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Abstract. We introduce the notion of decomposable locally conformally product (LCP)
manifolds and characterize those which are defined on quotients of Riemannian Lie groups
by co-compact lattices.

1. Introduction

The study of locally conformally product (LCP) structures is a topic of conformal geometry
which has grown up in the last decade, starting with the works of Belgun-Moroianu [4],
Matveev-Nikolayevsky [10,11] and Kourganoff [9] and more recently developped by Andrada-
del Barco-Moroianu [2, 6], Flamencourt [7, 8], and other authors [3, 13].

LCP manifolds are in many respects similar to locally conformally Kähler (LCK) manifolds.
They can be defined either as compact quotients of simply connected (non-flat) Riemannian
manifolds with reducible holonomy by discrete subgroups of homotheties not containing only
isometries, or as compact conformal manifolds (M, c) carrying a closed non-exact Weyl con-
nection ∇ with reducible (non-zero) holonomy.

According to a fundamental result of Kourganoff [9], the tangent bundle of an LCP manifold
(M, c,∇) splits into two ∇-parallel distributions, one of which is flat. A Riemannian metric g
onM in the conformal class c is called adapted if the Lee form of ∇ with respect to g vanishes
on the flat distribution. Adapted metrics always exist [7, 13] and their importance is given
by the following observation [7]: If (M, c,∇) is an LCP structure, and g ∈ c is adapted, then
for every compact Riemannian manifold (K, gK), the conformal manifold (M ×K, [g + gK ])
carries an adapted LCP structure as well.

The LCP structures obtained in this way were called reducible in [7], and it is obvious that
the study of LCP structures can be reduced to understanding the irreducible ones. However,
it might happen that an irreducible LCP manifold is weakly reducible, in the sense that it is
obtained from a reducible LCP manifold by changing the action of the fundamental group on
the universal cover (cf. [3, Example 4.12]).

Because of this phenomenon, we introduce below the slightly more general notion of decom-
posable LCP structure (which is, by definition, an LCP structure containing a Riemannian
metric with reducible holonomy in the conformal class c). One of the motivations for this
definition is [3, Theorem 4.7] where it is shown that a decomposable LCP structure (M, c,∇)
is locally (but in general not globally) reducible.

The article is structured as follows: first of all we recall the basics about LCP manifolds
in Section 2, and we review some background material concerning Riemannian Lie groups.
We also prove a result of independent interest concerning the de Rham decomposition of
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simply connected Riemannian Lie groups in Theorem 2.6, namely that the factors in the
decomposition can be taken to be Lie subgroups of the ambient manifold. Even though this
result is probably known to specialists in the field, we were not able to find a reference for it,
so we thought it was worth giving it a proof.

In Section 3 we investigate reducibility properties concerning Riemannian Lie groups and
homogeneous spaces. We start by obtaining a criterion to check the holonomy reducibility
of a Riemannian Lie group in Proposition 3.1, which will be useful for later applications.
Next, our attention focuses on conformal geometry of homogeneous spaces - even though our
applications will always concern Lie groups in this article -, and we derive the really convenient
Theorem 3.5, stating that the only metric which can be reducible in the conformal class of
such Riemannian manifolds is the homogeneous one, up to a multiplicative constant.

Section 4 is devoted to the main subject of this paper, decomposable LCP manifolds.
In Proposition 4.7 we extend [3, Theorem 4.7] (which states that the universal cover of a
decomposable LCP manifold has a de Rham factor containing the flat distribution Rq and
the metric dual of the Lee form θ) by showing that this factor has dimension at least q + 2,
i.e. is strictly larger than Rq ⊕ θ♯.

We then investigate a particular subclass of LCP structures: the Lie LCP manifolds, which
are compact quotients of Riemannian Lie groups by lattices, focusing on a characterization of
their decomposability. Notice that proving the indecomposability of a general LCP manifold is
far from being trivial, since one has to check the irreducibility of each metric in the conformal
class. Luckily, in Corollary 4.13 we show that the only possibly reducible metric on a Lie LCP
manifold is the left-invariant one up to a multiplicative constant, so their decomposability can
be described in purely algebraic terms by the metric properties of the Lie algebras.

Our previous results converge to one application, namely showing that a fundamental ex-
ample of Lie LCP manifold (constructed in [6, Section 5.2]), is indecomposable, a property
proved in Proposition 4.14. We end the paper with a last section discussing some refinements
of the notion of reducibility for LCP manifolds and giving further examples of LCP manifolds
which belong to the different classes of decomposable LCP structures introduced here.

Acknowledgments. This work was partly supported by the PNRR-III-C9-2023-I8 grant
CF 149/31.07.2023 Conformal Aspects of Geometry and Dynamics and by the Procope Project
No. 57650868 (Germany) / 48959TL (France).

2. Preliminaries

2.1. LCP structures. We recall here the basic definitions concerning Locally Conformally
Product (in short, LCP) structures. A detailed discussion on this topic can also be found
in [7] for example.

In order to define an LCP structure, we first need to introduce Weyl connections, which are
special connections in conformal geometry, generalizing the concept of Levi-Civita connection
from Riemannian geometry.

Definition 2.1. Let (M, c) be a conformal manifold. A Weyl connection on (M, c) is a
torsion-free connection ∇ on M which preserves the conformal structure, i.e. for any metric
g ∈ c, there is a 1-form θg, called the Lee form of ∇ with respect to g, such that ∇g = −2θg⊗g.
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The Lee form of a given Weyl connection ∇ depends on the metric in the conformal class.
However, the Lee forms of ∇ with respect to any two metrics in c differ by an exact 1-form,
which motivates the following definition:

Definition 2.2. A Weyl connection ∇ on a conformal manifold (M, c) is called closed if the
Lee form of ∇ with respect to one metric - and then to all metrics - in c is closed. Similarly,
∇ is called exact if the Lee form of ∇ with respect to one metric - and then to all metrics -
in c is exact.

Moreover, the Lee form gives information on the nature of ∇, as shown by the following
fundamental property:

Proposition 2.3. Let (M, c) be a conformal manifold endowed with a Weyl connection ∇. If
∇ is closed, then it is locally the Levi-Civita connection of a metric in c. If ∇ is exact, then
this statement holds globally.

In the case of a closed Weyl connection ∇ on a conformal manifold (M, c), the pull-back
∇̃ of the Weyl connection to the universal covering M̃ of M is a Weyl connection for the
conformal structure c̃ obtained by pulling-back c. This Weyl connection is exact since M̃
is simply connected, thus there exists a metric h ∈ c̃, unique up to a multiplication by a
constant, such that ∇h = ∇̃, where ∇h is the Levi-Civita connection of h. This metric is
invariant by the fundamental group of M (i.e. it is the pull-back of a metric on M) if and
only if ∇ is exact.

