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Lecture 1

Introduction

Computer Algebra is the art of using a computer to perform exact mathematical computations. The aim of
this course is to cover the fundamental algorithms of this field (from the Fast Fourier Transform to Gröbner
bases), while providing the students with a practical familiarity with its uses and applications through
tutorials using Maple. After this course, no student will think of using pen-and-paper for long mathematical
derivations.

The questions on the theoretical side are: “what can we compute exactly?” and “how fast?” (in terms of
complexity estimates). A related question specific to computer algebra is “how big is the result?”.

On the practical side, computer algebra has led to the development of systems with several million users,
the most famous ones being Mathematica, Maple, SageMath, Pari-GP. On the theoretical side, this area has
known more than 50 years of algorithmic progress of which a selection will be presented in this course1.

1.1 Effectivity

1.1.1 Logic vs Symbolic Computation
An important result that limits the possibilities of computer algebra is an undecidability theorem.

Theorem 1.1 (Richardson-Matiyasevich). In the class of expressions built from one variable x and the
constant 1 with the operations +,−,× and composition with the functions sin(·) and absolute value | · |,
recognizing 0 is undecidable.

Here, ‘recognizing 0’ means detecting that an expression built with these rules is the function that is iden-
tically 0. That it is undecidable means that no algorithm can really ‘simplify’, unless either a more precise
meaning is given to the word, or one restricts the class of expressions to be addressed. A large part of this
course consists in taking the second path.

This theorem will not be proved here, but we refer the interested reader to the nice (and short) book by
Yuri Matiyasevich entitled “Hilbert’s Tenth Problem”, where he explains the solution of this problem that
got him the Fields medal, and some of its applications.

1.1.2 Data Structures for Mathematical Objects
In practice, many mathematical objects can be represented in a simple way that allows 0-recognition. This
is the case for machine integers, that are simply elements of Z/232Z or Z/264Z. Then by taking arrays of
coefficients, one gets integers of arbitrary size, where an array (a0, . . . , ak) represents

a0 + a1B + · · ·+ akB
k,

1The date of birth of the field can be set to 1966 when a first conference in this area took place in Washington. It was called
Symsac for “Symbolic and Algebraic Computation”.
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B being a basis, usually a power of 2 such as 232 (the sign can be stored separately). With arrays, one can also
construct vectors and matrices; polynomials (for which fast algorithms will be described in Lectures 2,3,4);
truncated power series (Lecture 3) and fractions or rational functions (addition of two fractions A/B and
C/D does not need a gcd, and a sum is 0 if and only if its denominator is 0). Thus, one can for instance
construct matrices of rational functions in several variables, and zero-recognition propagates through these
algebraic constructions.

1.1.3 Equations as a Data-Structure

An important idea of computer algebra is that it is not necessarily useful to ‘solve’ an equation (assuming
that this has a meaning), but instead one can think of an equation as a data-structure for its solutions.
Algorithms will then compute properties of these solutions (test equality, or compute series expansions, or
evaluate numerically,. . . ) from this data-structure.

Example 1.1. The identity
sin 2π

7

sin2 3π
7

−
sin π

7

sin2 2π
7

+
sin 3π

7

sin2 π
7

= 2
√
7

has a simple proof using the fact that exp(iπ/7) is a root of x7 + 1 and resultants; this will be seen in
Lecture 5.

Example 1.2. The identity sin2 +cos2 = 1 has a simple proof using the fact that both sin and cos are
solutions of the linear differential equation y′′ + y = 0. This will be presented in Lecture 6.

Example 1.3. The same principle that gives an algorithm for sin2 +cos2 = 1 lets one prove much more
complicated formulas, such as Mehler’s formula for the Hermite polynomials

∞∑
n=0

Hn(x)Hn(y)
un

n!
=

exp
(

4u(xy−u(x2+y2))
1−4u2

)
√
1− 4u2

,

starting from the linear recurrence

Hn+2 = 2x(n+ 1)Hn+1 − 2(n+ 1)Hn, H0 = 1,H1 = 2x,

which can be seen as a definition of, or a data-structure for, the Hermite polynomials.

Example 1.4. Recent records of computation of π rely on the formula

1

π
=

12

C3/2

∞∑
n=0

(−1)n(6n)!(A+ nB)

(3n)!n!3C3n
,

with A = 13591409, B = 545140134, C = 640320. Fast numerical evaluation of this formula is achieved
by recognizing that the summands satisfy a 1st order linear recurrence and exploiting this. (Tutorial 2).

Example 1.5. The following recent formula for ζ(3)

ζ(3) =

∞∑
n=1

1

n3
=

5

2

∞∑
n=1

(−1)n−1(
2n
n

)
n3

can be proved automatically thanks to a system of 1st order linear recurrences (this will be discussed in
Lecture 9.)
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Example 1.6. A large family of examples is provided by polynomial systems that can be used to encode
questions in robotics, geometry, or graph theory. These will be discussed in Lecture 10.

1.2 Efficiency

It is important to keep in mind that with current computers, 1 sec. is a long computation. For instance,
with a good polynomial and integer library, 1 sec. is sufficient to multiply integers with 30,000,000 digits;
multiply polynomials of degree 650,000 (with coefficients that are integers modulo a small p); multiply two
matrices of size 850×850 (again with integers modulo a small p for entries). Thus 1 sec. is in the asymptotic
regime of the algorithms.

There are many situations that call for such large objects. A spectacular recent example comes from a
work of Bostan and Kauers in 2010 where they showed the existence of a polynomial cancelling a certain
power series from combinatorics. The polynomial has degree roughly 45 in 3 variables, with coefficients
that are integers with up to 25 digits. Intermediate computations involve series expansion at order 1000,
conjecturing a linear differential equation with 1.5 billion coefficients (the algorithm will be given in Lecture 8)
and an automatic proof involving very large resultants (Lecture 5).

1.2.1 O() notation

We recall the standard notation for asymptotics that will be used in complexity estimates:

f(n) ∼ g(n) means lim
n→∞

f(n)

g(n)
= 1;

f(n) = O(g(n)) means ∃K∃M∀n ≥M, |f(n)| ≤ Kg(n).

Example 1.7. Two things must be remembered: O() is only an upper bound; constant factors that might
be of importance in practice are erased by this notation. Thus all the following identities are correct

log(2n) = O(log n)

1010
10

n = O(n)

1010
10

n+ n2 = O(n2)

n+ n2 = O(n20).

Figure 1.1 taken from the book by Moore and Mertens (2011) is important to keep in mind the orders of
magnitude implied by complexity estimates.

It is often claimed that Moore’s law (that the speed of computers doubles every two years) has an
important impact on computing, but this is only the case for algorithms with linear complexity. In the
figure, doubling the speed amounts to a small vertical shift. Any algorithmic progress is thus likely to have
a more important practical impact than doubling the speed of a computer.

1.2.2 Õ() notation

In computer algebra, it is also common to make use of Õ in complexity estimates. If g → ∞, then f = Õ(g)
means that there exists p ≥ 0 such that f = O(g logp g). A function f(n) is called quasi-linear if f = Õ(n).
For instance, later lectures will show that for polynomials of degree at most n or for integers of at most n
bits (or digits), the following operations have quasi-linear complexity: multiplication, division, square-root
(in power series for the case of polynomials), gcd.
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FIGURE 2.5: Running times of algorithms as a function of the size n . We assume that each one can solve
an instance of size n = 1 in one microsecond. Note that the time axis is logarithmic.

Euler
input: a graph G = (V, E )
output: “yes” if G is Eulerian, and “no” otherwise
begin

y := 0 ;
for all v ∈V do

if deg(v ) is odd then y := y +1;
if y > 2 then return “no”;

end
return “yes”

end

FIGURE 2.6: Euler’s algorithm for EULERIAN PATH. The variable y counts the number of odd-degree vertices.

2.4.2 Details, and Why they Don’t Matter

In the Prologue we saw that Euler’s approach to EULERIAN PATH is much more efficient than exhaustive
search. But how does the running time of the resulting algorithm scale with the size of the graph? It turns
out that a precise answer to this question depends on many details. We will discuss just enough of these
details to convince you that we can and should ignore them in our quest for a fundamental understanding
of computational complexity.

Figure 1.1: Comparisons of orders of complexity

1.2.3 Complexity Model

* This will not be used later in the course and can be skipped. *

Program

…

…

…

Input tape 
(read-only)

Output tape 
(write-only)

Registers 
(read-write)location 

counter

Figure 1.2: Random Access Machine

For definiteness, we give a precise explanation of what the complexity estimates will mean. The model
of computer we use in this course is the Random Access Machine, described in Fig. 1.2.

The machine has access two three tapes: a read-only tape that contains the input, a write-only tape where
it writes the output and a read-write tape that models the memory, storing intermediate computations in
cells called registers. All computations take place in the first register, called the accumulator. The program
consists of a list of instructions restricted to the set

read, write, load, store, jump, jgtz, jzero, halt, +,−,×,÷.
This set of instructions is sufficient to model real computers. They are used respectively to read on the

input tape, write on the output tape, load a register in the accumulator, store the content of the accumulator
in a register, jump to a location in the program, jump if the content of the accumulator is greater than zero,
jump if it is 0, halt the program, perform one of the arithmetic operations between the content of the
accumulator and the content of the given register and store the result in the accumulator. Since the program
is not stored in memory, it is a feature of this model that the program cannot modify itself. Each instruction

4



Problem Input
Simple 
Lower 
Bound

Best 
known 

algorithm
Measure

Sorting n elts n O(n log n) comparisons

Polynomial 
multiplication degree n n O(n log n) ops on coeffs

Matrix 
multiplication size n x n n2 O(n2.373) ops on coeffs

Subset sum n integers n 2O(n) time

Table 1.1: Simple Lower Bounds for Basic Problems

is assumed to have unit cost. The complexity of a program is thus the number of steps that it performs
before halting.

This model leads to two different complexity models depending on what the cells of the tapes are allowed
to store. If they hold integers of bounded size, the model is called a bit complexity. This reflects closely
the computation time, but does not allow for much abstraction in the analyses. We will often make use of
the situation where the cells are allowed to store elements of a ring A. That model is called the algebraic
complexity model and the complexity is expressed in numbers of arithmetic operations in A. It is often called
the arithmetic complexity of the algorithm. (It will be assumed that the divisions, if any, are defined in A.)

1.2.4 Lower Bounds

By definition, a lower bound on the complexity of a problem is an upper bound on the complexity of the
best possible algorithm for this problem, even if it is as yet unknown. Since the RAM model above counts
reading the input and writing the output as unit cost, a simple lower bound on the complexity of algorithms
is

size(Input) + size(Output) ≤ complexity .

Although very crude, this bound is often quite good, as shown by Table 1.1.
The algorithm for polynomial multiplication will be given in Lecture 2; algorithms with complexity better

than the naïve cubic bound for matrix multiplication will be presented in Lecture 7. The subset sum problem
is NP complete. This type of problems will not appear in this course.

1.3 Divide-and-Conquer

As divide-and-conquer is a very important paradigm of algorithmic design, we gather here the basic results
that will be used in their analysis.

The general pattern of a divide-and-conquer algorithm is illustrated by Fig. 1.3. An input of size n is
split into m inputs of size at most n/p on which the algorithm is called recursively. When the size becomes
smaller than a threshold s (often equal to 1), another method of computation is used.

The complexity C(n) of the execution of such an algorithm on an input of size n will obey an inequality
of the form

C(n) ≤ mC(⌈n/p⌉) + f(n),

where f(n) denotes the cost of splitting the input and of recombining the results of the recursive calls. General
methods allow to conclude from such an inequality that the complexity has the form C(n) = O(g(n)) for a
simple function g.

5



Divide and Conquer

n

≤ n/p ...

...

... ... ...

≤ n/p ≤ n/p

m appels 
récursifs

m   appels 
récursifs
2

≤s ≤s

≤s...

m recursive
calls

m2 recursive
calls

Complexity

C(n) ≤ mC(⌈n/p⌉) + f(n)

Aim:

C(n) = O(simple(n))

for n ≥ p

16/25
Figure 1.3: Divide and Conquer

Example: Complexity of 
Karatsuba’s Algorithm

C(n) ≤ 3C(⌈n/2⌉) + λn

≈ 1.58

≤ λn + 3λ⌈n/2⌉ + 9C(⌈n/2⌉2)iterate 
once

≤ λN (1 + 3
2 + ⋯ + ( 3

2 )
k−1

) + 3kC(⌈n/2⌉k)
iterate 

 times, 
use 

k − 1
N

≤ λN ( 3
2 )

k−1
(1 + 2/3 + ⋯ + (2/3)k−1) + 3kC(⌈n/2⌉k)reorder 

sum

≤ 3k (2λ
N
2k

+ C(⌈n/2⌉k))bound 
geometric 

series

≤ (2λ + 1)3⌈log2 n⌉ = O(nlog2 3)use 
               

Notation:

⌈x /2⌉1 = ⌈x /2⌉
⌈x /2⌉k+1 = ⌈⌈x /2⌉k /2⌉
N :  power of 2 s.t.

n ≤ N < 2n

k = ⌈log2 n⌉

Lect. 2

17/25
Figure 1.4: Complexity Bounds for Karatsuba’s Algorithm

1.3.1 Example: Karatsuba’s Algorithm
This algorithm, that will be presented in the next lecture, has a complexity that obeys the inequality

C(n) ≤ 3C(⌈n/2⌉) + λn.

Using this inequality with n replaced by ⌈n/2⌉ implies

C(⌈n/2⌉) ≤ 3C(⌈⌈n/2⌉/2⌉+ λ⌈n/2⌉.

In order to simplify the analysis we introduce a notation for iterated ceilings:

⌈x/2⌉1 = ⌈x/2⌉, ⌈x/2⌉k+1 = ⌈⌈x/2⌉k/2⌉.

With this notation, injecting the second inequality above into the first one gives

C(n) ≤ λn+ 3λ⌈n/2⌉+ 9C(⌈n/2⌉2).

Iterating this process k − 1 times leads to

C(n) ≤ λN

(
1 +

3

2
+ · · ·+

(
3

2

)k−1
)

+ 3kC(⌈n/2⌉k),

with N the power of 2 such that n ≤ N < 2n. Reordering the sum in order to exhibit a convergent geometric
series gives

C(n) ≤ λN

(
3

2

)k−1(
1 + 2/3 + · · ·+ (2/3)k−1

)
+ 3kC(⌈n/2⌉k).
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Bounding the geometric series, this simplifies to

C(n) ≤ 3k
(
2λ
N

2k
+ C(⌈n/2⌉k)

)
.

Finally, using k = ⌈log2 n⌉ gives

C(n) ≤ (2λ+ 1)3⌈log2 n⌉ = O(nlog2 3).

The curves corresponding to the solution of C(n) = 3C(⌈n/2⌉) +n, to (2λ+1)3⌈log2 n⌉ and to nlog2 3 appear
in red, green and blue in Fig. 1.4.

1.3.2 Master Theorem
The analysis of the complexity of Karatsuba’s algorithm generalizes and leads to a convenient result, that
admits numerous variants.

Theorem 1.2 (‘Master Theorem of Divide-and-Conquer’). Assume

C(n) ≤ mC(⌈n/p⌉) + f(n), n ≥ p,

with f(n) and increasing function such that there exist (q, r) obeying

q ≤ f(pn)/f(n) ≤ r,

for large enough n. Then, as n→ ∞

C(n) =


O(f(n)), if q > m,

O(f(n) log n), if q = m,

O(f(n)nlogp(m/q)) if q < m.

The most important case is when f(n) = cnα with α ≥ 1, and then q = r = pα. This is what happens
with Karatsuba’s algorithm above, where f(n) = λn, q = r = 2, m = 3. The more general version with an
increasing function will often be used with f(n) = M(n), the cost of polynomial multiplication, introduced
in Lecture 2.

Proof. The proof follows the steps of the example of Karatsuba’s analysis, starting from

C(n) ≤ mC(⌈n/p⌉) + f(n).

Iterating once shows
C(n) ≤ f(n) +mf(⌈n/p⌉) +m2C(⌈n/p⌉2)

with the same notation for iterated ceilings as above. Let N be the power of p such that

n ≤ N < pn,

then since f is increasing we obtain

C(n) ≤ f(N) +mf(N/p) +m2C(⌈n/p⌉2).

The hypothesis on f shows that this is bounded by

C(n) ≤ f(N)(1 +m/q) +m2C(⌈n/p⌉2).

Iterating k − 1 times gives

C(n) ≤ f(N)(1 +m/q + · · ·+ (m/q)k−1) +mkC(⌈n/p⌉k).

7



Choosing k = logp(N) then gives

C(n) ≤ f(N)(1 +m/q + · · ·+ (m/q)k−1) +O(N logp m),

since mlogp N = N logp m. The geometric series is bounded in different ways depending on whether m < q,
m = q or m > q, giving the bounds

O(1), logpN, O(N logp(m/q)).

The factor f(N) is bounded by O(f(n)) thanks to the second inequality on f , using

N < pn⇒ f(N) ≤ rf(n) = O(f(n)).

It remains to show that the last summand O(N logp m) is smaller than the estimate of the theorem.

Lemma 1.1. With the hypotheses of the theorem,

nlogp q = O(f(n)).

Proof. This follows from repeating the inequality of the theorem:

f(n) ≥ qf(n/p) ≥ q2f(n/p2) ≥ · · · ≥ qlogp nf(1).

The last term is nlogp qf(1), whence the bound.

The bound of the lemma allows to conclude directly when m ≤ q. If m > q, then the conclusion comes from

nlogp m = nlogp(m/q)nlogp q = nlogp(m/q)O(f(n)) = O(f(n)nlogp(m/q)).
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Alin Bostan et al. Algorithmes Efficaces en Calcul Formel. Auto-édition, Sept. 2017. isbn: 979-10-699-
0947-2. url: https://hal.archives-ouvertes.fr/AECF/

In English, the most classical reference for this course is

Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. 3rd edition. New York:
Cambridge University Press, 2013, pp. xiv+785. url: http://www.cambridge.org/fr/knowledge/isbn/
item1170826

It is very complete and more advanced than what is needed in a first introduction. It can be used for
most of the course, except Lecture 6 and a few topics that are discussed in some of the lectures but not in
that book.

