannian manifold.
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Math. 41, 13–21 (1999) .
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