LCP structures arise when one consider closed, non-exact Weyl connections on a compact
conformal manifold. In this situation, one has a remarkable result proved by Kourganoff [9]:

Theorem 2.4 (Kourganoff). Let (M, c) be conformal manifold endowed with a closed, non-
exact Weyl connection ∇. Let h be a metric on M̃ , the universal cover of M , such that
∇h = ∇̃ where ∇̃ is the pull-back of ∇ to M̃ . Then, one of the three following cases occurs:

• (M̃, h) is flat;
• (M̃, h) is irreducible;
• (M̃, h) is a Riemannian product Rq × (N, gN) where q ≥ 1 and (N, gN) is a non-flat,
incomplete Riemannian manifold.

The third case in Theorem 2.4 corresponds to so-called LCP structures. More precisely:

Definition 2.5. An LCP structure is a triple (M, c,∇) where M is a compact manifold, c is
a conformal structure on M and ∇ is a closed, non-exact Weyl connection, which is non-flat
and reducible (i.e. the representation of its restricted holonomy group Hol0(∇) is reducible).

With the notations of the third case of Theorem 2.4, Rq is called the flat part of the LCP
structure, while (N, gN) is called the non-flat part. The distributions TRq and TN descend
to ∇-parallel distributions on M , respectively called the flat distribution and the non-flat
distribution of the LCP manifold.

2.2. Riemannian Lie groups. Let G be a Lie group. In all this paper, Lie groups are
considered to be connected (except in the very particular case where we consider a lattice in
a Lie group).
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Left-invariant objects on G are completely described by their counterpart on the Lie algebra
g of G. In this spirit, left-invariant vector fields will be viewed as elements of g. Moreover,
we recall that the structure of a Riemannian Lie group is given by a left-invariant metric g
on G, i.e. such that the left-translations act as isometries. This metric is then completely
determined by a positive definite scalar product ⟨·, ·⟩ on g. The Levi-Civita connection∇g of g
preserves left-invariant vector fields, so it can also be viewed as a bilinear map ∇g : g×g → g
determined by the Koszul formula:

(1) 2⟨∇g
xy, z⟩ = ⟨[x, y], z⟩+ ⟨[z, x], y⟩ − ⟨[y, z], x⟩.

We discuss in this section some general results concerning Riemannian Lie groups, that
we will later apply to the particular case of LCP Lie manifolds. More precisely, we turn
our attention to the reducibility of the holonomy group of these Riemannian manifolds. The
de Rham decomposition of a simply connected Riemannian Lie group admits an interesting
structure, which we highlight here:

Theorem 2.6. Let (G, g) be a simply connected Riemannian Lie group. Then, the factors
in the de Rham decomposition of (G, g) can be taken to be subgroups of G with the induced
metrics.

Proof. The decomposition of the holonomy representation of ∇g induces ∇g-parallel distri-
butions D0, . . . , Dk on G such that

(2) TG = D0

⊥
⊕ . . .

⊥
⊕Dk,

where D0 is the maximal flat distribution. Correspondingly, by the global de Rham theorem,
(G, g) is isometric to the product (G0, g0) × . . . × (Gk, gk) where Gi is the integral leaf of
the distribution Di passing through the identity. Using the fact that left-translations are
isometries of (G, g), together with the uniqueness of the de Rham decomposition (up to
permutation of the factors) and the connectedness of G, it turns out that for any a ∈ G,
(La)∗Di = Di.

Then, for a ∈ Gi, LaGi contains a and is an integral leaf of Di. Thus LaGi = Gi, and for
any b ∈ Gi we have that ab ∈ Gi. In addition, there exists b ∈ Gi such that ab = e ∈ Gi,
showing that a−1 = b ∈ Gi. Altogether, we proved that the Gi’s are subgroups of G and the
metrics gi for i ∈ {0, . . . , k} are obviously left-invariant. □

Remark 2.7. The same argument shows that more generally, for every subset I ⊂ {0, . . . , k}
of the set of indices of the de Rham splitting (2), the distribution T I := ⊕i∈IDi is integrable,
left-invariant, and its integral leaf through the identity is a subgroup of G.

3. Holonomy reducibility of Riemannian Lie groups and homogeneous spaces

3.1. Reducible Riemannian Lie groups. A criterion to detect Riemannian Lie groups
with reducible holonomy through their Lie algebra can now be formulated under the following
form:

Proposition 3.1. Let (G, g) be a simply connected Riemannian Lie group and denote by
(g, ⟨·, ·⟩) the corresponding metric Lie algebra. Then, (G, g) has reducible holonomy as a
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Riemannian manifold if and only if there exists a non-trivial orthogonal decomposition g =
g1⊕g2 such that g1 and g2 are Lie subalgebras of g and

(3) ⟨[x1, x2], x2⟩ = ⟨[x1, x2], x1⟩ = 0, ∀x1 ∈ g1, ∀x2 ∈ g2.

Note that, by polarization, (3) is equivalent to

(4) ⟨[x1, x2], y2⟩+ ⟨[x1, y2], x2⟩ = 0, ∀x1 ∈ g1, ∀x2, y2 ∈ g2,

(5) ⟨[x1, x2], y1⟩+ ⟨[y1, x2], x1⟩ = 0, ∀x1, y1 ∈ g1, ∀x2 ∈ g2.

Proof. Assume that (G, g) has reducible holonomy and let TG = T1 ⊕ T2 be an orthogonal
∇g-parallel decomposition of the tangent bundle of G, such that each of T1 and T2 are direct
sums of distributions of the de Rham splitting (2) of G. By Theorem 2.6 and Remark 2.7, T1
and T2 are left-invariant distributions, and their the integral leaves through the identity are
Lie subgroups of G. We denote these subgroups by G1 and G2, and their Lie algebras by g1
and g2. For every x1 ∈ g1 and x2 ∈ g2 one has:

⟨[x1, x2], x1⟩ = ⟨∇g
x1
x2 −∇g

x2
x1, x1⟩ = 0,

since ∇g
x1
x2 is in g2 and by use of Equation (1). The second relation in (3) is similar.