Apart from its more elementary level, an important feature of this course that distinguishes it from the
references above is the choice to illustrate many of the algorithms by actual Maple code rather than pseudo-
code. This makes the algorithms more concrete and makes the presentation more complete. Contrary to
pseudo-code, in actual code, no aspect can be swept under the carpet by an imprecise statement. Also, the
course is complemented by tutorials in Maple, absent from these notes, whose aim is to make the students
fluent in that language and see how the algorithms introduced in the lectures can be put to use in ‘concrete’
situations.
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Lecture 2

Fast Multiplication

Summary

While naïve multiplication has quadratic complexity, it is actually possible to multiply polynomials
much faster. The first algorithm to beat the naïve one has been Karatsuba’s algorithm, which is the
most efficient one for inputs of intermediate size. For inputs of large size, the fast Fourier transform
reaches almost linear complexity.

Introduction

The traditional method of multiplication for two n-digit integers computes one integer of n or n + 1 digits
for each nonzero digit of one of the multiplicands and then adds them up. This can be depicted as follows:

Naive Multiplication

Quadratic algorithm: #operations          for an input size O(n2) n

× Input: two   -digit integersn

n multiplications  + O(n) carries

n multiplications  + O(n) carries

⋮
O(n2) additions  + O(n) carries

Total: O(n2) digit (or bit) operations

Output:         digits≤ 2n
For integers  ≤ N

this is O(log2 N )

1/41

Each of the n intermediate integers is computed in n digit-by-digit multiplications plus O(n) carry
computations. The final addition uses O(n2) digit additions and again O(n) carry computations. In total,
the number of digit operations is O(n2). This is what is called a quadratic algorithm. The complexity O(n2)
is also the number of bit operations, rather than digit operations, since each digit operation uses a constant
number of bit operations. Note that the key to using digits in our number representation is that in terms
of the numbers themselves, integers smaller than N > 0 are represented with O(logN) bits or digits and
therefore this algorithm is only quadratic in the logarithm of the quantities involved.

The same reasoning applies to polynomial multiplication. If P and Q are univariate polynomials of degree
n1 and n2, they have at most n1+1 and n2+1 coefficients. Distributing the product leads to (n1+1)(n2+1)
coefficient multiplications, followed by O(n1n2) additions of coefficients. Thus if both degrees are smaller
than n, the algorithm has quadratic complexity O(n2) again. The situation for polynomials is simpler than
that for integers as no carry needs to be propagated. It is a general theme of this course that algorithms
for polynomials are usually simpler than their counterparts for integers. We will therefore focus on the
polynomial algorithms, that are sufficient to display the ideas of the algorithms.
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2.1 Karatsuba’s Algorithm
Karatsuba’s algorithm is based on a divide-and-conquer method. By itself, divide-and-conquer is not suffi-
cient to beat the quadratic method: a natural attempt would be the algorithm of Fig. 2.1.

Divide & Conquer by Itself Doesn’t Help

F and G of degree  < n ↦ H := FG

1. If n = 1 return FG
2. Let k := ⌈n/2⌉
3. Split F = F0 + xkF1, G = G0 + xkG1

F0, F1, G0, G1 of degree  < k
4. Compute recursively

H0 := F0G0, H1 := F0G1, H2 := F1G0, H3 := F1G1
5. Return H0 + xk(H1 + H2) + x2kH3

Complexity:

         (last week’s `Master thm’).⇒ C(n) = O(n2)
 coefficient operationsC(n) ≤ 4C(⌈n/2⌉) + λn

3/41

Figure 2.1: A quadratic divide-and-conquer multiplication algorithm

Let C(n) be the complexity for the multiplication by this algorithm in terms of the number of arithmetic
operations on the coefficients. If n > 1, no operation on coefficients occur in step 3: splitting reduces to
copying coefficients; in step 4 there are at most 4C(⌈n/2⌉) operations due to the recursive calls; and finally
step 5 uses O(n) additions of coefficients. Thus,

C(n) ≤ 4C(⌈n/2⌉) + λn.

By the ‘master theorem’ of the previous lecture or by a simple direct derivation, it follows that C(n) = O(n2).
As a first introduction to Maple code, here is the relatively straightforward Maple implementation of the

previous pseudo-code:

naivedacmult:=proc(F,G,n,x)
local k,f0,f1,g0,g1,h0,h1,h2,h3;

if n=1 then return F*G fi;
k:=ceil(n/2);
# split into quotient and remainder
f1:=quo(F,x^k,x,'f0');
g1:=quo(G,x^k,x,'g0');
# recursive calls
h0:=thisproc(f0,g0,k,x);
h1:=thisproc(f0,g1,k,x);
h2:=thisproc(f1,g0,k,x);
h3:=thisproc(f1,g1,k,x);
# recombination
expand(h0+x^k*(h1+h2)+x^(2*k)*h3)

end:

One way of obtaining a better complexity is by looking first at polynomials of degree 1,

F = f0 + f1T, G = g0 + g1T, H = FG = h0 + h1T + h2T
2.

The naive algorithm corresponds to writing

H = f0g0 + (f0g1 + f1g0)T + f1g1T
2.

It uses 4 multiplications and 1 addition of coefficients.
Since the result has degree 2, it can also be reconstructed by interpolation from 3 values. It is convenient

to take 0, 1 and ∞ for these values, with the convention that ∞ governs the leading coefficients of the

10



polynomials. Looking at those values gives

h0 = F (0)G(0) = f0g0,

h2 = “F (∞)G(∞)′′ = f1g1,

h̃1 = h0 + h1 + h2 = F (1)G(1) = (f0 + f1)(g0 + g1).

Then FG is reconstructed by
FG = h0 + (h̃1 − h0 − h2)T + h2T

2.

This computation costs only 3 multiplications (one at each of 0, 1,∞), 2 additions and 2 subtractions. While
the total number of operations has thus increased (from 5 to 7), the key is that the number of multiplications
has decreased and that this idea can be used recursively, with T = xk and fi and gi becoming polynomials
of degree smaller than k. The resulting algorithm is given in Fig. 2.2.

Karatsuba’s Algorithm
F and G of degree  < n ↦ H := FG

1. If n is small, use naive multiplication
2. Let k := ⌈n/2⌉
3. Split F = F0 + xkF1, G = G0 + xkG1

F0, F1, G0, G1 of degree < k
4. Compute recursively

H0 := F0G0, H2 := F1G1, H̃1 := (F0 + F1)(G0 + G1)
5. Return H0 + xk(H̃1 − H0 − H2) + x2kH2

C(n) ≤ 3C(⌈n/2⌉) + λnComplexity: coefficient operations

un = n + 3u⌈n/2⌉, u1 = 1

Evaluate FG = h0 + (h̃1 − h0 − h2)T + h2T2 at T = xk .Idea:

≈ 1.58≤ (2λ + 1)3⌈log2 n⌉ = O(nlog2 3)Analysis last week
5/41

Figure 2.2: Karatsuba’s multiplication algorithm

Its Maple implementation would look like the code below, which is only given for pedagogical purpose,
as Maple has its own much faster multiplication implemented in C in its kernel.

# Input/Output: same as before
# but now in O(n1.58) ops.
macro(TK=15): # Threshold for other algorithm
karamult:=proc(F,G,n,x)
local k,f0,f1,g0,g1,h0,h1,h2;

if n<TK then return expand(F*G) fi;
k:=ceil(n/2);
# split into quotient and remainder
f1:=quo(F,x^k,x,'f0');
g1:=quo(G,x^k,x,'g0');
# 3 recursive calls
h0:=thisproc(f0,g0,k,x);
h2:=thisproc(f1,g1,k,x);
h1:=thisproc(f0+f1,g0+g1,k,x);
# recombination
expand(h0+x^k*(h1-h0-h2)+x^(2*k)*h2)

end:

The complexity analysis is very similar to that of the quadratic divide-and-conquer algorithm, except
that now there are only three recursive calls, leading to

C(n) ≤ 3C(⌈n/2⌉) + λn.

The complexity analysis was detailed in Lecture 1. It leads to

C(n) = O(nlog2 3).

Since log2 3 ≃ 1.58, this is a big improvement over the quadratic algorithm.
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2.2 Faster Polynomial Multiplication

The starting point of Karatsuba’s algorithm above is the reconstruction of degree 2 polynomials from 3
values. A generalized form of this follows from considering evaluation and interpolation in terms of linear
maps.

2.2.1 Evaluation and Interpolation

Given k+1 points a0, . . . , ak and a polynomial P = p0+p1x+· · ·+pkxk of degree at most k, the simultaneous
evaluation of P at a0, . . . , ak is given by the matrix-vector productP (a0)...

P (ak)

 =

1 a0 · · · ak0
· · · · · ·

1 ak · · · akk


︸ ︷︷ ︸

V

p0...
pk

 .

The matrix V in this equation is known as the Vandermonde matrix.

Lemma 2.1. detV =
∏

i<j(aj − ai).

Proof. By the expansion of determinants as sums over permutations, the determinant of V is a polynomial
in Z[a0, . . . , ak], whose total degree is at most 1+2+ · · ·+k = k(k+1)/2. If two ais are equal then two rows
of the matrix are equal, making the determinant vanish. This implies that aj − ai divides the determinant
for all i < j. The product of all these polynomials has degree k(k+1)/2. Thus this product differs from the
determinant by at most a constant factor. The coefficient of a00a11 · · · akk in the determinant is 1 (those are
the elements along the diagonal); it is also 1 in the product (to obtain akk one has to take ak in all ak − ai
and then to obtain ak−1

k−1 one has to take ak−1 in all ak−1 − ai, i < k − 1 and so on.).

Interpolation is the operation of constructing a polynomial P of degree ≤ k from its values (v0, . . . , vk) at
(a0, . . . , ak). It follows from the invertibility of the Vandermonde matrix when the ai are distinct elements
of a field K (by the lemma), that there is a unique such polynomial, whose coefficients are given by

V −1

v0...
vk

 .

2.2.2 A Karatsuba-like algorithm

Any three distinct points lead to a Karatsuba-like algorithm. For instance, with (a0, a1, a2) = (−1, 0, 1), one
gets the following Vandermonde matrix and its inverse

V =

1 −1 1
1 0 0
1 1 1

 , V −1 =
1

2

 0 2 0
−1 0 1
1 −2 1

 .

In terms of polynomials, the matrix V −1 implies that for any polynomial P of degree at most 2,

P (x) =
1

2

(
2P (0) + (P (1)− P (−1))x+ (P (1)− 2P (0) + P (−1))x2

)
.

By the same reasoning as before, this leads to a multiplication algorithm when used recursively, given in
Fig. 2.3.
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2. Let k := ⌈n/2⌉
3. Split F = F0 + xkF1, G = G0 + xkG1,  with  deg Fi, Gi < k
4. Compute recursively

H0 := F0G0, H̃1 := (F0 + F1)(G0 + G1), H̃−1 := (F0 − F1)(G0 − G1)
5. Return 

1
2 (2H0 + xk(H̃1 − H̃−1) + x2k(H̃1 − 2H0 + H̃−1))

1. If n is small, use naive multiplication

Figure 2.3: A variant of Karatsuba’s multiplication algorithm

This variant is not as good as Karatsuba’s algorithm: it requires a division by 2 and slightly more
operations. Nonetheless, its complexity analysis runs exactly as before, leading to

C(n) ≤ 3C(⌈n/2⌉) + λn

and therefore again

C(n) = O(nlog2 3).

The complexity exponent is the same as in Karatsuba’s algorithm.

2.2.3 Higher degree

The same idea extends. Using the 5 points (a0, . . . , a4) = (−2, . . . , 2) gives the matrices

V =


1 −2 4 −8 16
1 −1 1 −1 1
1 0 0 0 0
1 1 1 1 1
1 2 4 8 16

 , V −1 =
1

24


0 0 24 0 0
2 −16 0 16 −2
−1 16 −30 16 −1
−2 4 0 −4 2
1 −4 6 −4 1

 .

With 5 points, one can reconstruct polynomials of degree 4. Thus if F and G have degree at most 2, the

Polynomial Multiplication by Splitting in 3

Complexity: C(n) ≤ 5C(⌈n/3⌉) + λn = O(nlog3 5) ≈ 1.46

Algorithm:

2. Split  and  into 3 partsF G
3. Compute 5+5 linear combinations of these parts
4. Compute 5 products recursively
5. Recover the result by linear combinations

1. For small degrees, use simpler algorithm

Exercise: 
derive this complexity

As in Karatsuba’s algorithm, 
use the previous technique recursively.

coefficient operations 9/41

Figure 2.4: Multiplication algorithm with 5 recursive calls

algorithm proceeds by evaluating F and G at 0,±1,±2 which amounts to computing linear combinations of
their coefficients; pairwise multiplications of the results; interpolation from these 5 values by linear combi-
nations given by V −1. This in turn gives the recursive algorithm of Fig. 2.4, which is possibly clearer in the
more explicit Maple version below.
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Toom3:=proc(F,G,n,x)
local k,f0,f1,f2,g0,g1,g2,h0,h1,h2,hm1,hm2;

if n<TK then return expand(F*G) fi;
k:=ceil(n/3);
# split into 3 parts
f2:=quo(F,x^(2*k),x,'f1'); f1:=quo(f1,x^k,x,'f0');
g2:=quo(G,x^(2*k),x,'g1'); g1:=quo(g1,x^k,x,'g0');
# 5 recursive calls
h0:=thisproc(f0,g0,k,x);
h1:=thisproc(f0+f1+f2,g0+g1+g2,k,x);
h2:=thisproc(f0+2*f1+4*f2,g0+2*g1+4*g2,k,x);
hm1:=thisproc(f0-f1+f2,g0-g1+g2,k,x);
hm2:=thisproc(f0-2*f1+4*f2,g0-2*g1+4*g2,k,x);
# recombination
expand(h0

+x^k*(2*hm2-16*hm1+16*h1-2*h2)/24
+x^(2*k)*(-hm2+16*hm1-30*h0+16*h1-h2)/24
+x^(3*k)*(-2*hm2+4*hm1-4*h1+2*h2)/24
+x^(4*k)*(hm2-4*hm1+6*h0-4*h1+h2)/24)

end:

The complexity analysis is very similar. It leads to

C(n) ≤ 5C(⌈n/3⌉) + λn = O(nlog3 5)

coefficient operations. Since log3 5 ≃ 1.46, this is an improvement over Karatsuba’s algorithm.

2.2.4 Toom-Cook algorithm
This principle extends to any N > 0. Provided the field K contains 2N − 1 distinct values (a0, . . . , a2N−1),
one precomputes once and for all the corresponding Vandermonde matrix V and its inverse. Then, given
two polynomials of degree smaller than N ,

F = f0 + · · ·+ fN−1x
N−1, G = g0 + · · ·+ gN−1x

N−1,

the values of F and G at (a0, . . . , a2N−1) are given by linear combinations of the coefficients of F and G,
given by the product by V , in at most (2N − 1)2 operations. Next, the values of H = FG at these points
are obtained by pairwise multiplication in 2N − 1 multiplications. Finally, from these values, the coefficients
of H are obtained by multiplication by V −1, again in at most (2N − 1)2 operations. Using this process
recursively gives the algorithm of Fig. 2.5.

Even Faster Multiplication: Split More

F = f0 + ⋯ + fN−1xN−1, G = g0 + ⋯ + gN−1xN−1, ↦ H = h0 + ⋯ + h2N−2x2N−2

Evaluate at

Interpolate  from the  valuesH 2N − 1 F(i)G(i), i ∈ {0,…, ± (N − 1)}
each coefficient is a linear combination of these values

0,…, ± (N − 1) : linear combinations of the coeffs.

Complexity:
C(n) ≤ (2N − 1)C(⌈n /N⌉) + λn

= O(nlogN(2N−1))

Polynomials of degree < N = 2k

Toom-Cook Algorithm:

2. Split  and  into  partsF G N
3. Compute linear combinations of these parts
4. Compute  products recursively2N − 1
5. Recover the result by linear combinations

1. For small degrees, use simpler algorithm

= 1 + o(1)
N → ∞

Multiplication is not 
much harder than addition!

11/41

Figure 2.5: Toom-Cook algorithm

The same steps of the complexity analysis lead now to

C(n) ≤ (2N − 1)C(⌈n/N⌉) + λn.
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The constant λ depends on N in a quadratic way, as indicated above, but that does not affect the exponent
of the complexity, which is given by the ‘master theorem’ as

C(n) = O(nlogN (2N−1)).

As N → ∞, this exponent rewrites

logN (2N − 1) =
log(2N − 1)

logN
≤ logN + log 2

logN
= 1 + o(1).

This means that asymptotically, this method leads to multiplication algorithms that are as close to linear as
desired. (More formally, for any ϵ > 0, we deduce an algorithm in complexity O(n1+ϵ)).

2.3 Integer multiplication
As mentioned in the introduction, integers behave like polynomials and variants of the algorithms for poly-
nomials adapt to integers. Still, this must be done on a case by case basis, as no theorem of equivalence of
complexities is available.

An important tool that lets one transfer a complexity result from the world of integers to that of poly-
nomials is Kronecker’s substitution. The idea is that a product of two polynomials F (x) and G(x) with
coefficients smaller than 2k can be reconstructed from the integer F (22k+1)G(22k+1). This is best illustrated
in base 10: the coefficients of the product of

F (x) = 72x+ 43 and G(x) = 51x+ 8,

i.e., F (x)G(x) = 3672x2 + 2769x+ 344 can be read off from the product

F (105)G(105) = 720043× 710008 = 3672︸︷︷︸ 2769︸︷︷︸ 0344︸︷︷︸ .
To deal with negative coefficients, one can split F and G into a sum of positive and negative parts.