Conversely, assume that g = g1⊕g2 is an orthogonal direct sum decomposition of g into
subalgebras satisfying (3). Let T1 and T2 be the left-invariant distributions of G determined
by g1 and g2. For every x1, y1 ∈ g1 and x2 ∈ g2, the Koszul formula (1), shows that

2⟨∇g
x1
x2, y1⟩ = ⟨[x1, x2], y1⟩+ ⟨[y1, x1], x2⟩ − ⟨[x2, y1], x1⟩

= ⟨[x1, x2], y1⟩+ ⟨[y1, x2], x1⟩
(5)
= 0.

Similarly we obtain that ⟨∇g
x2
x1, y2⟩ = 0 for all x1 ∈ g1 and x2, y2 ∈ g2. This shows that T1

and T2 are ∇g-parallel. □

3.2. Reducible metrics on homogeneous spaces. We investigate in this section the re-
ducibility of complete metrics in the conformal class of homogeneous Riemannian metrics.
Our goal is to prove that only the constant multiples of the homogeneous metric can be
complete and reducible. Notice that in the compact case, this result follows from the more
general fact that non-constant multiples of homogeneous metrics on compact simply connected
homogeneous manifolds of dimension n have holonomy SO(n) (cf. [14, Corollary 2.3]).

We first recall a remarkable result of Tashiro and Miyashita [15], which gives a strong
obstruction for complete Riemannian products to admit non-isometric conformal vector fields.

Theorem 3.2 ( [15]). Every complete conformal vector field on a complete non-flat Riemann-
ian manifold with reducible holonomy is Killing.

Assuming the existence of complete reducible metrics in the conformal class of a homo-
geneous metric, and using the fact that for any point x there is a family of Killing vector
fields forming a basis of the tangent space at x, our result will follow from Theorem 3.2,
provided that we know which homogeneous spaces are globally conformally flat. We thus
need a classification of these spaces.

We start by proving the following rigidity property of the standard metric on Rn in its
conformal class:
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Theorem 3.3. Let n ≥ 3 and let g be a scalar-flat Riemannian metric on Rn, belonging to
the conformal class of the standard metric gRn. Then g is homothetic to gRn. In particular,
gRn is the unique flat metric in [gRn ] up to a multiplication by a constant.

Proof. We write g = e2fgRn for some smooth function f : Rn → R and denote by ∆ the
Laplacian of gRn . The conformal change formula for the scalar curvature [5, §1.159] gives:

(6) 0 = (n− 1)e−2f (2∆f − (n− 2)|df |2) = e−2f 4(n− 1)

(n− 2)
e−(n−2)f/2∆

(
e(n−2)f/2

)
,

implying

(7) ∆
(
e(n−2)f/2

)
= 0.

This means that e(n−2)f/2 is a positive harmonic function on Rn, thus it is constant, showing
that g is homothetic to gRn . □

A consequence of Theorem 3.3 is a classification of homogeneous spaces globally conformal
to the Euclidean space Rn:

Proposition 3.4. Let (H, gH) be a simply connected homogeneous space of dimension n ≥ 3.
Assume there is a metric g ∈ [gH ] such that (H, g) is isometric to Rn. Then, g is homothetic
to gH . In particular, (H, gH) is isometric to Rn.

Proof. The classification of (locally) conformally flat simply connected homogeneous spaces
provided by [1, Theorem 1] implies that (H, gH) is homothetic to Rn, Sn, Hn, R × Sn−1 or
R × Hn−1 since (H, gH) is globally conformally flat. Moreover, H is diffeomorphic to Rn by
assumption, so the only possibilities in this list are Rn, Hn and R × Hn−1 for topological
reasons.

Case 1: (H, gH) is homothetic to Rn. Then, g being a flat metric it is homothetic to
the standard metric on Rn by Theorem 3.3 and thus homothetic to gH .

Case 2: (H, gH) is homothetic to Hn. We consider the model Hn = Rn−1 × R∗
+ with

the metric being 1
x2
n
(dx21 + . . . + dx2n) in the standard coordinates. Then, Hn is conformal to

the flat manifold Rn−1 × R∗
+ with the standard metric. If Hn were conformal to Rn, then Rn

would be conformal to Rn−1×R∗
+, and by Theorem 3.3 these two spaces would be homothetic.

However, one is complete and not the other, which is a contradiction. Thus (H, gH) is not
homothetic to Hn.

Case 3: (H, gH) is homothetic to R×Hn−1. Taking the same model as before for Hn−1,
the metric on R×Hn−1 is conformal to x2ndx

2
1 + dx22 + . . . + dx2n. The Riemannian manifold

(R2, dx2n+x
2
ndx

2
1) is the universal cover C̃∗ of C∗ with the lift of the standard metric, thus it is a

flat incomplete manifold. As in the previous case, Rn would be homothetic to a flat incomplete
manifold, which is a contradiction. Thus (H, gH) is not homothetic to R×Hn−1. □

We are now able to prove the general result about conformal classes of homogeneous metrics
mentioned above.

Theorem 3.5. Let (H, g) be a Riemannian homogeneous space. Assume there is a reducible
and complete metric g0 in the conformal class [g]. Then, g0 is homothetic to g. Equivalently,
g is the unique possibly reducible complete metric in [g], up to a multiplicative constant.
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Proof. We consider the universal cover H̃ of H and the two lifts g̃ and g̃0 of the metrics g
and g0 respectively.

Assume first that the metric g̃0 is non-flat. Let f ∈ C∞(H) such that g0 = e2fg, and denote

by f̃ its lift to H̃. Then, (H̃, g̃) is a complete Riemannian product. Every Killing vector field
ξ with respect to g̃ is complete and conformal with respect to g̃0. Theorem 3.2 thus implies
that ξ is a Killing vector filed with respect to g̃0. Therefore, one has

0 = Lξ(e
2f̃ g̃) = 2ξ(f̃)g̃,

and this yields ξ(f̃) = 0. This equality being true for any Killing vector field, and since each
point of H̃ has a basis of (global) Killing vector fields, we conclude that df = 0, i.e. f is
constant.

Assume now that g0 is flat. Then, by Theorem 3.4 (H̃, g̃) is homothetic to Rn and g̃ is
homothetic to g̃0, implying that g is homothetic to g0. □

4. Decomposable LCP manifolds

4.1. Decomposable LCP structures. In [7] were introduced the so-called reducible LCP
structures, which are LCP structures such that the conformal class c contains a metric g for
which (M, g) is a Riemannian product. Nevertheless, in view of [3, Theorem 4.7], a slightly
more general definition appears to be more relevant:

Definition 4.1. Let (M, c) be a conformal manifold. We denote by D(M, c) the set of all
metrics g ∈ c with reducible holonomy, or equivalently, such that TM carries a non-trivial
∇g-parallel distribution 0 ⊊ D ⊊ TM .

Definition 4.2. An LCP manifold (M, c,∇) is decomposable if D(M, c) ̸= ∅.

The first examples of decomposable LCP structures are, as mentioned above, defined by
reducible LCP manifolds. We recall here how to construct them.

Example 4.3. Let (M1, c,∇1) be an LCP manifold. LetM2 be a compact manifold of positive
dimension. Let g1 ∈ c be an adapted metric in the sense of [7, Section 3.1], i.e. such that the
Lee form θ of ∇1 with respect to g1 vanishes on the flat distribution of the LCP structure.
Then, ∇1 = ∇g1 + θ̄, where θ̄ is the vector-valued bilinear form defined by

θ̄X(Y ) := θ(X)Y + θ(Y )X − g1(X, Y )θ♯, ∀X, Y ∈ TM.(8)

For any Riemannian metric g2 on M2, the triple (M := M1 ×M2, [g := g1 + g2],∇g + π∗
1θ)

is an LCP structure, where π1 : M → M1 is the projection on the first factor M1 and π∗
1θ is

the (2, 1)-tensor determined by π∗
1θ as in (8). This LCP structure is called reducible, and it

is decomposable since TM1 is a ∇g-parallel non-trivial distribution of M .

Remark 4.4. Not all decomposable LCP manifolds are reducible. An example of decompos-
able and irreducible LCP manifold is given in [3, Example 4.12]. The difference between the
two notions is related to the action of the fundamental group on the universal cover. More
precisely, by [3, Theorem 4.7], if (M, g) has a decomposable LCP structure, then the universal
cover (M̃, g̃) is isometric to a Riemannian product (M̃1, g̃1)×(M̃2, g̃2), such that the flat factor
is contained in TM1 and the Lee form vanishes on TM2. The action on M̃ of the fundamental
group π1(M) preserves the product structure, that is, every γ ∈ π1(M) is of the form (γ1, γ2)
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with γi ∈ Iso(M̃i, g̃i) for i ∈ {1, 2}. If π1(M) is a product Γ1 × Γ2 with Γi ⊂ Iso(M̃i, g̃i), then
the LCP structure on (M, g) is reducible. If not, it is only decomposable.

In [3], the structure of decomposable LCP manifolds (M, c,∇) was studied, showing that
every metric g ∈ D(M, c) is adapted, and both the metric dual of the Lee form of ∇ with
respect to g, and the flat distribution, are tangent to one of the two ∇g-parallel distributions
of TM .

This result admits an easy but important corollary. In order to state it, let (M, c,∇)
be a decomposable Lie LCP manifold and let g ∈ D(M, c). Since M is compact, the pull-
back metric g̃ to the universal cover M̃ is complete, so by the global de Rham decomposition
theorem, (M̃, g̃) is isometric to a product of complete simply connected Riemannian manifolds
(M0, g0)× . . .× (Mk, gk), k ∈ N, where (M0, g0) is flat and the other factors are non-flat and
irreducible.

Theorem 4.5. With the notations above, there exists i ∈ {1, . . . , k} such that, if Rq is the
flat part of the LCP manifold (M, c,∇) and θ is the Lee form of ∇ with respect to g, then

TRq ⊕ Rθ̃♯ ⊂ TMi (where θ̃ is the lift of θ to the universal cover of M).

Proof. For every i ∈ {0, . . . , k}, applying [3, Theorem 4.7] to the decomposition TM̃ =

Di ⊕ D⊥
i yields that TRq and θ̃♯ are either contained in Di or in D⊥

i . Thus, there exists i0
such that TRq and θ̃♯ are in Di0 , because otherwise θ̃♯ would be in D⊥

i for all i, which is a

contradiction with the fact that θ̃ is non-zero and
⋂

0≤i≤nD
⊥
i = {0}.

Assume that i0 = 0. Since (M0, g0) is a complete simply connected flat manifold, one can
write M0 = d1 × . . .× dp with dj being of dimension 1. Applying [3, Theorem 4.7] again, one

has that for every j ∈ {1, . . . , p}, TRq ⊕ Rθ̃♯ ⊂ Tdj or TRq ⊕ Rθ̃♯ ⊂ Td⊥j . The first inclusion
being impossible for dimensional reasons, the second inclusion has to hold for all j, leading
to a contradiction since

⋂
1≤i≤p Td

⊥
j = {0}. Thus, i0 ∈ {1, . . . , k}. □

The de Rham factor defined in Theorem 4.5,(2) contains almost all the information about
the LCP structure, so we give it a name for later purposes:

Definition 4.6. The factor (Mi, gi) defined in Theorem 4.5, is called the principal factor of
the decomposable LCP structure with respect to g.

The above result says that the tangent bundle of the principal factor of a decomposable
LCP manifold (M, c,∇) with respect to a metric g ∈ D(M, c) contains the flat distribution
Rq, as well as the real line spanned by the metric dual of the Lee form of ∇. However, we
will now show that it cannot be reduced to the integral manifold of the sum of these two
distributions:

Proposition 4.7. Let (M, c,∇) be a decomposable LCP manifold. Let g ∈ D(M, c) and let
(M1, g1) be the principal factor with respect to g. If q is the dimension of the flat distribution
of the LCP structure, then the dimension of M1 is at least q + 2.

Proof. Throughout the proof we will use the musical isomorphisms between 1-forms and
vector fields determined either by g̃ or by g, depending on whether we work on M̃ or M .

We prove the proposition by contradiction, assuming that the dimension of M1 is q + 1.
Then, the orthogonal (TRq)⊥ in TM1 of the flat distribution is a one-dimensional distribution,
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and thus defines a one-dimensional distribution D on the universal cover M̃ of M . Since M̃
is simply connected, there is a g̃-unitary vector field ξ ∈ TM̃ generating D at each point.

On M̃ , the lift ∇̃ of ∇ is the Levi-Civita connection of a metric h = e2f g̃, where θ̃ := df is
the Lee form of ∇̃ with respect to g̃. Since g is adapted, one has θ̃(X) = 0 for any X ∈ TRq,

giving θ̃♯ ∈ (TRq)⊥ ∩ TM1 = D, and we deduce that θ̃ = df(ξ)ξ♭.

Every vector a ∈ Rq determines a ∇̃-parallel vector field Xa ∈ TRq. Using the formula for
conformal change of Levi-Civita connections [5, §1.159], one has

(9) ∇g̃
Xa
ξ = ∇h

Xa
ξ − θ̃(Xa)ξ − θ̃(ξ)Xa + g̃(Xa, ξ)θ̃

♯ = ∇̃Xaξ − θ̃(ξ)Xa.