2.3.1 Karatsuba’s algorithm
The algorithm used for multiplication of polynomials requires very little change for integers smaller than 2n

(Fig. 2.6). The starting point is to change X into 2. In order to have the last recursive call on input whose
size is halved, it is simpler to use the variant of Karatsuba’s algorithm based on the points (0,−1,∞) and
track signs separately.

Karatsuba’s Algorithm for Integers

1. If    is small, use naive multiplicationn
2. Let k := ⌈n /2⌉
3. Split F = F0 + 2kF1, G = G0 + 2kG1

F0, F1, G0, G1 < 2k

4. Compute recursively
H0 := F0G0, H2 := F2G2, H̃1 := (F0 + F1)(G0 + G1)

5. Return H0 + 2k(H̃1 − H0 − H2) + 22kH2

F and G integers < 2n ↦ H := FG

Same algorithm as for polynomials, 
similar (not exactly the same) complexity analysis.

Obtained by changing 
 into 2 

in the polynomial version.
X

→ O(nlog2 3) bit operations ≈ 1.58
14/41

Figure 2.6: Karatsuba’s algorithm for integers

Then, this is not exactly the same algorithm as the polynomial one, but the complexity analysis is the
same. One gets the same inequality

C(n) ≤ 3C(⌈n/2⌉) + λn,

where now C(n) denotes the number of bit operations required to multiply two n-bit long integers. The
same O(nlog2 3) complexity estimate therefore holds.
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2.3.2 A collection of algorithms
In practice, none of the multiplication algorithms is better than all the other ones all the time. The Gnu
Multiprecision Library (GMP) has been the best integer arithmetic library available for many years. It
comes with many multiplication algorithms and automatically selects the most appropriate depending on
the size of the input. The thresholds it uses are given in Table 2.1.

Which of these Algorithms is Best?

GMP (the Gnu Multiprecision Library) uses:

# 64-bit words approx # digits Algorithm

0 0 Naive

26 500 Karatsuba

73 1,400 Toom - 3

208 4,000 Toom - 4

4736 90,000 FFT

None of them!

15/41
Table 2.1: Length thresholds for switching between multiplication algorithms in GMP

For instance, for integers of about 5,000 decimal digits, the library uses Toom-4 (the variant of Toom-Cook
with N = 4). This is a recursive algorithm. As soon as the size drops below 4,000 decimal digits, Toom-3 is
used (the variant with N = 3) and then Karatsuba’s algorithm when the input is below 1,400 decimal digits.
Finally, in the recursive calls, when the size drops below 500 decimal digits, the naïve quadratic algorithm
is used.

For very large sizes, GMP uses the fast Fourier transform (FFT), which is our next topic.

2.4 Discrete Fourier Transform
The Fourier transform is a classical tool of digital signal processing. It decomposes periodic signals into
linear combinations of sines and cosines. The FFT (Fast Fourier Transform) performs this decomposition
efficiently for discrete signals. It has been listed as one of the top 10 algorithms of the 20th century by
the IEEE Journal of Computing in Science & Engineering. It is based on special roots of 1, that we first
introduce.

2.4.1 Primitive roots of unity

Definition 2.1. An element ω of a field K is called an nth root of unity if ωn = 1 (n is called the order
of the root). It is called primitive if moreover

ωt ̸= 1, t ∈ {1, . . . , n− 1}.

Example 2.1. If K = C, then exp(2πi/n) is a primitive root of unity.

Example 2.2. The number N = 5×225+1 is a prime. This implies that K = Z/NZ is a field. In this field,
it turns out that 17 is a primitive root of unity of order 225 > 3 × 107. This will have for consequence
that polynomials of up to that degree can be multiplied efficiently in K.

The main properties of primitive roots of unity are summarized in the following.
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Proposition 2.1. If ω is a primitive nth root of unity, then

1. so is ω−1;

2. if n = pq, then ωp is a primitive qth root of unity;

3. for ℓ ∈ {1, . . . , n− 1},
n−1∑
j=0

ωℓj = 0.

Proof. 1. First, since ωn = ωn−1ω = 1, it follows that ω invertible, with ω−1 = ωn−1. It is an nth root of
unity since ω−nωn = ω−n = 1. It is primitive since for t ∈ {1, . . . , n− 1}

ω−t − 1 = −ω−t(ωt − 1) ̸= 0.

2. ωp is a qth root of unity: (ωp)q = ωpq = ωn = 1. It is primitive: if (ωp)t − 1 is 0 for t ∈ {1, . . . , q− 1},
then so is ωpt − 1 and pt < n shows that this is impossible.

3. Multiplying the sum by (1− ωℓ) gives

(1− ωℓ)(1 + ωℓ + · · ·+ ω(n−1)ℓ) = 1− ωnℓ = 0.

However, since ω is primitive, 1− ωℓ is not 0, which implies that the sum is 0.

2.4.2 Discrete Fourier Transform

Definition 2.2. If ω is a primitive nth root of unity in the field K, the discrete Fourier transform (DFT)
is the map

DFTω : K[X] → Kn

A 7→ (A(1), A(ω), . . . , A(ωn−1)).

In view of Section 2.2.1, this is a linear map, whose matrix is the Vandermonde matrix

Vω =


1 1 · · · 1
1 ω · · · ωn−1

· · · · · ·
1 ωn−1 · · · ω(n−1)2

 .

In that case, the inverse of the Vandermonde matrix can be made explicit.

Lemma 2.2. VωVω−1 = n Idn.

Proof. The entry (i, j) of the product VωVω−1 is the sum

n−1∑
k=0

ωikω−jk =

n−1∑
k=0

ω(i−j)k.

If i = j all summands equal 1, giving the terms on the diagonal of n Idn. Otherwise, the sum is 0 by the
proposition above.

The practical consequence of this lemma is that an algorithm computing the discrete Fourier transform can
also be used to compute its inverse, by using it with ω−1 in place of ω, and dividing by n at the end.
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2.4.3 Application to signals
The DFT of a signal (a0, . . . , an−1) is defined to be that of the polynomial a0 + · · ·+ an−1X

n−1.DFT Recovers Frequencies — Example

Ex. n = 9, ω = e−2πi/9, ω−1 = ω8

(a0, …, a8) = (1, cos( 4π
9 ), …, cos( 32π

9 ))

f(x) = cos(2x)

= 1
2 (1,ω2, …, ω16) + 1

2 (1,ω−2, …, ω−16)
jth entry in DFTω(a0, …, a8) :

= 1 + ω2+j + ω4+2j + ⋯
2 + 1 + ω−2+j + ω−4+2j + ⋯

2 = {n /2 if j = 2 or n − 2,
0 otherwise.

DFTω(a0, …, a8) = 9/2 × (0,0,1,0,0,0,0,1,0)

Sample points: (0,2 π
9 ,4 π

9 , …,16 π
9 )

a0 + a1ω j + a2ω2j + ⋯

Other 
frequencies 
by linearity 23/41

Figure 2.7: Sampling a signal

The key property that DFT recovers frequencies can be seen on an example. We take n = 9, ω =
exp(−2πi/9). The signal is f = cos(2x) and the sample points are (0, 2π/9, 4π/9, . . . , 16π/9) (see Fig. 2.7).
The sampled values are

(a0, . . . , a8) =

(
1, cos(

4π

9
), . . . , cos(

32π

9
)

)
,

=
1

2
(1, ω2, . . . , ω16) +

1

2
(1, ω−2, . . . , ω−16).

Returning to the definition of DFTω, we see that the jth entry of DFTω(a0, . . . , a8) is

a0 + a1ω
j + a2ω

2j + · · · =

1 + ω2+j + ω4+2j + · · ·
2

+
1 + ω−2+j + ω−4+2j + · · ·

2
=

{
n/2 if j = 2 or n−2,

0 otherwise.

In summary,
DFTω(a0, . . . , a8) = 9/2× (0, 0, 1, 0, 0, 0, 0, 1, 0).

The only nonzero entries are at indices 2 and n − 2: the frequency 2 has been recovered from the sample.
By linearity, other frequencies appearing in the signal would have been found.

2.5 Fast Fourier Transform
The Fast Fourier Transform algorithm was found by Gauss in 1805, but was not published until much later,
in 1866, when it was not seen as important. It was rediscovered in 1965 by Cooley and Tuckey in the US
when they were studying seismic signals to detect nuclear tests from Soviet Union.

The principle of the algorithm is a divide-and-conquer approach. It relies on the following.

Lemma 2.3. If ω is a primitive nth root of unity, with n = 2k, then ωk = −1.

Proof. Write
0 = 1− ωn = (1− ωk)(1 + ωk) (2.1)

and use the fact that 1− ωk ̸= 0 since ω is primitive.
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The DFT requires the values of a polynomial A at the powers of ω. If this polynomial A has degree less
than n, it can first be split into two parts as A = Aℓ +XkAh, where the indices stand for ‘low’ and ‘high’,
and both degAℓ and degAh are smaller than k. Next, the polynomial A is written in two different ways

A = (Aℓ +Ah) + (Xk − 1)Ah = (Aℓ −Ah) + (Xk + 1)Ah.

For any nonnegative integer ℓ, if ℓ is even, then ℓk is a multiple of n and ωℓk = 1. Conversely, if ℓ is odd,
then ℓk ≡ k mod n and ωℓk = ωk = −1. Thus, evaluating the identities above at X = ωℓ gives

A(ωℓ) =

{
Re(ω

ℓ), if ℓ is even,
Ro(ω

ℓ), otherwise,

where

Re = Aℓ +Ah, Ro = Aℓ −Ah

(the indices ‘e’ and ‘o’ stand for even and odd.)
This is the basis of the divide-and-conquer approach: evaluating the polynomial A of degree smaller

than n at the n points (1, ω, . . . , ωn−1) splits into evaluating the polynomials Re(X) and Ro(ωX) of degree
smaller than k = n/2 at the n/2 points (1, ω2, . . . , ω2(k−1)).

Turning this observation into an efficient algorithm requires a good way of computing Re and Ro. This
is achieved by a simple manipulation:

A(X) = a0 + a1X + · · ·+ an−1X
n−1,

= (a0 + · · ·+ ak−1X
k−1)︸ ︷︷ ︸

Qℓ

+Xk (ak + · · ·+ an−1X
k−1)︸ ︷︷ ︸

Qh

= (Qℓ +Qh) + (Xk − 1)Qh = Re + (Xk − 1)Qh,

= (Qℓ −Qh) + (Xk + 1)Qh = Ro + (Xk + 1)Qh,

which shows that Re = Qℓ +Qh and Ro = Qℓ −Qh are both obtained in k operations each from Qℓ and Qh,
whose computation does not require any arithmetic operation.

Input. A = a0 + ⋯ + an−1Xn−1 ∈ $[X]; (1,ω, …, ωn−1)
 with ω principal n th root of 1, n power of 2.

Output. DFTω(A) = (A(1), …, A(ωn−1))
1. If n = 1, return (a0)
2. Set k := n/2 and compute

Re(X) =
k−1
∑
j=0

(aj + aj+k)Xj, So(X) := Ro(ωX) =
k−1
∑
j=0

ω j(aj − aj+k)Xj .

3. Compute recursively DFTω2(Re), DFTω2(So)
4. Return  (Re(1), So(1), Re(ω2), …, So(ω2(k−1)))

Figure 2.8: Fast Fourier Transform

The FFT algorithm of Fig. 2.8 follows. It requires n to be a power of 2 so that Lemma 2.3 can be used
at each of the recursive steps. The computation of Re and Ro in step 2 comes from the discussion above.
The evaluation of So at the even powers of ω recovers the evaluation of Ro at the odd ones. A more explicit
Maple implementation is as follows.
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# Input:
# . A: polynomial in x of degree < n
# . n: a power of 2
# . x: variable in A
# . L: list [1, ω, . . . , ωn−1] with ω a primitive nth root of 1
# Output:
# [A(1), ..., A(ωn−1)]
FastFourierTransform:=proc(A,n,x,L)
local k,j,L2,Re,So;

if n=1 then return [A] fi;
k:=n/2;
Re:=add((coeff(A,x,j)+coeff(A,x,j+k))*x^j,j=0..k-1);
So:=add((coeff(A,x,j)-coeff(A,x,j+k))*x^j*L[j+1],j=0..k-1);
L2:=[seq(L[2*j+1],j=0..k-1)];
Re:=thisproc(Re,k,x,L2);
So:=thisproc(So,k,x,L2);
[seq(op([Re[j],So[j]]),j=1..k)]

end:

Let C(n) denote the number of arithmetic operations in K used by this algorithm. Then there are 3k
operations in step 2 and two recursive calls, leading to

C(n) ≤ 3n

2
+ 2C(n/2).

The ‘master theorem’ gives C(n) = O(n log n). A more detailed analysis, proceeding step-by-step, gives
more information on the constants involved: by induction, the inequality above leads to

C(n) ≤ 3n

2
k + 2kC(n/2k).

Choosing k = log2 n gives

C(n) =
3

2
n log2 n+O(n).

2.5.1 Multiplication of Polynomials
The principle is to compute the product of polynomials by evaluation and interpolation at roots of unity.
Given a fast algorithm for the DFT, this boils down to the algorithm of Fig. 2.9.

Figure 2.9: Polynomial Multiplication by Fast Fourier Transform

The final result is the following.
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Theorem 2.1. If n is a power of 2, given a primitive nth root of unity in K, one can compute the product
of two polynomials of K[X] whose degrees sum to less than n in O(n logn) arithmetic operations in K,
assuming 2 is invertible in K.

In words, multiplication has quasi-linear complexity!

Proof. The algorithm first evaluates F and G at the powers of ω by DFT. Multiplying their values pairwise
gives the values of H = FG at the powers of ω. Since degH < n, it is recovered in a unique way by
interpolation, which is computed by one more DFT with respect to ω−1 followed by a division by n (invertible
by hypothesis), thanks to Lemma 2.2.

In terms of complexity, the first and the third steps use O(n) operations in K. So does the last division
by n in step 4. The powers of ω−1 = ωn−1 can also be obtained in the same complexity. Finally, the 3 DFT
each have a cost of 3n logn/2 +O(n), whence the result.

2.5.2 Further FFT-related algorithms

Theorem 2.1 establishes that multiplication of polynomials of degree at most n in K[x] can be performed
in O(n log n) arithmetic operations in K when K has primitive nth roots of unity and 2 is invertible in K.
This algorithm goes back to Cooley and Tuckey in 1965. The basic principles of the FFT algorithm have
then been extended to other contexts where the hypotheses of Theorem 2.1. First, in 1971, Schönhage and
Strassen found a way to multiply two n-bit integers in O(n logn log logn) bit operations, which also gives an
algorithm of the same complexity for multiplication of polynomials when K does not have primitive nth roots
of unity. The case when 2 is not invertible is important in cryptographic applications. A first extension of
FFT when 2 is not invertible but 3 is was given by Shönhage in 1977. Finally, in 1991, Cantor and Kaltofen
extended these ideas to multiplication of polynomials of degree at most n in A[X] when A is only a ring,
still in O(n log n log logn) arithmetic operations.

For integers, the final theoretical improvement is very recent: in 2021, Harvey and van der Hoeven, gave
a theoretical algorithm with only O(n logn) bit complexity. This is not intended to be practical, but it closes
the gap between polynomials and integers.

2.6 Multiplication Functions

2.6.1 Summary for Polynomials

Let Mul(n) be a bound on the number of arithmetic operations in A needed to multiply two polynomials of
degree at most n in A[X]. We have obtained

Mul(n) =



O(n2) by the naive algorithm;
O(nlog2 3) by Karatsuba’s algorithm;
O(nlogk(2k−1)) by Toom-Cook’s algorithm (Alarge);
O(n log n) by FFT (with primitive roots of 1);
O(n log n log log n) by the Schönhage-Strassen algorithm.

All these complexity estimates satisfy

Mul(n1) +Mul(n2) ≤ Mul(n1 + n2), Mul(mn) ≤ m2 Mul(n).
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2.6.2 Summary for Integers

Let MulZ(n) be a bound on the number of bit operations needed to multiply two integers of at most n bits.
Then, we have obtained

MulZ(n) =


O(n2) by the naive algorithm;
O(nlog2 3) by Karatsuba’s algorithm;
O(nlogk(2k−1)) by Toom-Cook’s algorithm;
O(n log n) by FFT (not in the course).

All these complexity estimates satisfy

MulZ(n1) +MulZ(n2) ≤ MulZ(n1 + n2), MulZ(mn) ≤ m2 MulZ(n).

2.6.3 Multiplication Functions

Since all these algorithms are used simultaneously in the implementations, it is useful to express the com-
plexity of algorithms relying on multiplication in a way that does not depend on the actual multiplication
algorithm that is used. For this purpose, one makes use of multiplication functions.

Definition 2.3. The function M : N⋆ → R⋆ is a multiplication function for the ring A[X] if

1. one can multiply two polynomials of degree ≤ n in at most M(n) arithmetic operations in A;

2. M(n+ n′) ≥ M(n) +M(n′);

3. M(mn) ≤ m2M(n).

The second condition implies that the complexity is at least linear, the last one that it is at most quadratic.
Similarly, for integer multiplication, the definition is as follows.

Definition 2.4. The function MZ : N⋆ → R⋆ is a multiplication function for Z if

1. one can multiply to integers with ≤ n bits (or digits) in ≤ MZ(n) word operations;

2. and 3. as above.

For future uses of this notion, it is useful to check that these functions satisfy the hypotheses of the ‘master
theorem’ of the previous lecture.

2.7 Example: Multiplication of Bivariate Polynomials

The multiplication of two polynomials

F (x, y) =

n−1∑
i=0

fi(y)x
i, G(x, y) =

n−1∑
i=0

gi(y)x
i,

in K[x, y], with coefficients fi and gi of degree smaller than d can be reduced to the multiplication of
univariate polynomials so that its complexity can be estimated in terms of the multiplication function M.
The idea is called Kronecker’s substitution. It consists in computing

H(x, y) = F (x, y)G(x, y) =

2n−1∑
i=0

hi(y)x
i

22



from the univariate product
H(x2d, x) = F (x2d, x)G(x2d, x). (2.2)

Indeed, this product is
H(x2d, x) = h0(x) + x2dh1(x) + x4dh2(x) + · · ·

and since all hi have degree smaller than 2d, the coefficients of hi are those of degrees 2id, . . . , 2id+ 2d− 2
in Eq. (2.2).