Moreover, one has g̃(∇g̃
Xa
ξ, ξ) = 0, so ∇g̃

Xa
ξ ∈ TM1 ∩ D⊥ = TRq. Equation (9) thus yields

∇̃Xaξ ∈ TRq. On the other hand, for any vector field Y ∈ TRq one has

h(∇̃Xaξ, Y ) = h(∇h
Xa
ξ, Y ) = −h(ξ,∇h

Xa
Y ) = 0,

thus showing that ∇̃Xaξ = 0. In particular,

(10) [Xa, ξ] = ∇̃Xaξ − ∇̃ξXa = 0,

and by (9) we also have the equality

(11) ∇g̃
Xa
ξ = −df(ξ)Xa.

Moreover, g̃(∇g̃
ξξ, ξ) = 0, and for every a ∈ Rq we have by (10):

g̃(∇g̃
ξξ,Xa) = −g̃(ξ,∇g̃

ξXa) = −g̃(ξ,∇g̃
Xa
ξ) = 0,

thus showing that

(12) ∇g̃
ξξ = 0.

From (11) and (12) we obtain that ξ♭ is a closed 1-form. In addition,M1 is simply connected,
hence there exists a function η ∈ C∞(M1) such that dη = ξ♭ and η(x) = 0.

Let now x ∈ M̃ and let (M1)x be the integral manifold of the distribution TM1 passing
through x, which is diffeomorphic to M1. We define the map Ψ : Rq × R → (M1)x, (a, t) 7→
ψ1
a ◦ ψt

ξ(x), where ψ
1
a is the flow of Xa at time 1 and ψt

ξ is the flow of ξ at time t. We also

introduce pRq , the projection onto the flat part in the decomposition M̃ = Rq × N . We can
now define the map Ξ : (M1)x → Rq × R, y 7→ (pRq(y), η(y)). Since the two flows in the
definition of Ψ commute, we easily get that Ξ and Ψ are inverse of each other because

dΨ ◦ dΞ = id, dΞ ◦ dΨ = id, Ψ ◦ Ξ(x) = (0, 0), Ξ ◦Ψ(0, 0) = x,

so Ψ is a diffeomorphism and (M1, g1) ≃ (Rq × R, e−2fgRq + dt2) where gRq is the standard

metric on Rq. Under this identification, f is a function of t, ξ = ∂
∂t

and θ̃ = f ′(t)dt.

The action of π1(M) can be restricted to M1, since this group acts by isometries of the
metric g̃. In addition, π1(M) also preserves the decomposition M̃ ≃ Rq × N introduced in
Theorem 2.4, thus it preserves the two factors of the decomposition M1 ≃ Rq × R and we
denote by H the restriction of π1(M) to the last factor R. The group H acts by isometries
for the metric dt2, so it contains only translations or translations composed with −id. Up to
a translation, we can assume that this last map, if it lies in H, is −id, and H is generated by
translations and ±id.
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We know that the function f is equivariant, meaning that for any γ ∈ π1(M) there is cγ ∈ R
such that

γ∗f(t) = f(t) + cγ, ∀t ∈ R.(13)

Note that the constant cγ associated to ±id is necessarily 0 and since there exists a non-
isometric homothety of h in π1(M), H must contain at least one non-trivial translation τ ∈ R.
Without loss of generality, we can assume that τ > 0 and τ ∗f = f+c with c > 0. The function
f is then entirely determined by its values on [0, τ ], and if −id were in H, then f would be
symmetric, which is impossible because limt→+∞ f(t) = +∞ and limt→−∞ f(t) = −∞. Thus,
H contains only translations.

IfH is an abelian group of rank 1, then one can assume that τ generatesH, and t 7→ f(t)− c
τ
t

is H-invariant. If H is of rank at least 2, then H is a dense subgroup of (R,+) and f − f(0)
is a group homomorphism between H and (R,+). The set f(H)− f(0) contains c > 0, thus
f − f(0) is a non-trivial group homomorphism from (R,+) to itself by continuity. We deduce
that f is an affine map. In both cases, there is λ ∈ R \ {0} such that f(t)− λt is H-invariant
and thus π1(M)-invariant when seen as a function on M̃ . Therefore, it descends to a function
φ on M . Notice that λ ̸= 0 because f is unbounded.

Using Equation (11) and setting a basis (e1, . . . , eq) of Rq, we can compute the codifferential
of ξ♭ = dt:

(14) δg̃ξ♭ = −
q∑

i=1

ei⌟∇g̃
ei
ξ♭ − ξ⌟∇g̃

ξξ
♭ = qθ̃(ξ).

The vector field ξ is preserved by the fundamental group of M , as we already emphasized
earlier, so it descends to a vector field ξ̄ on M , and one has:

(15) δg(eqφξ̄♭) = −g(∇geqφ, ξ̄) + eqφδg ξ̄ = (λ− q)eqφθ(ξ̄) + qeqφθ(ξ̄) = λeqφ.

Integrating this last equality on the compact manifold M and using the divergence theorem
yields λ = 0, which contradicts the fact noticed above that λ ̸= 0. □

4.2. Lie LCP structures. We will now turn our attention to the special case of LCP man-
ifolds whose universal covers have a Lie group structure. This special situation was recently
studied in [2] and [6].

Definition 4.8. A Lie LCP structure on a compact manifold M is a pair (g,∇) such that

• (M, [g],∇) is an LCP manifold;
• if M̃ is the universal cover of M and g̃ is the lift of the metric g, then (M̃, g̃) has the

structure of a Riemannian Lie group, such that the lift θ̃g to M̃ of the Lee form of ∇
with respect to g is left-invariant, and the action of π1(M) on M̃ is by left-translations.

Definition 4.9. A Lie LCP manifold is a triple (M, g,∇) such that M is a compact manifold
and (g,∇) is a Lie LCP structure on M .