The polynomials F (x2d, x) and G(x2d, x) have degree smaller than 2d(n − 1) + d ≤ 2dn and thus the
product can be performed in M(2dn) arithmetic operations in K. Since the result has about 4dn coefficients,
this is quasi-optimal if FFT is used.

Additional Bibliography
Besides those mentioned in the introduction, useful descriptions can be found in the following three books:

Donald E. Knuth. The Art of Computer Programming. 3rd edition. Vol. 2: Seminumerical Algorithms.
Computer Science and Information Processing. Reading, Mass.: Addison-Wesley Publishing Co., 1997,
pp. xiv+762

Peter Henrici. Applied and computational complex analysis. Vol. 3. Pure and Applied Mathematics (New
York). New York: John Wiley & Sons Inc., 1986, pp. xvi+637. isbn: 0-471-08703-3

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis of computer algorithms.
Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley Publishing Co.,
Reading, Mass.-London-Amsterdam, 1974, pp. x+470
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Lecture 3

Euclidean Division and Newton Iteration

Summary

A first consequence of fast multiplication is that Euclidean division can also be performed efficiently.
This has many applications, to linear recurrences, to multipoint-evaluation and interpolation, themselves
at the basis of efficient algorithms by the evaluation-interpolation paradigm. At the root of fast division
is Newton’s iteration in a symbolic context, whose quadratic convergence leads to fast algorithms for
many other operations.

3.1 Euclidean Division

3.1.1 Definition and Naive Algorithm
The only two cases where Euclidean division are used in this course are integers and polynomials. For two
integers A,B in Z, Euclidean division produces two integers Q,R in Z such that A = BQ+R and |R| < |B|.
Similarly, for two polynomials A,B in K[X] where K is a field, Euclidean division of A by B consists in
finding two polynomials Q,R in K[X] such that

A = BQ+R, degR < degB. (3.1)

In both cases Q is called the quotient and R the remainder. We use the notation

Q = A quoB R = A remB

and C ≡ D mod B when (C −D) remB = 0.
For polynomials, the naive algorithm consists in recovering the coefficients one by one, starting from

those of highest degree. It is given in the following Maple code.

NaiveEuclDiv:=proc(A,B,x)
local da,db,Q,R,coB,c;

Q:=0; R:=A;
db:=degree(B,x); coB:=coeff(B,x,db);
do

dr:=degree(R,x);
if dr<db then return Q,R fi;
c:=coeff(R,x,dr)/coB*x^(dr-db);
Q:=Q+c; R:=expand(R-c*B)

od
end:
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It is an exercise to verify that an invariant of this loop is that A = BQ+R at each entry. A variant of the
loop is that degR decreases. Correctness and termination follow.

Lemma 3.1. If A,B belong to K[x] with degA ≥ degB, quo and rem use a number of arithmetic
operations in K bounded by (degA− degB + 1)(2 degB + 1).

Proof. By definition of the degree, the leading coefficient coB of B is not 0 so that the division in the com-
putation of c in the loop is always possible. That division costs 1 arithmetic operation. The multiplication
by xdegR−degB does not use any arithmetic operation and neither does the addition of c to Q. The compu-
tation of R− cB costs at most 2(degB+1) arithmetic operations: one for the multiplication and one for the
subtraction. However, it is known in advance that the coefficient of degree degR in the result is 0 so that
only 2 degB operations are necessary. Adding the cost of the computation of c shows that each iteration of
the loop costs at most 2 degB + 1 arithmetic operations.

The loop is repeated until the remainder has degree smaller than degB, which takes at most degA −
degB + 1 iterations. Thus the total number of operations is bounded as announced in the lemma.

3.1.2 Reduction to Inversion and Multiplication
Dividing Eq. (3.1) by B gives a sum of rational functions

A

B
= Q+

R

B
.

If these were rational functions with coefficients in R, then since degR < degB, an asymptotic expansion as
X → ∞ would begin with the coefficients of Q. This observation is the starting point for the computation
of Euclidean division via fast multiplication.

Changing X into 1/X in Eq. (3.1) and multiplying by XdegA gives an identity between polynomials:

XdegAA(1/X)︸ ︷︷ ︸
rev(A)

= XdegBB(1/X)︸ ︷︷ ︸
rev(B)

XdegQQ(1/X)︸ ︷︷ ︸
rev(Q)

+XdegRR(1/X)︸ ︷︷ ︸
rev(R)

XdegA−degR, (3.2)

where the reverse rev(P ) of a polynomial P is obtained in linear time (and with 0 arithmetic operations)
by changing the order of its coefficients. Note that the exponent of X in the last factor is degA− degR >
degA − degB = degQ so that the degQ + 1 = degA − degB + 1 coefficients of Q can be determined
by working modulo XdegA−degB+1. The only operations that is needed is to invert the polynomial rev(B)
modulo this exponent of X.

3.1.3 Inverse modXN

Given an polynomial P ∈ K[X] such that P (0) ̸= 0 and given N > 0 in N, the computation of the inverse of P
modulo XN can be achieved by a divide-and-conquer algorithm thanks to the following.

Lemma 3.2. If P ∈ K[X] is such that P (0) ̸= 0 and I ∈ K[X] is such IP = 1 + XNQ for some
polynomial Q ∈ K[X], then there exists R ∈ K[X] such that JP = 1 +X2NR, with

J = 2I − I2P mod X2N .

Proof. By definition of J ,

JP = 2IP − I2P 2 mod X2N

= 2 + 2XNQ− (1 + 2XNQ+X2NQ2) mod X2N

= 1 mod X2N .
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This translate into the following Maple code.

InvMod:=proc(A,x,N)
local n,Ia;

if N=1 then return 1/eval(A,x=0) fi;
n:=ceil(N/2);
Ia:=thisproc(A,x,n);
return rem(2*Ia-Ia^2*A,x^N,N)

end:

If C(n) is the number of coefficient operations performed by this algorithm, we see that

C(n) ≤ C(⌈n/2⌉) + 3M(⌈n/2⌉) + λn.

The term C(⌈n/2⌉) comes from the recursive call (thisproc in the Maple code); since f is computed modulo
X⌈n/2⌉, its multiplication by a can be performed in two multiplications of polynomials of that degree, in
M(⌈n/2⌉) each; the result af is 1 + O(X⌈n/2⌉), so that t itself has valuation at least ⌈n/2⌉ and the last
multiplication of f by t only costs an extra M(⌈n/2⌉); the addition of f and ft have linear complexity; the
division by powers of X does not cost any arithmetic operation.

By the ‘master theorem of divide-and-conquer’, we deduce the following.

Proposition 3.1 (Sieveking 1972; Kung 1974). Given P ∈ K[X] with P (0) ̸= 0 and a nonnegative
integer N , one can compute IP ∈ K[X] of degree < N such that IP × P = 1 mod XN in O(M(n))
arithmetic operations in A.

3.1.4 Fast Euclidean Division
Using this modular inverse, the algorithm for Euclidean division is straightforward:

rev:=proc(P,X)
local i,deg;

deg:=degree(P,X);
add(coeff(P,X,deg-i)*X^i,i=0..deg)

end:

EuclDiv:=proc(A,B,X)
local Ib,Q,dq;

dq:=degree(A,X)-degree(B,X);
Ib:=InvMod(rev(B,x),X,dq+1);
Q:=rem(Ib*rev(A),X^(dq+1),X);
Q:=rev(Q,X);
return Q,expand(A-B*Q);

end:

For the proof of correctness of this algorithm, write Ā, B̄, Q̄ for the reverse of the polynomials A,B,Q and
IB for the result of Algorithm InvMod on B̄ at precision degA− degB + 1. Equation (3.2) then rewrites

Ā = B̄Q̄+O(XdegA−degB+1). (3.3)

The definition of Algorithm InvMod gives

IBB̄ = 1 +O(XdegA−degB+1).
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Thus, multiplying Eq. (3.3) by IB yields

IBĀ = Q̄+O(XdegA−degB+1)

and since degQ < degA− degB + 1, it follows that

Q̄ = IBĀ remXdegA−degB+1,

which is what is computed by the algorithm.
In terms of complexity, the computation of IB costs O(degQ) operations for rev(B) mod XdegQ+1,

followed by O(M(degQ)) operations for the modular inverse. Next, the computation of Q uses one multipli-
cation and one reversion, again in complexity O(M(degQ)) operations. Finally, the computation of R uses
O(M(degA)) operations. In summary, we have obtained.

Theorem 3.1. Euclidean division of two polynomials A,B in K[X] with degA = O(n) and degB = n
can be computed in O(M(n)) operations in K.

An important consequence is that for any P ∈ K[X], multiplication of two polynomials modulo P can be
performed in O(M(degP )) operations in K: both polynomials can be taken modP and thus have degree
< degP , they are multiplied in ( degP ) operations, which gives a result of degree < 2 degP and then taking
the remainder of the Euclidean division of that polynomial by P gives the result in another O(M(degP ))
operations.

3.2 Applications of Euclidean Division to Linear Recurrences
Fast Euclidean division leads to fast algorithms operating over solutions of linear recurrences with constant
coefficients.

Definition 3.1. A sequence (un)n∈N of elements of a field K is called a linear recurrent sequence if there
exist (a0, . . . , ad−1) in K such that it satisfies

un+d = ad−1un+d−1 + · · ·+ a0un, n ≥ 0. (3.4)

The polynomial P = Xd − ad−1X
d−1 − · · · − a0 is called the characteristic polynomial of the sequence.

Example 3.1. These sequences are very common. Besides the classical Fibonacci numbers that satisfy
Fn+2 = Fn+1 + Fn, one can mention

— the number of solutions (x1, . . . , xr) ∈ Nr of the equation

a1x1 + · · ·+ arxr = n;

— the number of words of length n in any regular language;

— the entry (1, 1) (for instance) in the matrix An, where A is a square matrix;

— the sequence P (an+ b) where P is a polynomial, for arbitrary a and b.

Given initial conditions (u0, . . . , ud−1) all the elements of the sequence are fully determined by Eq. (3.4).
Given N , one can thus compute u0, . . . , uN in O(Nd) operations by unrolling the recurrence. We are going
to show the following.
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Theorem 3.2. Given (u0, . . . , ud−1), a positive integer N and the coefficients ai of the linear recurrence
(3.4), one can

1. compute u0, . . . , uN in O(NM(d)/d) arithmetic operations in K;

2. compute uN in O(M(d) logN) arithmetic operations in K.

Note that if one is using FFT, the first one has complexity linear in N and logarithmic in d; the second one
is quasi-linear in d and logarithmic in N .

3.2.1 Companion Matrix
A starting point in the design of efficient algorithms for linear recurrent sequence is to consider the companion
matrix of the characteristic polynomial.

Definition 3.2. If P = Xd − ad−1X
d−1 − · · · − a0, the companion matrix of P is the matrix

CP =


0 0 . . . 0 a0
1 0 . . . 0 a1
0 1 . . . 0 a2
...

...
. . .

...
...

0 0 . . . 1 ad−1

 .

(Note that sometimes in the literature the transpose of this matrix is called the companion matrix.)
Two interpretations of this matrix are useful. First, a simple rewriting of the recurrence (3.4) shows that

for any n ≥ 0,
(un+1, . . . , un+d) = (un, . . . , un+d−1) · CP . (3.5)

The next interpretation is given by the following.

Lemma 3.3. The companion matrix CP of the polynomial P is the matrix of the linear map
Q 7→ XQ mod P expressed in the basis (1, X, . . . ,Xd−1).

Proof. For the first d− 1 columns, this is a consequence of XiX = Xi+1 mod P . For the last column, it is
the fact that

Xd = a0 + · · ·+ ad−1X
d−1 mod P.

Corollary 3.1. For all nonnegative integers i, k,

ui+k = (ui, ui+1, . . . , ui+d−1) · Vk,

where Vk is the vector of coefficients of Xk mod P .

Proof. Using Eq. (3.5) k times shows that

(ui+k, . . . , ui+k+d−1) = (ui, . . . , ui+d−1) · Ck
P

and therefore
ui+k = (ui, ui+1, . . . , ui+d−1) · Vk,

with Vk the first column of Ck
P . The lemma shows that Ck

P is the matrix of multiplication by Xk mod P
expressed in the basis (1, X, . . . ,Xd−1). Its first column thus has for entries the coefficients of Xk mod P in
this basis.
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3.2.2 Modular Binary Powering

The corollary above leads to a simple algorithm for the computation of uN , using

XN mod P =

{
(XN/2)2 mod P, if N is even,
(X(N−1)/2)2X mod P, otherwise.

The complexity of this computation is governed by the inequality

C(N) ≤ C(⌊N/2⌋) +O(M(d)),

whence C(N) = O(M(d) logN) arithmetic operations in K. The resulting algorithm, due to Fiduccia (1985),
translated in Maple, looks like

linrec:=proc(P,x,ini,N)
local i,q;

q:=binpow(P,x,N);
add(ini[i+1]*coeff(q,x,i),i=0..degree(P,x)-1)

end:

binpow:=proc(p,x,n)
local q,r;

if n=1 then x
else

q:=binpow(p,x,iquo(n,2,'r'));
if r=0 then rem(q^2,p,x)
else rem(q^2*x,p,x)
fi

fi
end:

3.2.3 Slices of Coefficients

One can compute simultaneously d consecutive coefficients of the linear recurrent sequence at the cost of one
multiplication of a fixed polynomial of degree 2d− 2 by a polynomial of degree smaller than d (i.e., in 2M(d)
operations) by a simple observation. If v0, . . . , vd−1 are the coefficients of Xk mod P , then in the expansion
of

(u2d−2 + · · ·+ u0X
2d−2)(v0 + v1X + · · ·+ vd−1X

d−1),

the coefficient of X2d−i for 0 ≤ i ≤ d− 1 is

vd−1ui+d−1 + vd−2ui+d−2 + · · ·+ v0ui = uk+i,

where the last equality comes from Corollary 3.1. Thus the d elements (uk, . . . , uk+d−1) can be extracted
from this product in O(M(d)) operations. The resulting algorithm to compute the first N terms of the
sequence is as follows:
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linrecfirstterms:=proc(P,x,ini,N)
local d:=degree(P,x),V,u,i,j,k,S,A;

for i to d do u[i-1]:=ini[i] od;
for i from 0 to d-2 do

u[d+i]:=-add(coeff(P,x,j)*u[i+j],j=0..d-1)
od;
A:=add(u[i]*x^(2*d-2-i),i=0..2*d-2);
V:=x^(d-1);
for k to ceil(N/d) do

V:=rem(V*x^d,P,x);
S:=expand(A*V);
for i to d do u[k*d+d-2+i]:=coeff(S,x,2*d-1-i) od

od;
[seq(u[i],i=0..N)]

end:

Each iteration of the loop performs O(M(d)) arithmetic operations in K, giving the result in a total of
O(NM(d)/d) operations.

3.2.4 Rational Functions

A fundamental result is that linear recurrent sequence and rational functions are equivalent.

Proposition 3.2. The sequence (un) is a linear recurrent sequence with characteristic polynomial P of
degree d if and only if the generating function U(X) =

∑
n≥0 unX

n is

U(X) =
N0(X)

P (X)
,

where P (X) = XdP (1/X) and degN0 < d.

Proof. First, writing
P (X)U(X) = N0(X)

and extracting the coefficient of Xi for i ≥ d shows that the coefficients un of U satisfy the linear recur-
rence (3.4).

Conversely, multiplying the recurrence byXn+d and summing for n ≥ 0 gives a linear equation for U(X) =∑
n≥0 unX

n, leading to the rational function representation.

Example 3.2. A direct computation gives the generating function of the Fibonacci numbers:

1

1− x− x2
= 1 + x+ 2x2 + 3x3 + 5x4 + · · ·+ Fnx

n + · · · .

It follows that given a rational function P/Q with degQ = d and degP < degQ, one can compute the
truncated expansion P/Q+O(XN ) in O(NM(d)/d) operations in K only by the algorithm above.

Notation 3.1. If U(X) = u0 + u1X + . . . , we write [Xn]U(X) to denote the nth coefficient of the power
series expansion of U .
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3.2.5 Another Algorithm for the Nth Term

In 2021, Bostan and Mori designed new divide-and-conquer algorithm computing the Nth term of a linear
recurrent sequence, that does not require the use of Euclidean division. It uses O(M(d) logN) arithmetic
operations, which is the same as Fiduccia’s algorithm from Section 3.2.2, but the new complexity hides
a smaller constant factor in the O() estimate. The starting point is Proposition 3.2, showing that it is
sufficient to be able to extract an Nth coefficient of the series expansion of a rational fraction P (t)/Q(t)
with degP < degQ =: d (and Q(0) ̸= 0).

The first step is to multiply numerator and denominator by Q(−t):

[tN ]
P (t)

Q(t)
= [tN ]

P (t)Q(−t)
Q(t)Q(−t)

.

The motivation for doing this is that the denominator becomes an even polynomial:

Q(t)Q(−t) = Q̃(t2),

where deg Q̃ = d. Splitting the numerator into its even and odd parts does not use any arithmetic operation
and gives

P (t)Q(−t) = P0(t
2) + tP1(t

2),

with again degP0 < d, degP1 < d. Thus the quotient itself splits as

P (t)Q(−t)
Q(t)Q(−t)

=
P0(t

2)

Q̃(t2)
+ t

P1(t
2)

Q̃(t2)
,

where the first term on the right-hand side is even, while the other one is odd. It follows that

[tN ]
P (t)

Q(t)
=

[tN ]P0(t
2)

Q̃(t2)
, N even;

[tN ] tP1(t
2)

Q̃(t)
= [tN−1]P1(t

2)

Q̃(t)
, N odd.

In summary, this derivation gives the following basis for a divide-and-conquer algorithm:

[tN ]
P (t)

Q(t)
= [t⌊N/2⌋]

PN mod 2(t)

Q̃(t)
,

where in the right-hand side, the degree of the numerator and denominator obey the same bounds as in the
left-hand side, but now N is halved.

The corresponding Maple code is as follows:
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# Input:
# P,Q polynomials in t
# t variable
# N nonnegative integer
# Output:
# [tN ](P/Q) the coefficient of tN in the
# Taylor expansion of P/Q at t = 0
RatFunDAC:=proc(P,Q,t,N)
local k,Qm,Qt,PQm,Pt;

if N=0 then return eval(P/Q,t=0) fi;
k:=iquo(N,2,'isodd');
Qm:=subs(t=-t,Q);
Qt:=evenpart(Qm*Q,t,k);
PQm:=Qm*P;
if isodd=0 then Pt:=evenpart((PQm+subs(t=-t,PQm))/2,t,k)
else Pt:=evenpart((PQm-subs(t=-t,PQm))/2/t,t,k)
fi;
thisproc(Pt,Qt,t,k)

end:

evenpart:=proc(S,t,k) # even part of S mod tk+1

local P,i;
P:=expand(S);
add(coeff(P,t,2*i)*t^i,i=0..k)

end:

The complexity analysis is straightforward: the number of arithmetic operations with input N satisfies

C(N) ≤ C(⌊N/2⌋) + 2M(d) = O(M(d) logN).

A variant of this method also produces tN mod Q(t) in O(M(d) logN) arithmetic operations, which can
be used as in Section 3.2.3 to compute a slice of coefficients of high index.

3.3 Evaluation and Interpolation
An important algorithmic paradigm in computer algebra is evaluation-interpolation: it consists of construct-
ing a polynomial by computing sufficiently many evaluations of it and reconstructing it by interpolation. This
is the process that was used in polynomial multiplication by FFT, using roots of unity as the points where
evaluation took place. With n such points, FFT led to a complexity in O(n logn) operations. The main
result of this section is that for n arbitrary distinct points, this process can be performed in O(M(n) log n)
operations.

Given n distinct points (a1, . . . , an) in a field K and a polynomial P ∈ K[X] of degree smaller than n,
multipoint evaluation is the computation of (P (a1), . . . , P (an)). The converse operation is interpolation.

Denoting by pi the coefficients of P , Horner’s rule evaluates P (t) as

P (t) = (· · · ((pnt+ pn−1)t+ pn−2)t+ · · · ) + p0.

Using this method, each evaluation of P (ai) has complexity O(n), so that the naïve multipoint-evaluation
algorithm has quadratic complexity.

Similarly, Lagrange’s interpolation gives P from its values (b1, . . . , bn) as

P =
∑
i

bi
Ai(X)

Ai(ai)
, Ai(X) =

∏
j ̸=i

(X − aj). (3.6)
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Thus an algorithm for this computation is

1. Compute A(X) =
∏

i(X − ai);

2. Deduce A1, . . . , An;

3. Evaluate each Ai at ai;

4. Compute the final linear combination.

By naïve algorithms, each of these steps has quadratic complexity.

3.3.1 Product Tree
The starting point of a faster algorithm due to Borodin and Moenck (1974) is to construct what is called
the product tree, displayed in Fig. 3.1.

ProductTree:=proc(L,x) 
local k,left,right; 
    if nops(L)=1 then [x-op(L)] 
    else 
        k:=ceil(nops(L)/2); 
        left:=thisproc(L[1..k],x); 
        right:=thisproc(L[k+1..-1],x); 
        [expand(left[1]*right[1]), 

   left,right] 
    fi 
end:

Subproduct Tree

Step 1: construct a 
product-tree !A

A :=
n

∏
i=1

(X − ai)

Aℓ :=
⌈n/2⌉
∏
i=1

(X − ai) Ar :=
n

∏
i=⌈n/2⌉+1

(X − ai)

X − a1 X − an

⋱⋱
X − a2 …

Complexity: 
C(n) ≤ 2C(⌈n /2⌉) + O('(n))

= O('(n)log n) .
25/41

Figure 3.1: Product Tree

It is a binary tree whose leaves store the X − ai and where each internal node stores the product of the
polynomials stored at the roots of its children. The computation of this tree is performed recursively:

ProductTree:=proc(L,x)
local k,left,right;

if nops(L)=1 then [x-op(L)]
else

k:=ceil(nops(L)/2);
left:=thisproc(L[1..k],x);
right:=thisproc(L[k+1..-1],x);
[expand(left[1]*right[1]),left,right]

fi
end:

By design, the complexity of this construction obeys

C(n) ≤ 2C(⌈n/2⌉) +M(n),

whence a complexity C(n) = O(M(n) logn).

3.3.2 Fast Multipoint Evaluation
A basic observation is that if

P = Q(X)

n∏
i=1

(X − ai) +R(X),
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then the values of P at a1, . . . , an are the same as those of R at these points. The multipoint evaluation
thus relies on the product tree and fast Euclidean division. Let TA denote a product tree with A at its root
and let TAℓ

and TAr
be its left and right subtrees if it is not a leaf. Then the idea is to evaluate P mod Aℓ

on TAℓ
and P mod Ar on TAr

. The resulting algorithm is

EvalPol:=proc(p,T,x)
if degree(T[1],x)=1 then p
else thisproc(rem(p,T[2][1],x),T[2],x),

thisproc(rem(p,T[3][1],x),T[3],x)
fi

end:

Thanks to fast Euclidean division, the complexity is easily seen to satisfy

C(n) ≤ 2C(⌈n/2⌉) +O(M(n)),

whence C(n) = O(M(n) log n).

3.3.3 Interpolation

Dividing the Lagrange interpolation formula (3.6) by A(X) gives a partial fraction decomposition

P (X)

A(X)
=

n∑
i=1

bi
A′(ai)

1

X − ai
,

where again

A(X) =

n∏
i=1

(X − ai).

The algorithm for fast interpolation is as follows:

1. Compute A by a product tree;

2. Deduce A′;

3. Compute (A′(a1), . . . , A
′(an)) by multipoint-evaluation;

4. Compute ci = bi/A
′(ai) for i = 1, . . . , n;

5. Compute the sum of ci/(X − ai) by a divide-and-conquer method;

6. Return its numerator.

Steps 2 and 4 have linear complexity O(n). Step 5 has a complexity C(n) which satisfies C(n) ≤ 2C(⌈n/2⌉)+
O(M(n)) and thus is in O(M(n) logn). This is also the complexity of Steps 1 and 3 by the previous sections.
It follows that the total cost is O(M(n) logn) arithmetic operations in K.

The Maple version makes more explicit the addition of rational functions.
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Interpolate:=proc(a,b,x)
local T,Apr,i,n,c,pf;

n:=nops(a);
T:=ProductTree(a,x);
Apr:=[EvalPol(diff(T[1],x),T,x)];
c:=[seq(b[i]/Apr[i],i=1..n)];
pf:=AddFrac([seq(c[i]/(x-a[i]),i=1..n)]);
normal(pf*T[1])

end:

AddFrac:=proc(L)
local k;

if nops(L)=1 then L[1]
else

k:=iquo(nops(L),2);
normal(thisproc(L[1..k])+thisproc(L[k+1..-1]))

fi
end:

3.3.4 Product of Polynomial Matrices

This is a natural application of the evaluation-interpolation paradigm. Given A,B two matrices in K[X]d×d

with degA and degB smaller than n, the aim is to compute the matrix product AB.
Later in the course, we will see the definition of feasible matrix exponent as a number ω such that two

d × d matrices with entries in a ring A can be computed in O(dω) operations in A. In principle ω depends
on A, but with the currently known algorithms, it does not.

A direct use of a matrix multiplication algorithm over K[X] results in a complexity of O(dωM(n)) op-
erations. By contrast, evaluating both matrices at 2n points, multiplying the resulting scalar matrices and
interpolating the entries of the result leads to a better complexity of

O(dωn+ d2M(n) logn).

3.4 Newton’s Iteration for Division
General Principle

To solve ϕ(y) = 0,

2. yn+1 := intersection with the horizontal axis

start from a “good”     and iterate:y0
1. take the tangent: z = ϕ(yn) + ϕ′ (yn)(y − yn)

yn+1 = #(yn) := yn − ϕ(yn)
ϕ′ (yn) .

Ex. ϕ(y) = 2y − sin(y) − 1

yn
yn+1

y0 = 1.7
y1 = 1.0384508857639334498
y2 = 0.89420244777681162624
y3 = 0.88787359918134588142
y4 = 0.88786221160760794737
y5 = 0.88786221157086602403

yn+1 = yn − 2yn − sin(yn) − 1
2 − cos(yn)

y

ϕ(y)

4/41

Figure 3.2: Principle of Newton’s Iteration

The principle of Newton’s iteration is illustrated in Fig. 3.2. In order to solve the equation ϕ(y) = 0, a
good starting point y0 is chosen and at each step one applies the following recipe:
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1. take the tangent to the graph of ϕ at (yn, ϕ(yn)), whose equation is

z = ϕ(yn) + ϕ′(yn)(y − yn);

2. take for yn+1 the intersection of that tangent with the x-axis.

This leads to the following formula for yn+1, which is central to this lecture

yn+1 = N (yn) := yn − ϕ(yn)

ϕ′(yn)
.

Example 3.3. This method was used by Newton himself in his Treatise of Fluxions published in 1671 to
solve Kepler’s equation

ϕ(y) = 2y − sin y − 1.

With this value of ϕ, the iteration becomes

yn+1 = yn − 2yn − sin(yn)− 1

2− cos(yn)
.

Starting with y0 = 1.7, the first few iterates are

y0 = 1.7

y1 = 1.0384508857639334498

y2 = 0.89420244777681162624

y3 = 0.88787359918134588142

y4 = 0.88786221160760794737

y5 = 0.88786221157086602403

where the digits in bold face are those of the solution. The number of correct digits roughly doubles
at each iteration. This is typical of quadratic convergence, where the error is squared at each step
(asymptotically).

3.4.1 Reciprocal and Division
The application of Newton’s method to

ϕ(y) = 1/y − a

gives an iteration that does not use division to compute the inverse of a:

yn+1 = yn + yn(1− ayn). (3.7)

This iteration is illustrated in Fig. 3.3. On the left is the graph of ϕ (here a = 3); on the right is the graph
of N (y) = y + y(1− ay), together with the first iterates.

The iteration (3.7) can easily be turned into a naïve Maple code:

Inverse:=proc(a,y0)
local yprev:=0,ynew:=y0;

while ynew<>yprev do
yprev,ynew:=ynew,ynew+ynew*(1-a*ynew)

od;
ynew

end:
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Figure 3.3: Newton iteration for reciprocal

Note however that although this code works, termination of such numerical code is in general difficult to
predict due to rounding errors in the floating-point computations.

The iteration (3.7) has quadratic convergence:

1− ayn+1 = 1− ayn − ayn(1− ayn) = (1− ayn)(1− ayn) = (1− ayn)
2

implies
1

a
− yn+1 = a

(
1

a
− yn

)2

.

The distance between yn and the limit 1/a is squared, up to a constant factor, at each step.
An application of this iteration is the computation of Euclidean division for integers: given two positive

integers (a, b), the aim is to compute two integers (q, r) such that a = bq + r and 0 ≤ r < b. A simple
method is to compute s := 1/b numerically to sufficient precision by Newton’s iteration and then compute
q = ⌊s × a⌋ and finally deduce r = a − bq. A symbolic variant of this idea will give us a fast algorithm for
Euclidean division of polynomials in Section 3.1.

3.4.2 Truncated Power Series
We define a truncated power series as an expansion of the form

A(X) = a0 + a1X + · · ·+ an−1X
n−1 +O(Xn).

This means that the computation is performed modulo the polynomial Xn.
Addition of truncated power series has linear complexity in n; multiplication has complexity O(M(n)),

since it is sufficient to multiply two polynomials of degree smaller than n and discard the coefficients of the
monomials Xk for k ≥ n.

The operations that are performed by Newton iteration on real numbers turn out to often work for
truncated power series as well and this is the basis of many efficient algorithms for polynomials.

3.4.3 Reciprocal and Division of Truncated Power Series
It is now easy to recognize that the computation of the inverse of a polynomial modXN in Section 3.1.3,
that was using the iteration

I 7→ 2I − I2P mod X2N

is a special case of Newton’s iteration for the inverse

N (y) = y + y(1− ay) (3.8)
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that is used to solve 1− ay = 0, i.e., to compute 1/a.
Of course, given an algorithm for inversion, we obtain an algorithm for division by multiplying the

numerator by the inverse of the denominator and the conclusion is that division can be performed in O(M(n))
operations. It is therefore of the same complexity as multiplication, up to a constant factor.

3.5 Fast Composition of Formal Power Series

In the same way that algorithms for polynomials and integers are very similar, those for polynomials being
easier to state and prove, it is fruitful to consider formal power series as an analogue to real numbers. In
practice the truncated power series introduced earlier behave very similarly to floating-point numbers. These
objects are now introduced formally.

3.5.1 Definition

Definition 3.3. The set of formal power series with coefficients in a ring A is denoted A[[X]]. Its
elements are the sequences of elements of A, i.e., the set AN. They are written in the form

A(X) = a0 + a1X + a2X
2 + · · · or A(X) =

∞∑
i=0

aiX
i.

This set is given two operations:

Addition:
∞∑
i=0

aiX
i +

∞∑
j=0

bjX
j =

∞∑
i=0

(ai + bi)X
i.

Multiplication:
∞∑
i=0

aiX
i ×

∞∑
j=0

bjX
j =

∞∑
k=0

ckX
k, ck =

∑
i+j=k

aibj .

The ring A here is not assumed to be commutative. This will allow us to consider matrices of formal power
series as formal power series with matrix coefficients.

The sum symbols (
∑

) are not meant to suggest any kind of convergence in A. These formal power series
are formal objects, a convenient way to manipulate all the elements of a sequence. In the operations like the
multiplication above, the coefficient of Xk in the result involves only finitely many of the coefficients of A
and B.

By convention, we use small indexed letters (ai, bi,. . . ) for the coefficients of the power series whose
name is the corresponding capital letter (A, B,. . . ).

Proposition 3.3. The set A[[X]] is a ring.

Proof. The required properties (commutative group for +, associativity and distributivity of × and unit
element) are checked as in the case of polynomials.

3.5.2 Limits

We will define iterations, like Newton’s iteration, operating on power series. This implies a notion of con-
vergence, not at the level of coefficients in A, but at the level of power series. Roughly speaking, a sequence
of power series will converge when larger and larger numbers of initial coefficients are fixed. One way of
defining limits without too much algebraic setup is the following.
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Definition 3.4. The sequence (Sn) of formal power series converges to the formal power series S if there
is an increasing sequence of nonnegative integers (rn) such that S = Sn +O(Xrn).

One can deduce the existence of a limit S from a weak condition on the sequence (Sn).

Lemma 3.4. If Sn+1 −Sn = O(Xrn) for an increasing sequence of integers (rn), then the sequence (Sn)
converges to a formal power series S.

Proof. For i ∈ {rn−1, . . . , rn−1}, define si as the coefficient of Xi in Sn. By induction, the condition implies
that this is also the coefficient of Xi in all Sk with k ≥ n. Now define S as the power series S = s0+s1X+· · · .
By definition of (ui), the formal power series S satisfies S − Sn = O(Xrn), which proves the convergence of
the sequence (Sn) to S.

3.5.3 Composition
If F,G are in A[[X]] with g0 = 0, the composition F (G(X)) is defined by

F (G(X)) = f0 + f1G+ f2G
2 + · · · .

This definition has to be interpreted as the limit of the truncated sum. It is meaningful because the summands
after fkGk are all O(Xk+1) since g0 = 0.

The composition law gives a simple way to characterize the invertible elements of the ring A[[X]] for
multiplication.

Proposition 3.4. A ∈ A[[X]] is invertible for multiplication if and only if a0 ∈ A is invertible.

Proof. If A is invertible with inverse B, extracting the coefficient of X0 in the product AB = 1 gives a0b0 = 1,
showing that a0 is invertible.

Conversely, assume first that a0 = 1. A direct computation shows that

(1 +X)(1−X +X2 −X3 + . . . ) = 1.

Composing this identity with A(X)− 1 shows that A is invertible. Finally if a0 is invertible, then B = a−1
0 A

is a power series with b0 = 1, making it invertible. It follows that A(B−1a−1
0 ) = a0BB

−1a−1
0 = 1, showing

that A is invertible.

3.5.4 Fast Composition
Given

F = f0 + f1X + · · ·+O(Xn+1), G = g1X + · · ·+O(Xn+1),

the computation of the composition

F (G(X)) = f0 + f1G+ f2G
2 + · · ·+O(Xn+1)

by the naive method uses O(nM(n)) operations. A faster method was designed in 1978 by Brent and Kung
who reduced the complexity to O(

√
n lognM(n)) operations. Then, in 2024, Kinoshita and Li finally found

a quasi-optimal algorithm in O(M(n) log n) that we now present.
The idea is to apply a divide-and-conquer similar to that of Section 3.2.5 to the expansion of a bivariate

rational function that has the composition has its coefficient of tn:

rev(F )

1− tG
= (fn + fn−1t+ · · ·+ f0t

n)(1 + tG+ t2G2 + · · · )

= fn + (fn−1 + fnG)t+ · · ·+ (f0 + f1G+ · · ·+ fnG
n)tn + · · · .
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Given a formal power series
A = a0 + a1t+ · · · ,

the following notation extracts the last d coefficients up to and including that of tn:

Fn,d (A) := an−d+1 + · · ·+ ant
d−1.

Basic properties can be checked directly:

an−d+1t
n−d+1 + · · ·+ ant

n = tn−d+1Fn,d (A)
Fn,d (tkA) = Fn−k,dA

and for a polynomial Q,
Fn,d (QA) = Fn,d (QFn,d+degQ (A)).