Note that the Lie group structure on the universal cover of a Lie LCP manifold is not
necessarily unique (see below). However, for every choice of Lie group structure G = M̃ ,
the group G carries lattices, so by [12] it is unimodular. Its Lie algebra g carries an LCP
structure (g, u, θ) (cf. [6, Definition 2.1]), where g is the metric induced by the metric g on

M , u ≃ Rq is the flat part and θ is the linear form on g induced by θ̃g. This structure is
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proper (in the sense that u ⊊ g), and adapted, in the sense that θ|u = 0 by [6, Theorem 4.2].
Conversely, [2, Proposition 2.4] shows that every proper LCP Lie algebra (g, g, u, θ) whose
associated simply connected Lie group G admits a lattice Γ, determines a Lie LCP structure
on M := Γ\G.
In [6, Corollary 4.10] it is shown that every Lie algebra g carrying an adapted LCP structure

(g, u, θ) is a semidirect product u⋊α h, where u is a flat ideal and h is a non-unimodular Lie
algebra acting on u by a conformal representation α. Moreover, if g is unimodular, then the
Lee form θ (which by assumption vanishes on u) satisfies

θ(x) = − 1

dim(u)
trhadx, ∀x ∈ h.

Example 4.10. Let (h, gh) be the 2-dimensional Lie algebra determined by an orthonormal
basis e0, e1 satisfying [e0, e1] = e1, and let α be the representation of h on R given by α(e0) = 0
and α(e1) = −IdR. Then g := R⋊α h can also be written as R2 ⋊R, where the second factor
acts on R2 via the representation

t 7→ t

(
1 0
0 −1

)
=: tA0.

The simply connected Lie group G with Lie algebra g can be identified to the semi-direct
product R2 ⋊R endowed with the product

(x, t) · (x′, t′) = (x+ etA0x′, t+ t′), ∀(x, t), (x′, t′) ∈ G.(16)

Let λ > 0 be a root of the polynomial P (X) := X2 − 3X + 1. Setting t0 = ln(λ), the matrix
et0A0 has eigenvalues λ and λ−1 and its characteristic polynomial is P . Consequently, et0A0 is
conjugate to the matrix

A =

(
1 1
1 2

)
,

i.e. there exists Q ∈ GL2(R) such that Q−1AQ = et0A0 . Let (v1, v2) ∈ (R2)2 be the column
vectors of Q−1 and let ⟨v1, v2⟩ ≃ Z2 and ⟨t0⟩ ≃ Z denote the corresponding translation groups
of R2 and R respectively. Then, the subgroup Γ := ⟨v1, v2⟩⋊ ⟨t0⟩ of G is a lattice in G, thus
M := Γ\G is compact. We now denote by g̃ the left-invariant metric on G determined by the
standard metric on the Lie algebra g ≃ R3. A straightforward computation shows that in the
coordinates ((x, y), t) ∈ R2 × R, this metric is given by

(17) g̃ = e−2tdx2 + e2tdy2 + dt2,

and it descends to a metric g on M . The first two generators v1, v2 of the group H act
isometrically by left-translation on (G, h := e2tg̃), whereas the third generator t0 acts on
(G, h) as a strict homothety of ratio λ2. The Levi-Civita connection of h thus descends to
a closed, non-exact Weyl connection ∇ on M , which is reducible and non-flat, defining an
LCP structure on M (see [7] for similar but more general constructions of LCP manifolds).
The LCP manifold (M, [g],∇) is precisely the example introduced in [10]. The lift of the Lee
form of ∇ with respect to g is dt, which is left-invariant, and π1(M) = Γ is a subgroup of G,
showing that (M, g,∇) is a Lie LCP manifold.
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4.3. Decomposable Lie LCP manifolds. In this section, we derive some direct corollaries
about Lie LCP structures arising from the previous considerations. We then prove that the
example of non-solvable Lie LCP manifold constructed in [6, §5.2] is indecomposable. This
later fact reinforces the interest of this example.

Indeed, constructing decomposable Lie LCP manifolds which are not solvmanifolds is triv-
ial, simply by taking an LCP solvmanifold (whose invariant metric is automatically adapted)
and making the Riemannian product with the quotient of a semi-simple Riemannian Lie group
by a co-compact lattice (which always exists). However, it is much more difficult to construct
lattices in indecomposable LCP Lie algebras whose semi-simple part is of non-compact type,
and this is the reason why it is important to check that the example in [6, §5.2] is indecom-
posable as LCP manifold.

Our first remark is that, by the above results, in the Lie LCP setting we can remove
all ambiguities in the definition of decomposable LCP manifold, since there is at most one
reducible metric in the conformal class:

Corollary 4.11. Let (M, g,∇) be a decomposable Lie LCP manifold. Then, g is the only
reducible metric in [g] up to a multiplicative constant.

Proof. This follows directly from Theorem 3.4 applied to the universal cover G ofM endowed
with its Lie group structure and the lift g̃ of g. □

This corollary is remarkable, because it does not hold for general LCP manifolds. We give
here a counter-example:

Example 4.12. Consider a reducible LCP manifold (M1×M2, [g1+g2],∇g+π∗
1θ) as introduced

in Example 4.3, with M2 := S1 × S1. Let (X1, X2) be the canonical left-invariant basis of
T (S1 × S1) and let (η1, η2) be its dual frame. We take any non-constant function f̄ : S1 → R
and we define f := p∗2(f̄) where p2 is the projection on the second factor of S1 × S1. With
these notations, we take the metric g2 to be

(18) g2 := e2fη21 + η22.

Then, the two metrics

g1 + g2 = g1 + e2fη21 + η22 and e−2f (g1 + g2) = e−2f (g1 + η22) + η21(19)

belong to the conformal class [g1 + g2], are non-homothetic and are both reducible.

As a corollary of the general result for Lie groups, we give a necessary and sufficient con-
dition of decomposability for Lie LCP manifolds in terms of the metric on the Lie algebra.

Corollary 4.13. Let (M, g,∇) be a Lie LCP manifold. Denote by (g, ⟨·, ·⟩, θ, u) the cor-
responding LCP Lie algebra. Then, (M, g,∇) is decomposable if and only if there exists a

non-trivial orthogonal decomposition g = g1
⊥
⊕ g2 such that g1 and g2 are Lie subalgebras of g

satisfying (3) and u+ θ♯ ⊂ g1.

Proof. Direct consequence of Proposition 3.1 and [3, Theorem 4.7]. □

As an application, we will show the indecomposability of the Lie LCP structures deter-
mined by the non-solvable LCP Lie algebra constructed in [6, §5.2]. We briefly recall this
construction.
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For d ≥ 2 we set n := d2 and identify Rn with the set of d×d matrices. Right multiplication
defines a Lie algebra representation ρ : sl(d,R) → gl(n,R).