Using these relations leads to the divide-and-conquer algorithm:

FN,m

(
P (t)

Q(t, x)

)
mod xn = FN,m

(
Q(t,−x)P (t)
Q(t,−x)Q(t, x)

)
mod xn

= FN,m

(
Q(t,−x)tN−m−degt Q+1FN,m+degt Q

(
P (t)

Q(t,−x)Q(t, x)

))
mod xn

= Fm+degt Q−1,m

(
Q(t,−x) FN,m+degt Q

(
P (t)

Q̃(t, z)
mod z⌈n/2⌉

)∣∣∣∣
z=x2

)
mod xn,

where Q̃(t, z) is defined by Q̃(t, x2) = Q(t, x)Q(t,−x). In the last expression, the truncation order in z has
been halved, the degree of P is unchanged and the degree of Q̃ is doubled. It turns out that this is sufficient
to obtain a good complexity for the algorithm deduced from this last equality, which is given in Fig. 3.4.

For the complexity analysis, we first note that P and N remain unchanged during a recursive call. We
write C(n,m, degtQ) for the complexity, keeping track only of the parameters that change. This complexity
satisfies

C(n,m, degtQ) ≤ C(⌈n/2⌉,m+ degtQ, 2 degtQ) +M(2n degtQ) +M(2n(m+ 2degtQ)).

The last two terms are due to the multiplication Q(t, x)Q(t,−x) and the final multiplication by Q(t,−x).
The ‘master theorem’ of divide-and-conquer does not apply to such a multi-indexed recurrence, but

following the same steps as in its proof yields the complexity. For this, we first recall the notation

⌈n/2⌉1 = ⌈n/2⌉, ⌈n/2⌉k+1 = ⌈⌈n/2⌉k/2⌉. (3.9)

We also make use of P the power of 2 that satisfies n ≤ P < 2n.
The composition algorithm invokes the divide-and-conquer routine with input revF (t)/(1 − tG(x)), so

that the complexity of interest is C(n, 1, 1). Using Eq. (3.9) gives

C(n, 1, 1) ≤ C(⌈n/2⌉1, 2, 2) +M(2n) +M(6n)

≤ C(⌈n/2⌉1, 2, 2) +M(2P ) +M(6P ),

where we used the fact that M is increasing (a consequence of M(n+ n′) ≥ M(n) +M(n′)). Using Eq. (3.9)
again gives

C(⌈n/2⌉1, 2, 2) ≤ C(⌈n/2⌉2, 4, 4) +M(4⌈n/2⌉1) +M(12⌈n/2⌉1)
≤ C(⌈n/2⌉2, 4, 4) +M(2P ) +M(6P ),

where the second line uses the fact that x 7→ ⌈x/2⌉ is increasing. Injecting the last inequality in that for
C(n, 1, 1) gives

C(n, 1, 1) ≤ C(⌈n/2⌉2, 4, 4) + 2M(2P ) + 2M(6P ).
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# Input:
# P,Q polynomials in K[t],K[t, x]
# x, t variables
# m,N nonnegative integers
# Output:
# aN−m+1 + · · ·+ aN t

m−1 mod xn

# where P (t)/Q(t, x) = a0 + a1t+ · · ·
CompDAC:=proc(P,Q,x,t,m,n,N)
local k,dQ,Qm,Qt,PQm,Pt,rec,F,i;

if n=1 then
F:=series(eval(P/Q,x=0),t,N+1);
add(coeff(F,t,N-m+1+i)*t^i,i=0..m-1)

else
k:=ceil(n/2);
Qm:=subs(x=-x,Q);
Qt:=evenpart(Qm*Q,x,k);
dQ:=degree(Q,t);
rec:=subs(x=x^2,thisproc(P,Qt,x,t,m+dQ,k,N));
F:=rem(expand(Qm*rec),x^n,x);
add(coeff(F,t,dQ+i)*t^i,i=0..m-1);

fi
end:

# Compute f(g(x)) mod xm

composition:=proc(f,g,x,m)
local i,t;

CompDAC(add(coeff(f,x,m-1-i)*t^i,i=0..m-1),1-t*g,x,t,1,m,m-1)
end:

Figure 3.4: Divide-and-Conquer Composition of Truncated Formal Power Series
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Iterating the same reasoning k times gives

C(n, 1, 1) ≤ C(⌈n/2⌉k, 2k, 2k) + kM(2P ) + kM(6P ).

When k = log2 n, one reaches the end of the recursion, where the complexity C(1, 2k, 2k) is that of a division
of truncated power series at precision N = n, thus is O(M(n)), giving

C(n, 1, 1) ≤ O(M(n)) + log2 n(M(4n) +M(12n)),

where we used again the monotonicity of M. In conclusion, since M(mn) ≤ m2M(n) for any m, we have

C(n, 1, 1) = O(M(n) logn),

as was to be proved.

3.5.5 Differentiation and Integration
The definitions of differentiation and integration are made in such a way that they coincide with the familiar
ones for entire series.

Definition 3.5. If A = a0 + a1X + · · · ∈ A[[X]] with A a Q-algebra, its derivative and its integral are
defined by ∑

i≥0

aiX
i

 =
∑
i≥0

(i+ 1)ai+1X
i,

∫ ∑
i≥0

aiX
i =

∑
i≥1

ai−1

i
Xi.

Recall that a Q-algebra is both a ring and a vector space over Q. Familiar examples are Q itself, C, the ring
of power series Q[[Y ]] for another variable Y , or the ring Mn(Q) of square matrices with rational entries.

By extraction of the coefficient of Xi on both sides, the following identities are seen to hold:∫
A′ = A− a0,

(∫
A

)′

= A.

Lemma 3.5. If F,G belong to A[[X]] with A a Q-algebra and g0 = 0 then

F (G(X))′ = F ′(G(X))G′(X).

Proof. The coefficient of Xi in both sides of the identity is the same as in the composition of the polynomials
obtained by truncating F and G after their ith coefficient (i.e., taking all the coefficients of index larger than i
as 0). It is therefore sufficient to prove the result for polynomials, for which it is classical.

Example 3.4. Classical examples of formal power series that behave like their counterpart from analysis
are the exponential and logarithm.

Definition 3.6.

exp(X) :=
∑
n≥0

Xn

n!
, ln(1 +X) :=

∫
(1 +X)−1.

It is a good exercise to prove the expected identities:

(exp(X))′ = exp(X), ln(exp(X)) = X, exp(ln(1 +X)) = 1 +X.

The first one follows by inspection of the coefficient of Xi for arbitrary i.
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For the second one, by differentiation

(ln(exp(X))′ =
1

1 + (exp(X)− 1)
(exp(X))′ = exp(X)−1 exp(X) = 1.

Integrating shows that ln(exp(X)) = X − c, where c is the constant coefficient of ln(exp(X)), which by
the definition of ln, is 0.

For the last one, let F = exp(ln(1 +X)). Then by differentiation

(1 +X)F ′ = F.

Extracting the coefficient of Xi in this identity gives

(i+ 1)fi+1 + ifi = fi, i ≥ 0.

With i = 0, we get f0 = f1. Next, i = 1 gives f2 = 0 and from there follows that fi = 0 for i > 2. The
constant coefficient f0 is obtained as 1 by the definition of exp.

Proposition 3.5 (Taylor expansion). Let A be a commutative Q-algebra and F,G,H be formal power
series in A[[X]] with g0 = h0 = 0. Then

F (G+H) = F (G) + F ′(G)H + F ′′(G)
H2

2!
+ · · · .

Proof. The proof is as the previous one. Extracting coefficients reduces to proving the identity for polyno-
mials, for which it is the classical Taylor formula.

In this proposition it is important that A be commutative. Otherwise, even with a simple F like X2, one
gets

(G+H)2 = G2 +GH +HG+H2

and GH +HG is not necessarily equal to 2GH.

3.5.6 Other Applications of Division of Power Series

*This section is not used in the rest of the course and can be skipped in a first reading.*

Logarithm

From

ln(1 + U)′ =

∫
U ′

1 + U
,

we deduce an algorithm for the computation of the logarithm of a power series with constant term 1:
U ′+O(Xn) is obtained in O(n) operations in A from U ; the division by 1+U costs O(M(n)) operations in A
by the previous proposition; the final integration has again complexity O(n). Thus in total, the logarithm
is computed in O(M(n)) operations. This idea goes back to Brent in 1976. The code is as follows.

Log:=proc(s,x,n)
series(Int(series(diff(s,x)/s,x,n-1),x),x,n)

end:
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Exponential

Brent also obtained the same complexity for the computation of the exponential of a power series F . The
idea is to use Newton’s iteration on the equation

ϕ(y) = F − log y,

which leads to
N (y) = y + y(F − log y).

The proof of quadratic convergence follows the same lines as before: if y = eF (1 + S), then

log y = F + log(1 + S) = F + S +O(S2)

and
N (y) = eF (1 + S)(1− S +O(S2)) = eF (1 +O(S2)).

So if S = O(Xn) then N (y)− eF = O(X2n).
The corresponding Maple code is straightforward

Exp:=proc(s,x,n)
local y;

if n=1 then 1
else

y:=convert(Exp(s,x,ceil(n/2)),polynom);
series(y+y*(s-Log(y,x,n)),x,n)

fi
end:

The complexity analysis gives

C(n) ≤ C(⌈n/2⌉) + λM(n) +O(n)

(one recursive call, one computation of a logarithm, one multiplication, several additions) and the conclusion
C(n) = O(M(n)) follows again from the ‘master theorem’.

A combination of the logarithm and the exponential also allows to compute arbitrary powers via Fα =
exp(α logF ) in O(M(n)) when this is well-defined.

3.6 More Newton Iterations

*This section is not used in the rest of the course, except in the tutorial that follows this lecture.*

3.6.1 Heron’s Iteration for Square Roots

Now the function whose zero is sought is
ϕ(y) = y2 − a

and the iteration becomes

yn+1 =
1

2

(
yn +

a

yn

)
,

which was known to Heron of Alexandria (ca 10–70 AD). The corresponding pictures are displayed in Fig. 3.5.
and the code becomes
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Figure 3.5: Heron’s iteration

Heron:=proc(a)
local y,s:=a;

while y<>s do y,s:=s,(s+a/s)/2 od;
s

end:

Example 3.5. The point y0 = a is always a possible starting point for this iteration. In the case when
a = 2, the first few iterates are

y0 = 2.

y1 = 1.50000000000000000000

y2 = 1.41666666666666666667

y3 = 1.41421568627450980392

y4 = 1.41421356237468991063

y5 = 1.41421356237309504880

The quadratic convergence is easily seen:

yn+1 −
√
a =

1

2

(
yn − 2

√
a+

a

yn

)
=

1

2yn
(yn −

√
a)2.

3.6.2 Square Root

Consider a truncated power series
a = 1 + a1X + · · ·+O(Xm).

Then its square root can be defined by composition with the binomial (1 + X)1/2. Recall that Heron’s
iteration

yn+1 =
1

2

(
yn +

a

yn

)
satisfies

yn+1 −
√
a =

(yn −
√
a)2

2yn
.

This leads again to a divide-and-conquer algorithm for power series
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Heron:=proc(a,x,n)
local f;

if n=1 then sqrt(coeff(a,x,0))
else

f:=thisproc(a,x,ceil(n/2));
f:=convert(f,polynom);
series((f+a/f)/2,x,n)

fi
end:

The complexity obeys C(m) ≤ C(⌈m/2⌉) + O(M(m)) and thus C(m) = O(M(m)). A similar method,
not presented here, applies to the computation of square roots of integers.

3.6.3 Solving Equations by Newton Iteration: An Example
Kepler’s equation reads

ϕ(y) = y − 1

2
sin y − x = 0.

It has a solution with y(0) = 0 that admits a Taylor expansion T (x) at x = 0. Such an expansion can be
found by Newton iteration. This iteration reads

yn+1 = yn −
yn − 1

2 sin yn − x

1− 1
2 cos yn

.

It is a consequence of the general Proposition 3.6 below that

T = yn +O(xk) ⇒ T = yn+1 +O(x2k).

Thus in order to compute T at precision N , it is only necessary to compute truncations at smaller order of
previous iterates. If N is a power of 2, we get the successive iterates

y0 = 0,

y1 = 2x+O
(
x2
)
,

y2 = 2x− 4

3
x3 +O

(
x4
)
,

y3 = 2x− 4

3
x3 +

44

15
x5 − 2696

315
x7 +O

(
x8
)
,

y4 = 2x− 4

3
x3 +

44

15
x5 − 2696

315
x7 +

81068

2835
x9 − 16129352

155925
x11 +

2397755992

6081075
x13 − 90535608368

58046625
x15 +O

(
x16
)
.

As in the case of the Heron iteration or the computation of inverses, if the target order is N , one does not
compute expansions up to a power of 2, but uses a divide-and-conquer iteration.

3.6.4 More General Equations
We now want generalize the previous example to solve an equation

Φ(X,Y ) = 0,

where Φ is itself a power series in A[[X]][[Y ]]. Again, Newton’s iteration applies under mild conditions,
leading to:
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Proposition 3.6. Let Φ ∈ A[[X]][[Y ]] be such that Φ(0, 0) = 0 and ∂Φ/∂Y (0, 0) is invertible in A. Then

1. there exists a unique S ∈ A[[X]] such that S(0) = 0 and Φ(X,S(X)) = 0;

2. if F ∈ A[[X]] satisfies S − F = O(Xn) for some n > 0 then S −N (F ) = O(X2n), where

N (F ) = F − Φ(X,F )

∂Φ/∂Y (X,F )
.

As a consequence of this proposition, if Φ(X,F ) and ∂Φ(X,F ) can be computed in O(M(n)) operations,
then the solution of the equation can also be obtained in O(M(n)) operations. This is in particular the case
whenever Φ is a polynomial with respect to Y , i.e., Φ ∈ A[[X]][Y ].

Proof of existence. The proof is constructive. Define the sequence Sn by S0 = 0 and Sk+1 = N (Sk). By
induction, Sk(0) = 0 for all k, which makes the iteration well-defined, as only composition with series with
constant term 0 are allowed and the ∂Φ/∂Y is invertible at (X,Sk) because its constant term ∂Phi/∂Y (0, 0)
is.

Next, by definition of Sk+2, we see that

Sk+2 − Sk+1 = O(Φ(X,Sk+1).

Finally, by Taylor expansion (Proposition 3.5),

Φ(X,Sk+1) = Φ(X,Sk) +
∂Φ

∂Y
(X,Sk)(Sk+1 − Sk) +O((Sk+1 − Sk)

2) = O((Sk+1 − Sk)
2).

Thus by induction Sk+1−Sk = O(X2k), showing the convergence of Sk. Taking limits shows that the limit S
satisfies S(0) = 0 and Φ(X,S) = 0.

Proof of quadratic convergence. We can now perform a Taylor expansion at S:

Φ(X,S) = 0 = Φ(X,F ) +
∂Φ

∂Y
(X,F )(S − F ) +O((S − F )2).

It follows that

S = F − Φ(X,F )
∂Φ
∂Y (X,F )

+O((S − F )2)

= N (F ) +O((S − F )2),

proving the quadratic convergence.

Proof of uniqueness. If Φ(X,F ) = 0 then the equation above shows that

S − F = O((S − F )2),

whose only solution with valF > 0 is 0, by considering the valuations.

3.6.5 Inverse Composition

Finding G such that G(F ) = F (G) = X when F is a power series with F (0) = 0 and F ′(0) invertible is the
special case of the previous result with Φ(X,Y ) = X − F (Y ). The complexity of the resulting algorithm is
only O(M(n) logn) since the composition with F can be obtained by composition of formal power series.
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The following 3 references mentioned before contain variants of the content of this lecture:
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Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. 3rd edition. New York:
Cambridge University Press, 2013, pp. xiv+785. url: http://www.cambridge.org/fr/knowledge/isbn/
item1170826

Donald E. Knuth. The Art of Computer Programming. 3rd edition. Vol. 2: Seminumerical Algorithms.
Computer Science and Information Processing. Reading, Mass.: Addison-Wesley Publishing Co., 1997,
pp. xiv+762

For more information on the use of Newton’s iteration numerically for elementary functions, a good reference
is

Jean-Michel Muller. Elementary Functions: Algorithms and Implementations. 2nd edition. Birkhäuser
Boston, 2006
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Lecture 4

Euclid’s Algorithm

Summary

Euclid’s algorithm computes the gcd. The extended Euclidean algorithm also computes the cofactors.
These allow to compute modular inverses. In turn, this is used in an effective version of the Chinese
remainder theorem. A truncated version of the extended Euclidean algorithm also solves the rational
reconstruction problem, including the important special case of Padé approximants. All these algorithms
have an efficient version in quasi-linear complexity.

4.1 Algorithm and Properties

4.1.1 GCDs and Euclidean Functions
Greatest common divisors can be defined in arbitrary commutative rings.

Definition 4.1. Let A,B be two elements of a commutative ring A. An element G ∈ A is a greatest
common divisor (GCD) of A and B if G|A, G|B and for all C,

C|A and C|B =⇒ C|G.

While this gives a definition, more is needed to obtain an algorithm.

Definition 4.2. A function ν : A → N ∪ {−∞} is called a Euclidean function if for all A,B in A, with
B ̸= 0, there exists Q,R in A such that

A = QB +R, ν(R) < ν(B).

We will use the following notation: Q = A quoB, R = A remB.

The only examples that will be used in this course are

A = Z and ν = | · |;
A = K[x] and ν = deg .

4.1.2 Euclid’s Algorithm
The classical version of Euclid’s algorithm is given in Fig. 4.11.

1Euclid lived in Alexandria ca 300 B.C.; his algorithm has been called by D. Knuth “the granddaddy of all algorithms”. The
version for polynomials was known to Stevin in 1585.
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Euclid’s Algorithm

Input:  
Output: a gcd of  and  
1.  
2. While  

  
  

3. Return 

A, B
A B

R0 = A; R1 := B; i = 1;
Ri ≠ 0

Ri+1 = Ri−1 rem Ri;
i := i + 1

Ri−1 .

Lemma. (In)variants: 
 C |A and C |B ⇒ C |Ri,

v(Ri) < v(Ri−1), (i > 1) .

[Euclid ca 300 B.C.; Stevin 1585 for polynomials]

Cor. #iterations ≤ v(B) .

2/27

Figure 4.1: Euclid’s Algorithm

The proof that this algorithm is correct relies on the following variants and invariants.

Lemma 4.1. If C|A and C|B, then for any i, C|Ri. Moreover, for any i > 1, ν(Ri) < ν(Ri−1).

Proof. The proof is by induction. If C|Ri and C|Ri−1, then from

Ri−1 = QRi +Ri+1

it follows that C|(Ri−1 −QRi) = Ri+1. The property on ν comes from the definition of rem.

Corollary 4.1. Euclid’s algorithm is correct and the number of iterations of the loop is bounded by ν(B).

Proof. First, termination of the algorithm follows from the fact that ν decreases at each step when Ri ̸= 0.
This also explains the bound on the number of iterations.

By the previous lemma, any common divisor of Ri−1 and Ri is also a common divisor of Ri and Ri+1.
Thus by induction, for all i > 0, gcd(Ri, Ri−1) = gcd(Ri+1, Ri). Therefore if k is the final value of i,
gcd(A,B) = gcd(Rk−1, Rk) = gcd(Rk−1, 0) = Rk−1, proving the correctness of the algorithm.

4.1.3 Extended Euclidean Algorithm and Bézout’s Identity
A small change in the algorithm allows to compute cofactors. The algorithm, already known to Euler in 1748,
becomes that of Fig. 4.2. Extended Euclidean Algorithm (EEA)

Input:  
Output: a gcd  of  and  
and  s.t.  
1.  
2.  
3. While  

  
  
  
  

4. Return 

A, B
G A B

U, V UA + VB = G
R0 = A; R1 = B; i = 1;
U0 = 1; V0 = 0; U1 = 0; V1 = 1;

Ri ≠ 0
Qi = Ri−1 quo Ri;
Ri+1 = Ri−1 − QiRi
Ui+1 = Ui−1 − QiUi; Vi+1 = Vi−1 − QiVi;
i = i + 1

Ri−1, Ui−1, Vi−1 .

Lemma. Invariant: 
UiA + ViB = Ri .

3/27[Already in Euler 1748]

Figure 4.2: Extended Euclidean Algorithm

Its properties come from a simple invariant.
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Lemma 4.2. For any i ≥ 0 during the algorithm,

UiA+ ViB = Ri.

Proof. The identity is satisfied for i = 0 and i = 1 by definition of U0, V0, U1, V1. Next, if the identity is
satisfied for i− 1 and i, then

Ri+1 = Ri−1 −QiRi

= (Ui−1A+ Vi−1B)−Qi(UiA+ ViB)

= (Ui−1 −QiUi)A+ (Vi−1 −QiVi)B

= Ui+1A+ Vi+1B.

Corollary 4.2. If G,U, V is the output of the extended Euclidean algorithm, then G = gcd(A,B) and

G = UA+ V B. (4.1)

Equation (4.1) is called Bézout’s identity.

Proof. The property on the gcd has been proved for Euclid’s algorithm. That part of the computation
is unaffected by the difference with the extended Euclidean algorithm. The identity then comes from the
invariant of the lemma.

The main application of Bézout’s identity is that when G = 1, V is the inverse of B modulo A (and U
is the inverse of A modulo B). This allows to compute divisions in the ring A/(A) when they are possible
(ie, when the gcd is 1).

Example 4.1. With A = 1 +X2 and B = a+ bX, Bézout’s identity gives

b2(1 +X2) + (a− bX)(a+ bX) = a2 + b2.

Thus the inverse of a + bX modulo 1 + X2 is (a − bX)/(a2 + b2). One recognizes the formula for the
inverse of complex numbers:

1

a+ ib
=

a− ib

a2 + b2
, (i2 = −1).

Example 4.2. The computation of a modular inverse is the first step of the proof that algebraic power
series are differentially finite (and also the first step of the corresponding algorithm), in Lecture 6.

4.1.4 Bounds on Degrees
For the complexity analysis and for the design of efficient algorithms later, it is useful to control the sizes of
intermediate quotients and remainders. We focus on the case of polynomials, which is easier.

Proposition 4.1. When A = K[x] and G ̸∈ {A,B}, the output (G,U, V ) of the extended Euclidean
algorithm satisfies

deg(U) + deg(G) < degB, deg(V ) + deg(G) < degA.

The proof is by induction from the following invariants.
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Lemma 4.3. When A = K[x] and degA ≥ degB, the polynomials in the extended Euclidean algorithm
satisfy

deg(Ui) + deg(Ri−1) = degB, deg(Vi) + deg(Ri−1) = degA, i ≥ 2.

Note that for i = 1, the first equality in the lemma becomes deg 0+degA = degB and does not always hold.

Proof. For i ≥ 2, we first prove

degRi−1 > degRi, (4.2)
degQi = degRi−1 − degRi > 0, (4.3)

degUi+1 = degUi + degQi, (4.4)
deg Vi+1 = deg Vi + degQi. (4.5)

The first one follows from the property of the Euclidean division on the degrees, giving degRi+1 < degRi

for i ≥ 1 in the loop. The second one then follows again from Euclidean division since Ri ̸= 0.
Next, we prove two properties by induction: the equalities Eqs. (4.4) and (4.5) and the inequalities

degUi ≥ degUi−1 and deg Vi ≥ deg Vi−1. For i = 2, the values U2 = 1, U1 = 0, V2 = −Q1 ̸= 0, V1 = 1
show that the inequalities hold. The identities follow since degQi > 0 for i ≥ 2. In turn, they imply
degUi+1 ≥ degUi and deg Vi+1 ≥ deg Vi.

For i = 2, the identity
A = Q1B +R2

gives U2 = 1, V2 = −Q1. Then degU2 + degR1 = 0 + degB = degB; deg V2 + degB = degQ1 + degB =
degQ1B = degA, since degR2 < degB ≤ degA. Thus the identities in the lemma hold for i = 2.

From Eqs. (4.3) to (4.5), an induction gives

degUi+1 + degRi = degUi + degQi + degRi−1 − degQi = degB

deg Vi+1 + degRi = deg Vi + degQi + degRi−1 − degQi = degA.

Proof of Proposition 4.1. Consider first the case when degA ≥ degB. Let k be the last value of i in the
loop before Ri becomes 0, so that the output of the algorithm is (G,U, V ) = (Rk, Uk, Vk). If k = 1, then
G = B, which contradicts the hypothesis. Thus k ≥ 2 and the lemma applies, giving

degU + degRk−1 = degB, deg V + degRk−1 = degA.

The proof of the inequalities comes from Eq. (4.2) and Rk = G.
If degA < degB, then the first iteration of the loop produces Q1 = 0 and (R1, R2) = (B,A), from where

the algorithm proceeds as before, whence the result.

4.1.5 Arithmetic Complexity
The complexity of the extended Euclidean algorithm is quadratic.

Proposition 4.2. If A = K[x], Euclid’s algorithm and the extended Euclidean algorithm use O((degA+
degB)2) arithmetic operations in K.

Proof. Without loss of generality we assume degA ≥ degB: otherwise, the first step of the algorithm obtains
0 as a quotient and R2 = R0 with no arithmetic operation, which corresponds to swapping A and B.

Euclid’s algorithm performs the successive divisions of Ri−1 by Ri. By Lemma 3.1 in Lecture 3, the
complexity of these operations is bounded by∑

i

(degRi−1 − degRi + 1)(2 degRi + 1).
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Lemma 4.3 shows that degRi ≤ degB and thus this sum is bounded by

(2 degB + 1)
∑
i

(degRi−1 − degRi + 1).

The last sum telescopes and the number of steps is bounded by degB ( Corollary 4.1), leading to

(2 degB + 1)(degA+ degB) = O((degA+ degB)2).

The extended Euclidean algorithm performs the same operations, plus the computations of Ui−1 −QiUi

and Vi−1 −QiVi. The cost of these operations is at most

2
∑
i≥1

(degQi + 1)(degUi + 1 + deg Vi + 1) :

one multiplication and one subtraction for each coefficient. Since degUi ≤ degB and deg Vi ≤ degA (by
Lemma 4.3), this is bounded by

2(degA+ degB + 2)
∑
i≥1

(degQi + 1).

Now, from Eq. (4.3), ∑
i≥1

degQi = degQ1 + degR1 ≤ degA

and the bound on the number of iterations, the total number of operations for the computation of the Ui

and Vi is bounded by

2(degA+ degB + 2)(degA+ degB) = O((degA+ degB)2).

4.2 Chinese Remainder Theorem
Thanks to the computation of modular inverses (Bézout coefficients), the Chinese remainder theorem2 be-
comes an algorithm. We first recall what is meant by this.

4.2.1 Theorem

Theorem 4.1. Let I1, . . . , Ik be ideals of the commutative ring A such that Ii + Ij = A for all i ̸= j.
Given r1, . . . , rk in A, there exists A ∈ A such that

A ≡ ri mod Ii, i = 1, . . . , k.

Proof. We first show that for each i, there exists yi ∈ A such that yi ≡ 1 mod Ii and yi ≡ 0 mod Ij for j ̸= i.
From this, the result follows by considering

A = r1y1 + · · ·+ rkyk.

Consider first the case i = 1. Since for all j ̸= 1, Ij + I1 = A, there exists bj ∈ Ij and aj ∈ I1 such that
bj + aj = 1. This implies that ∏

j ̸=1

(aj + bj) = 1.

Modulo I1, the jth term of the product is equal to bj , and thus

y1 :=
∏
j ̸=1

bj ≡ 1 mod I1,

while y1 is 0 modulo Ij for j ̸= 1. The construction of the other yi is the same.
2Already known to Sun Tsu in the 3rd century, for integers.
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4.2.2 Algorithm when A = K[x] or Z
When A = K[x] or Z, the ideals are given by generators pi (these rings are principal), such that gcd(pi, pj) = 1
for i ̸= j. An algorithm that follows the proof closely is as follows:

1. Compute the product M =
∏

i pi

2. Deduce mi =M/pi for all i

3. For all i, compute ui such that uimi + vipi = 1

4. Deduce ci = riui mod pi

5. Return
∑
cimi

By design uimi is 1 modulo pi and 0 modulo pj for j ̸= i. It plays the role of yi in the proof of the theorem.
Instead of returning

∑
riuimi, the algorithm first computes ci which reduces the size of the result. The

result is still correct, since the product cimi is 0 modulo pj for j ̸= i and riuimi mod pi.
In Maple in the case of polynomials, this algorithm becomes

# r list of residues
# p list of polynomials
# x variable
crt_naive:=proc(r,p,x)
local k:=nops(r),M,i,m,u,v,c;

M:=convert(p,`*`);
for i to k do

m[i]:=quo(M,p[i],x);
gcdex(m[i],p[i],x,u[i],v[i]);
c[i]:=rem(r[i]*u[i],p[i],x)

od;
add(c[i]*m[i],i=1..k)

end:

4.2.3 Fast Algorithm
Interpolation is the special case of the Chinese remainder theorem where Ii = (x − ai) for all i. We now
generalize the fast algorithm for interpolation of Lecture 3.

Product tree

The first step is the construction of a product tree (Fig. 4.3) whose leaves are the polynomials pi, that are
not restricted by be linear any longer.

The Maple code is almost the same as in the interpolation algorithm

ProductTree:=proc(p,x)
local i,left,right;

if nops(p)=1 then p
else

i:=ceil(nops(p)/2);
left:=thisproc(p[1..i],x);
right:=thisproc(p[i+1..-1],x);
[expand(left[1]*right[1]),left,right]

fi
end:
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ProductTree:=proc(p,x) 
local i,left,right; 
    if nops(p)=1 then p 
    else 
        i:=ceil(nops(p)/2); 
        left:=thisproc(p[1..i],x); 
        right:=thisproc(p[i+1..-1],x); 
        [expand(left[1]*right[1]), 

   left,right] 
    fi 
end:

Back to the Subproduct Tree

A :=
k

∏
i=1

pi

Aℓ :=
⌈k/2⌉
∏
i=1

pi Ar :=
k

∏
i=⌈k/2⌉+1

pi

p1 pk

⋱⋱
p2 …

Complexity: 
C(p1, …, pk) ≤ C(p1, …, p⌈k/2⌉) + C(p⌈k/2⌉+1, …, pk) + O(%(n))

= O(%(n)log k) = O(%(n)log n) .

n := deg p1 + ⋯ + deg pk

Recall 
%(n) + %(n′ ) ≤ %(n + n′ )

 no longer limited to linearp1, …, pk

9/27

Figure 4.3: Product Tree

Let n denote the sum of the degrees of the pi. Then the complexity of the recursive computation of this
tree obeys the recurrence

C(p1, . . . , pk) ≤ C(p1, . . . , p⌈k/2⌉) + C(p⌈k/2⌉+1, . . . , pk) +M(n)

since besides the construction of both subtrees, only one multiplication is needed, with a result of degree n.
By induction, it follows that the complexity is bounded by the sum of M(ni) where ni are the degrees of the
polynomials at the nodes of the tree. On each of the ⌈log2 k⌉ levels of the tree, this sum is n. In view of the
hypothesis on the multiplication function, it follows that the complexity is

C(p1, . . . , pk) = O(M(n) log k) = O(M(n) logn).

Fast simultaneous modular reduction

Given P, p1, . . . , pk, the next step computes (P rem p1, . . . , P rem pk) using the product tree. This is done in
exactly the same way as in the fast multipoint evaluation of Lecture 3, and with the same proof.

EvalPol:=proc(P,T,x)
if nops(T)=1 then P
else thisproc(rem(P,T[2][1],x),T[2],x),

thisproc(rem(P,T[3][1],x),T[3],x)
fi

end:

SimultMod:=proc(P,p,x)
[EvalPol(P,ProductTree(p,x),x)]

end:

The complexity inequality is the same as before:

C(p1, . . . , pk) ≤ C(p1, . . . , p⌈k/2⌉) + C(p⌈k/2⌉+1, . . . , pk) +O(M(n)).

The term O(M(n)) comes from both Euclidean divisions, each of complexity bounded by O(M(n)). With
the same inequality, the same bound O(M(n) log n) follows.

Final linear combination

The last step of the algorithm performs the following computation

(c1, . . . , ck) 7→ c1
M

p1
+ · · ·+ ck

M

pk
,

with deg ci < deg pi. This is, again, achieved by a divide-and-conquer algorithm using the product tree:
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LinComb:=proc(c,T,x)
local k:=nops(c),r:=ceil(k/2);

if k=1 then c[1]
else expand(T[3][1]*thisproc(c[1..r],T[2],x)

+T[2][1]*thisproc(c[r+1..-1],T[3],x))
fi

end:

Letting Ar and Aℓ denote the polynomials at the roots of the right and left subtrees, this algorithm
implements the identity

k∑
i=1

ci
M

pi
= Ar

∑
i≤⌈k/2⌉

ci
Aℓ

pi
+Aℓ

∑
i>⌈k/2⌉

ci
Ar

pi
.

Again, the complexity satisfies the same inequality, obtained by considering the degrees of the polynomials
in each summand. Whence again a complexity in O(M(n) log n) for that step.

Simultaneous Inverses

It is also possible to compute all the ui of the algorithm (the inverses of M/pi modulo pi) simultaneously as
follows

SimultInv:=proc(p,M,x)
local k:=nops(p),L,i,m,u,v;

L:=SimultMod(M,map(t->t^2,p),x); # Li =M mod p2i
for i to k do

m[i]:=quo(L[i],p[i],x); # mi =M/pi mod pi
gcdex(m[i],p[i],x,u[i],v[i]) # ui =

1
M/pi

mod pi
od;
[seq(u[i],i=1..k)]

end:

The point of the algorithm is that it is not possible to compute all the mi = M/pi in a quasi-linear
complexity, since their total size is quadratic. Instead, the algorithm first computes Li = M mod p2i by the
simultaneous modular reduction above in O(M(n) log n) operations. From there, the mi are obtained from
the Li by an exact division in complexity O(M(deg pi)), whence for a total cost of O(M(n)), again by the
usual hypothesis on the multiplication function. The modular inverse is then computed and they are all
returned. For the complexity of the modular inverse, we use the fast algorithm that will be given below,
which leads to a complexity in

O(M(deg pi) log deg pi)

for each pi, and therefore again for a total of O(M(n) log n).

Conclusion

Finally, the fast algorithm for the Chinese remainder theorem is
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# r list of residues
# p list of polynomials
# x variable
crt_fast:=proc(r,p,x)
local T,M,u,i,c,k:=nops(r);

T:=ProductTree(p,x); M:=T[1];
u:=SimultInv(p,M,x);
for i to k do

c[i]:=rem(r[i]*u[i],p[i],x)
od;
LinComb([seq(c[i],i=1..k)],T,x)

end:

Gathering the complexity analyses of all the steps, we have proved.

Proposition 4.3 (Borodin & Moenck 1974). Given p1, . . . , pk in K[x] such that gcd(pi, pj) = 1 for i ̸= j
and given r1, . . . , rk in K[x] with deg ri < deg pi, one can compute A ∈ K[x] such that A = ri mod pi for
all i in O(M(n) logn), where n = deg p1 + · · ·+ deg pk.

Similar algorithm and complexity result exist for integers.

4.3 Rational Reconstruction

Another important application of the extended Euclidean algorithm is a solution of the rational reconstruc-
tion problem.

4.3.1 Problem and Special Cases

Given A,B in K[x] with degB < n = degA and given k ∈ {1, . . . , n}, the problem of rational reconstruction
is to find R, V in K[x] such that

gcd(V,A) = 1, degR < k, deg V ≤ n− k,
R

V
≡ B mod A. (RR)

Useful and important approximants are obtained as special cases.

Definition 4.3. A Padé approximant of type (m, ℓ) of a power series S ∈ K[[x]] is a rational function
R/V with degR ≤ m, deg V ≤ ℓ, V (0) ̸= 0 and

R

V
= S +O(xm+ℓ+1).