Let A be the 2× 2 diagonal matrix A := diag(1,−1). We define two Lie algebra represen-
tation τ1 : sl(d,R)× R → gl(n+ 1,R) and τ2 : sl(d,R)× R → gl(2,R) by

τ1(M, t) = diag(ρ(M), 0), τ2(M, t) = tA, ∀M ∈ sl(d,R), ∀t ∈ R,

where the first map is block diagonal using the inclusion gl(n,R) ⊂ gl(n+1,R). Their tensor
product gives rise to the representation

τ := τ1 ⊗ τ2 : sl(d,R)× R → gl(Rn+1 ⊗ R2) = gl(2n+ 2,R)

which is explicitly defined by

(20) τ(M, t) = diag(ρ(M), 0)⊗ Id2 + t Idn+1 ⊗ A, ∀M ∈ sl(d,R), ∀t ∈ R.

In [6, Proposition 5.2] it is shown that the Lie algebra obtained as a semidirect product

g = (Rn+1 ⊗ R2)⋊τ (sl(d,R)⊕ Rb)

carries an LCP structure and its corresponding simply connected Lie group G carries a lattice
Γ, thus defining a Lie LCP structure on the manifoldM := Γ\G. More precisely, one considers
the inner product g on g making the factors sl(d,R), Rb, Rn+1 ⊗ R2 orthogonal, b of norm 1
and such that, when restricted to Rn+1 ⊗ R2, it is the tensor product of the canonical inner
products on each factor. If {ei}n+1

i=1 and {v1, v2} denote the canonical bases of Rn+1 and R2,
respectively, the flat space is u := Ren+1 ⊗ v1 and the Lee form is the metric dual of b.

According to [6], the Lie algebra g is indecomposable (i.e. it is not a direct sum of proper
ideals). However, the corresponding Lie LCP structure could still be decomposable. The next
result shows that this is not the case.

Proposition 4.14. The Lie LCP manifold M constructed above is non-decomposable.

Proof. In view of Corollary 4.13, we need to show that if g = g1⊕g2 is an orthogonal
decomposition such that g1 and g2 are Lie subalgebras of g satisfying (3) and such that
u+ θ♯ ⊂ g1, then g2 = 0.

Let g = g1⊕g2 be such an orthogonal decomposition. Then the vectors b and en+1 ⊗ v1
belong to g1. Applying (5) to y1 := b, and using the fact that θ is closed, so b is orthogonal
to g′, we obtain adb(g2) ⊂ g2.

Using (20) for M = 0 and t = 1 we see that adb has three eigenspaces: sl(d,R)⊕Rb for the
eigenvalue 0, Rn+1⊗v1 for the eigenvalue 1 and Rn+1⊗v2 for the eigenvalue −1. Consequently,
g2 is a direct sum of three vector subspaces g2 = E0 ⊕ E1 ⊕ E2, with E0 ⊂ sl(d,R) ⊕ Rb,
E1 ∈ Rn+1 ⊗ v1, and E2 ⊂ Rn+1 ⊗ v2.

Applying (3) to x1 = b and x2 ∈ E1 we obtain

0 = ⟨[b, x2], x2⟩ = ⟨x2, x2⟩,

thus showing that E1 = {0}. Similarly, taking x2 ∈ E2 yields

0 = ⟨[b, x2], x2⟩ = −⟨x2, x2⟩,

so E2 = {0} as well. Moreover g2 is orthogonal to b so it is contained in sl(d,R).
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We apply (3) again, this time to an arbitrary element x2 = M ∈ g2 ⊂ sl(d,R) and
x1 = N ⊗ v1 ∈ Rn ⊗ v1 ⊂ g1, where N ∈ Rn is identified to a d × d matrix. We get by (20)
for t = 0:

0 = ⟨[M,x1], x1⟩ = ⟨ρ(M)N ⊗ v1, N ⊗ v1⟩ = ⟨NM,N⟩ = ⟨M,N∗N⟩,
showing thatM is orthogonal to Sym2(Rd) (because the set of matrices of the form N∗N gen-
erates the vector space Sym2(Rd) of symmetric matrices). Since M was an arbitrary element
of g2, this implies that g2 is orthogonal to Sym2(Rd), thus g2 ⊂ so(d,R). By orthogonality
we then have Sym2(Rd) ⊂ g1, and since [Sym2(Rd), Sym2(Rd)] = so(d,R), and g1 is a subal-
gebra, we conclude that g1 ⊃ so(d,R). On the other hand we have seen that g2 is contained
in so(d,R) and is orthogonal to g1. This shows that g2 = 0, thus finishing the proof. □

5. Weak reducibility and strong irreducibility

As we emphasized before, the main issue with the notion of reducibility as introduced in
Example 4.3 is that it does not behave well with respect to the action of the fundamental group
on the universal cover. Nevertheless, in our seek for simplest LCP manifolds, we consider a
weaker version of reducibility allowing one to partially overcome this obstacle.

Definition 5.1. Let (M, c,∇) be a decomposable LCP manifold. Then, we say that (M, c,∇)
is weakly reducible if there is a metric g ∈ D(M, c) with principal factor (M1, g1) such that
the group Γ1 := π1(M)|M1 acts freely and properly discontinuously on M1.

The motivation of the previous definition is that, as we shall see in Proposition 5.2 below,
Γ1\M1 is a compact manifold which inherits an LCP structure. Thus, if (M, c,∇) is weakly
reducible, then even though the underlying Riemannian manifold (M, g) is not necessarily a
Riemannian product with a compact LCP factor, like in the reducible case, it is still obtained
from a smaller compact LCP manifold by a mapping torus-like construction.

Proposition 5.2. Let (M, c,∇) be a weakly reducible LCP manifold. Then, in the notation
of Definition 5.1, M ′ := Γ1\M1 is a compact manifold, g1 := g|M1 descends to a metric g′ on
M̄ , and the triple (M ′, [g′],∇|M1) is an LCP manifold.

Proof. We start by proving that M ′ is a compact manifold. The group Γ1 acts freely and
properly discontinuously on M1. Thus, Γ1\M1 is a manifold. Since M is compact, there
exists a compact set K ⊂ M̃ such that π1(M) ·K = M̃ . The projections K1 and K2 of K on
M1 and M2 respectively are compact. One has K ⊂ K1 ×K2 and π1(M) · (K1 ×K2) = M̃ .
This implies that π1(M)|M1 ·K1 = M1, yielding Γ1 ·K1 = M1, so the action of Γ1 on M1 is
co-compact.

The pull-back θ̃ of θ to M̃ and the symmetric tensor g1 are both invariant under the action
of π1(M) and thus invariant under the action of Γ1 when seen as objects on M1. Moreover,
g1 := g|M1 is clearly the pull-back of a metric on M1 by the projection p1 : M̃ → M1, and

by [3, Theorem 4.7], θ̃ is also the pull-back of a 1-form on M1 by p1. Consequently, they
descend respectively to a metric g′ and a 1-form θ′ on Γ1\M1.

Since θ̃ is exact on M̃ , it has to be the pull-back of an exact 1-form on M1, thus there
exists f ∈ C∞(M1) such that θ̃ = df . Moreover, the lift ∇̃ of ∇ to M̃ is the Levi-Civita
connection of e2f g̃. Consequently, (M1, e

2fg1) is a totally geodesic submanifold of the warped

product (M1×M2, e
2fg1+e

2fg2), thus ∇e2fg1 = ∇|M1 . In particular, (M1, e
2fg1) has reducible
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holonomy, because the flat part of the LCP manifold (M, c,∇) is still parallel with respect to
the connection ∇|M1 . The fundamental group Γ1 of M ′ acts by homotheties on (M1, e

2fg1),
thus the connection ∇|M1 descends to a connection on M ′, which coincides with ∇g′ + θ̄′.
We conclude that (M ′, [g′],∇g′ + θ̄′ = ∇|M1) is a compact conformal manifold endowed with
a connection with reducible holonomy. Moreover, the universal cover (M1, e

2fg) has a flat
complete Riemannian factor, thus it is an LCP manifold (see [7, Remark 2.6]). □

An example of a weakly irreducible LCP manifold is given in [3, Example 4.11]. It can be
written under the form of a Lie LCP manifold.

Example 5.3. We consider the Lie algebra g′ := (R2 ⋊A0 R) × R, where A0 = Diag(1,−1).
The simply connected group with Lie algebra g′ is G′ = G × R, where G = R2 ⋊ R is the
group constructed in Example 4.10 with group law given by (16). We will use the coordinates
(x, y, t, s) on G′.

We consider the standard scalar product on R4 ≃ g′, which induces a left-invariant metric
g̃′ on G′. Using the notations of Example 4.10, we consider the subgroup

Γ′ := ⟨v1, v2, (0, 0, t0, 1), (0, 0, 0,
√
2)⟩,

which is a lattice in G′. The metric

(21) g̃′ = e−2tdx2 + e2tdy2 + dt2 + ds2

descends to a metric g′ on Γ′\G′ and the Levi-Civita connection of h′ := e2tg̃ descends to a
connection ∇′. It is straightforward to check that (Γ′\G′, g′,∇) is a Lie LCP manifold, and
it is decomposable because (G′, g̃′) = (G, g̃)× (R, ds2).

The lattice Γ′ is not a product of two subgroups acting separately on each factor of this
product. However, the restriction of π1(M) to G is exactly the group Γ defined in Exam-
ple 4.10, so it acts freely and properly discontinuously, thus the LCP manifold is weakly
irreducible.

The natural question coming with this new notion is: can we construct decomposable LCP
manifolds which are not weakly reducible? We first give a name to such a manifold.

Definition 5.4. A decomposable LCP manifold which is not weakly reducible is called strongly
irreducible.

The existence of strongly irreducible LCP manifolds is related to the existence of algebraic
units of modulus 1 which are not roots of unity. We give here an example:

Example 5.5. We consider the polynomial

(22) P (X) = (X2− 3 +
√
5

2
X +1)(X2− 3−

√
5

2
X +1) = X4− 3X3+X2− 3X +1 ∈ Z[X].

The polynomial (X2− 3−
√
5

2
X+1) has negative discriminant, thus its roots are two conjugated

complex numbers of modulus 1, that we denote by eiµ and e−iµ, with µ ∈ R. The polynomial

(X2 − 3+
√
5

2
X + 1) has a positive discriminant, thus it has two positive real roots that we
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denote by λ and λ−1, different from ±1. The matrix

(23) A =


λ

λ−1

cos(µ) − sin(µ)
sin(µ) cos(µ)


is therefore similar to the companion matrix of P , so there exists C ∈ GL(4,R) such that
CAC−1 ∈ GL(4,Z). A logarithm of A (i.e. a matrix A0 such that exp(A0) = A) is given by

(24) A0 =


ln(λ)

− ln(λ)
0 −µ
µ 0

 .

We define the almost Abelian Lie algebra g := R4⋊A0R and we endow it with the canonical
scalar product of R5. The simply connected Lie group with Lie algebra g is G := R4⋊R with
the product

(x, t) · (x′, t′) = (x+ etA0x′, t+ t′), ∀(x, t), (x′, t′) ∈ G×G.(25)

It is easy to show that the left-invariant metric induced on G is

(26) g̃ = e−2 ln(λ)tdx21 + e2 ln(λ)tdx22 + dx23 + dx24 + dt2.

Let v1, v2, v3, v4 be the column vectors of C−1. The subgroup Γ := ⟨v1, v2, v3, v4⟩ ⋊ ⟨1⟩ is a
lattice of G and the metric g̃ descends to M := Γ\G. The metric (G, h := e2 ln(λ)tg̃) has
a complete flat Riemannian factor R and its Levi-Civita connection descends to a closed
non-exact Weyl connection on (M, [g]), thus (M, g,∇) is a Lie LCP manifold.

The LCP manifold defined this way is decomposable because its universal cover admits the
decomposition as Riemannian product

(G, g̃) = (R3, e−2 ln(λ)tdx21 + e2 ln(λ)tdx22 + dt2)× (R2, dx23 + dx24).

If this manifold were weakly reducible according to this decomposition, then (R3, dx21 +
e4 ln(λ)tdx22 + e2 ln(λ)tdt2) would be the universal cover of an LCP manifold endowed with the
unique metric (up to a multiplicative constant) whose Levi-Civita connection is the lift of the
Weyl connection by Proposition 5.2. The fundamental group of this LCP manifold would then
act by homotheties, and the group of the similarity ratios would be generated by λ, which is
an algebraic unit of degree 4. However, this LCP manifold would be of dimension 3, but all
such LCP manifolds are classified (see [9, Theorem 1.8]) and have a group of homothety ratios
containing only algebraic units of degree at most 2, which is a contradiction. This example
is thus strongly irreducible.

We can summarize the above considerations as follows. We have defined four classes of
LCP structures:

R : Reducible LCP manifolds (Example 4.3);
WR : weakly reducible LCP manifolds (Definition 5.1);
SI : strongly irreducible LCP manifolds (Definition 5.4);
D : decomposable LCP manifolds (Definition 4.2).
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The examples above show that all these classes are non-empty and the following inclusion
relations hold:

R ⊊ WR ⊊ D = WR ⊔ SI.
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