This is a special case of rational reconstruction with A = xn, B = S, k = m+ 1, n = m+ ℓ+ 1.

Definition 4.4. Given ((u1, v1), . . . , (un, vn)) in K and k ∈ {1, . . . , n}, the problem of Cauchy interpo-
lation is to find a rational function R/V with degR < k, deg V ] ≤ n− k such that

R(ui)

V (ui)
= vi, i = 1, . . . , n.

This is a special case of rational reconstruction with A =
∏

(x− ui) and B the interpolation polynomial of
the points.
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4.3.2 Berlekamp-Massey Algorithm

This algorithm uses a Padé approximant to reconstruct a linear recurrence with constant coefficients from
its first terms. By Proposition 3.2 from Lecture 3, if un satisfies the linear recurrence

un+d = ad−1un+d−1 + · · ·+ a0un,

then the generating series
∑
unX

n satisfies

U(X) =
∑
n≥0

unX
n =

N0(X)

P (X)
,

with degN0 < d and
P (X) = 1− ad−1X − · · · − a0X

d.

This fraction can be reconstructed from the first 2d coefficients of the sequence. The algorithm is due to
Berlekamp and Massey around 1965.

# L: [u0, u1, . . . ]
BM:=proc(L,u,n)
local N:=nops(L),m:=iquo(N,2),S,R,i,den,d;

S:=series(add(L[i+1]*x^i,i=0..N-1)+O(x^N),x,N); #
∑
uix

i

R:=numapprox[pade](S,x,[N-m-1,m]); # Padé of type (N − ⌊N
2 ⌋ − 1, ⌊N

2 ⌋)
den:=denom(R);
d:=max(degree(numer(R),x)+1,degree(den,x));
add(coeff(den,x,d-i)*u(n+i),i=0..d)=0

end:

Example 4.3. The simplest example is the sequence of Fibonacci numbers:

> L:=[1,1,2,3,5,8]:
> BM(L,u,n);

u(n) + u(n+ 1)− u(n+ 2) = 0

The choice of d in the algorithm is due to the fact that the order of the recurrence must be increased if
it is not satisfied for the first coefficients: the sequence defined by u0 = 1 and un = Fn+1 for n ≥ 1 has
for generating series ∑

n≥0

unX
n =

1−X2

1−X −X2

but it does not satisfy the recurrence above.

> BM([1,op(L)],u,n);

u(n+ 1) + u(n+ 2)− u(n+ 3) = 0

4.3.3 Existence and Uniqueness of Rational Approximants

Uniqueness is clear: if
R1

V1
=
R2

V2
mod A,
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with degA = n, degRi < k and deg Vi ≤ n− k, then reducing to the same denominator implies that

A|(R1V2 −R2V1),

but since that polynomial has degree smaller than n it follows that it must be 0, which implies that R1/V1 =
R2/V2.

Unfortunately, the problem of rational reconstruction does not always have a solution.

Example 4.4. With n = 3, k = 2, A = X3, B = X2 + 1, we are looking for V of degree at most 1, say
V = aX + b. Then

(aX + b)(1 +X2) = b+ ax+ bX2 mod X3.

The constraint gcd(V,A) = 1 implies that b ̸= 0 but then the right-hand side cannot be of degree < k.

However, the following simpler problem does admit a solution: given A,B in K[x] with degB < n = degA
and given k ∈ {1, . . . , n}, find R, V in K[x] such that

degR < k, deg V ≤ n− k, R ≡ BV mod A. (SRR)

In other words, the constraint gcd(A, V ) = 1 is dropped and then, since V is no longer necessarily invertible
modulo A, the equation R/V ≡ B mod A is replaced by R ≡ BV mod A which is always defined.

This problem admits a solution since, by extracting coefficients of powers of X, it is seen to be equivalent
to a linear system of n equations in the n+ 1 coefficients of R and V .

4.3.4 Computation by Euclid’s Algorithm

Theorem 4.2 (McEliece & Shearer 1978). If (Ri, Ui, Vi)i is the sequence computed by the extended
Euclidean algorithm on (A,B) and j is the smallest index such that degRj < k, then

1. (Rj , Vj) is a solution of the problem (SRR);

2. if the problem (RR) admits a solution (R, V ), then R/V = Rj/Vj.

Proof. If
UjA+ VjB = Rj ,

and degRj < k ≤ degRj−1, then Rj ≡ VjB mod A and by Lemma 4.3,

deg Vj = degA− degRj−1 ≤ degA− k.

This proves the first part of the theorem.
If (R, V ) is a solution of the problem (RR), there exists U such that UA+ V B = R. In matrix form(

U V
Uj Vj

)(
A
B

)
=

(
R
Rj

)
.

If that matrix was invertible, then Cramer’s rule would imply

A =
RVj −RjV

UVj − UjV

whose numerator has degree smaller than n, a contradiction. It follows that UVj = UjV , whence

R

V
=
U

V
A+B =

Uj

Vj
A+B =

Rj

Vj
.
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4.4 Fast Euclidean Algorithm
In terms of complexity, the main result of this lecture is that all the computations presented so far can be
performed in O(M(n) logn) operations. An analogous result for integers is available. Here is a more formal
statement.

Theorem 4.3. Given A,B in K[x] with n = degA > degB, let (Ui, Vi, Ri)i be the sequence computed
by the extended Euclidean algorithm. Then, in O(M(n) log n) operations in K, one can compute:

1. the sequence (Q1, . . . , Qℓ) of quotients;

2. gcd(A,B) and the corresponding Bézout cofactors;

3. given k < n, (Uj , Vj , Rj) with j minimal such that degRj < k.

The rest of this lecture is devoted to an algorithm leading to a proof this result, under a simplifying assump-
tion.

4.4.1 1 ⇒ 2&3

In matrix form, once the quotients are known, the inner loop of the algorithm performs a simple product(
Ri+1 Ui+1 Vi+1

Ri Ui Vi

)
=

(
−Qi 1
1 0

)
︸ ︷︷ ︸

Mi

(
Ri Ui Vi
Ri−1 Ui−1 Vi−1

)
, i ≥ 1,

=Mi · · ·M1

(
B 0 1
A 1 0

)
. (4.6)

It follows that given the polynomials Qi, the matrix product Mi · · ·M1 can be computed by a product tree
in O(M(D) logD) operations, where

D =
∑
j≤i

degQj ≤ degA,

this last inequality coming from Eq. (4.3). If ℓ is the number of quotients computed by the algorithm, this
product gives (

0 Uℓ+1 Vℓ+1

G U V

)
,

the last row thus contains the gcd and the Bézout cofactors. (Observe that this also provides lcm(A,B) =
Uℓ+1A = −Vℓ+1B.)

Finding j minimal such that degRj < k can also be done from the quotients: by Eq. (4.3),

degRj = degA−
j∑

i=1

degQj .

Once the index is found, the matrix product above gives the result in the desired complexity.

4.4.2 Quotients from Truncation
A first idea towards a fast algorithm is that it is not necessary to know all the coefficients of polynomials in
order to compute their quotient. We use the following.

Notation 4.1. If A is in K[x], we write

A|d = A+O(XdegA−d−1).

This is the polynomial obtained from A by keeping only the d+ 1 coefficients of highest degree.
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We can now compare the quotient of A,B and that of A|d, B|d.

Lemma 4.4. For δ = degA− degB and d ≥ δ,

A|d = QB|d +R′, with R′|d′ = R|d′ , d′ = d− (degA− degR).

In words, the quotient is the same and the first d′ coefficients of the remainder are the same.

Proof. Recall from Lecture 3 that Euclidean division of A by B can be computed by series expansion from

XdegAA(1/X)︸ ︷︷ ︸
rev(A)

= XdegBB(1/B)︸ ︷︷ ︸
rev(B)

XdegQQ(1/X)︸ ︷︷ ︸
rev(Q)

+XdegRR(1/X)︸ ︷︷ ︸
rev(R)

XdegA−degR,

Replacing A and B by A|d and B|d amounts to truncating this expansion at order O(Xd+1). The quotient
is recovered since d + 1 > δ = degQ. The second term in the right-hand side of the equality above has
valuation degA − degR and thus all the monomials of degree between degA − degR and d are recovered.
This shows that R|d′ = R′|d′ .

Corollary 4.3. For d ≥ degA+ degB − 2 degRj, the first j steps of the extended Euclidean algorithm
on (A|d, B|d) compute Q1, . . . , Qj.

Proof. For i = 1, . . . , j, if di ≥ degRi−1+degRi−2 degRj , which is nonnegative for i ≤ j since the sequence
of degrees decreases, then the lemma shows that one can compute Qi from Ri−1|di

and Ri|di
and also obtain

Ri+1|di+1 with

di+1 = di − (degRi−1 − degRi+1)

≥ (degRi−1 + degRi − 2 degRj)− (degRi−1 − degRi+1)

= degRi + degRi+1 − 2 degRj .

Starting with d1 given by the bound in the corollary is therefore sufficient to compute all Qi, i = 1, . . . , j.

4.4.3 Divide and Conquer
The basis of the efficient algorithm is to compute the product of the matrices

Mi =

(
−Qi 1
1 0

)
from Eq. (4.6) by a divide-and-conquer approach from the formula

Mk · · ·M1 = (Mk · · ·M⌈k/2⌉+1︸ ︷︷ ︸
M2

) · (M⌈k/2⌉ · · ·M1︸ ︷︷ ︸
M1

),

and reconstruct the required Ri by (
Ri+1

Ri

)
=Mi · · ·M1

(
B
A

)
. (4.7)

The outline of the algorithm reflects this splitting:

1. compute M1 from A|d, B|d for an appropriate d;

2. compute (R⌈k/2⌉+1, R⌈k/2⌉) by M1 ·
(
B
A

)
;

3. compute M2 from (R⌈k/2⌉+1|d′ , R⌈k/2⌉|d′) for an appropriate d′;

4. return the product M2 · M1.
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4.4.4 Half-GCD for a normal degree sequence
The most common situation is the following one, where the algorithm is simpler to state and prove.

Definition 4.5. The sequence Ri produced by Euclid’s algorithm has a normal degree sequence when

degRi = n− i, i = 0, . . . , n.

In that case, the algorithm outlined above becomes

# Input: (A,B) polynomials with degA > degB
# k in {1, . . . ,degA}
# x variable
# Output: the quotients (Q1, . . . , Qk)
# and the product of matrices Mk · · ·M1.
hgcdnormalseq:=proc(A,B,k,x)
local m,d,L1,L2,P1,P2,Q,R;

if k=1 then
Q:=quo(A,B,x);
[Q],Matrix([[-Q,1],[1,0]])

else
m:=ceil(k/2);d:=2*m-1;
L1,P1:=thisproc(cut(A,x,d),cut(B,x,d),m,x);
R:=map(expand,P1.Vector([B,A]));
m:=k-m;d:=2*m-1;
L2,P2:=thisproc(cut(R[2],x,d),cut(R[1],x,d),m,x);
[op(L2),op(L1)],map(expand,P2.P1)

fi
end:

the procedure cut invoked here is simply

cut:=proc(p,x,d)
local n:=degree(p,x),i;

add(coeff(p,x,i)*x^i,i=n-d..n)
end:

Note that the only division takes place at the leaves of the recursion, when k = 1. When invoked with
k = n, the algorithm returns the gcd.

We now show the correctness of the algorithm. Since m = ⌈k/2⌉, Corollary 4.3 shows that d ≥ degA+
degB−2 degRm = n+n−1−2(n−j) = 2m−1 is sufficient to compute Q1, . . . , Qm. From there, the vector
(Rm+1, Rm) is computed by the matrix product (4.7). Since the sequence is assumed to have normal degree,
degRm = n−m,degRm+1 = n−m− 1 and Corollary 4.3 shows that d ≥ degRm +degRm+1 − 2 degRk =
n −m + n −m − 1 − 2(n − k) = 2(k −m) − 1 is sufficient to compute Qm+1, . . . , Qk and thus the second
recursive call is correct too.

Let C(i, k) be the complexity of the algorithm when invoked with (Ri−1, Ri) and k. Then the algorithm
leads to

C(i, k) ≤ C(i, ⌈k/2⌉) + C(i+ ⌈k/2⌉, k − ⌈k/2⌉) + λM(3n/2),

where the bound M(3n/2) comes from the fact that A and B have degree ≤ n and the product Mk · · ·M1

has entries of degree bounded by k = ⌈n/2⌉. Since the degrees of the Ri decrease with i, the complexity

64



C(i+ ⌈k/2⌉, k − ⌈k/2⌉) of the second call is bounded by that of the first one, leading to

C(i, k) ≤ 2C(i, ⌈k/2⌉) + λM(3n/2),

and thus by the ‘master theorem’,
C(1, n) = O(M(n) log n).

This is due to Moenck (1973).

4.4.5 Half-GCD Algorithm – General Case
In the general case, one cannot depend on the normal degree sequence anymore. Instead of relying on an
a priori knowledge of the degrees, decisions are made from the degrees of the polynomials computed in the
recursive calls. The specification of the algorithm when called with A,B and k is that it returns Q1, . . . , Qh

with h such that
degRh ≥ degA− k > degRh+1.

Proving this invariant leads to the correctness of the algorithm. The proof is technical and omitted here.

# Input: (A,B) polynomials with degA > degB
# k in {1, . . . ,degA}
# x variable
# Output: the quotients (Q1, . . . , Qk)
# and the product of matrices Mh · · ·M1.
# with h s.t. degRh ≥ degA− k > degRh+1.
hgcd:=proc(A,B,k,x)
local dA:=degree(A,x),dB:=degree(B,x),Q,m,d,L1,L2,P1,P2,R;

if k<dA-dB then [],Matrix([[1,0],[0,1]])
elif k<=dA-dB then

Q:=quo(A,B,x);
[Q],Matrix([[-Q,1],[1,0]])

else
m:=max(ceil(k/2),dA-dB); # prevents infinite loops
d:=2*m+dB-dA;
L1,P1:=thisproc(cut(A,x,d),cut(B,x,d),m,x);
R:=map(expand,P1.Vector([B,A]));
if R[1]=0 or degree(R[1],x)<dA-k then return L1,P1 fi;
m:=k-(dA-degree(R[2],x));
d:=degree(R[1],x)+degree(R[2],x)-2*(dA-k);
L2,P2:=thisproc(cut(R[2],x,d),cut(R[1],x,d),m,x);
[op(L1),op(L2)],map(expand,P2.P1);

fi
end:

This algorithm was developed first for integers by Lehmer (1938), analyzed by Knuth and Schönhage in
(1971) and extended to polynomials by Brent, Gustavson, Yun (1980).

Additional bibliography
For the algorithmic aspects, the same two books mentioned in the introduction can be used. For a detailed
proof of the half-gcd algorithm, a good source is

Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic complexity theory. Vol. 315.
Grundlehren der Mathematischen Wissenschaften. Berlin: Springer-Verlag, 1997, pp. xxiv+618
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Lecture 5

Resultant

Summary

Resultants are polynomials that encode the non-triviality of gcds. They have applications in non-
linear elimination and in the computation with roots of polynomials when the polynomials are used as a
data-structure. Geometrically, they correspond to projection.

In this lecture, K denotes an arbitrary field, K[X]<k the set of polynomials of K[X] whose degree is
smaller than k. The polynomials A and B are

A = a0X
n + · · ·+ an ∈ K[X],

B = b0X
m + · · ·+ bm ∈ K[X].

They are assumed to have degrees n and m and that (m,n) ̸= (0, 0). The resultant is a polynomial in the
coefficients ai, bj that vanishes exactly when A and B have common factors of positive degree.

5.1 Definition

5.1.1 First Criterion for the Existence of Common Factors

Lemma 5.1. The polynomials A and B in K[X] have a common factor of positive degree if and only if
there exist two polynomials U and V in K[X], not both 0, such that

AU +BV = 0, deg V < degA, degU < degB.

Proof. Assume G = gcd(A,B) has positive degree. Then there exist Â, B̂ such that A = GÂ, B = GB̂ and
AB̂ −BÂ = 0 satisfies the degree constraints.

Conversely, we proceed by contradiction. If A and B do not have a common factor of positive degree, by
Bézout’s identity (previous lecture), there exists U1, V1 such that

U1A+ V1B = 1.

Multiplying AU +BV = 0 by V1 gives

V1AU + V1BV = 0

V1AU + (1− U1A)V = 0

V = A(U1V − V1U).

The polynomial V is not 0 (otherwise the assumptions imply A = 0, which is incompatible with gcd(A,B) =
1). The last identity then implies deg V ≥ degA, a contradiction.

67



5.1.2 Sylvester’s Matrix

The previous lemma leads to considering the following matrix, introduced by Sylvester in 1840.

Definition 5.1. The Sylvester matrix of the polynomials A,B, denoted Syl(A,B), is the matrix of the
linear map

ϕA,B : K[X]<m ×K[X]<n → K[X]<n+m

(U, V ) 7→ UA+ V B

in the bases ((Xm−1, 0), . . . , (1, 0), (0, Xn−1), . . . , (0, 1)) and (Xn+m−1, . . . , 1).

This matrix has m+ n rows and columns and its expression in terms of the coefficients of A and B is

Syl(A,B) :=



a0 b0

a1
. . . b1

. . .
... a0

... b0
an a1 bm b1

. . .
...

. . .
...

an bm


,

with the first m columns involving the ai; the bi only appear in the last n.
By Lemma 5.1, Sylvester’s matrix is related to the gcd as follows.

Lemma 5.2. deg gcd(A,B) > 0 ⇔ det Syl(A,B) = 0.

Indeed, the existence of U, V in Lemma 5.1 is equivalent to the kernel of Sylvester’s matrix being nontrivial,
equivalently, the matrix being singular.

A more precise statement is possible.

Lemma 5.3. deg gcd(A,B) = dimkerϕA,B .

Proof. Let G be a gcd of A and B, let Â, B̂ be defined by A = GÂ,B = GB̂. By definition of the gcd, Â and
B̂ are relatively prime. Then if (U, V ) is in the kernel of ϕA,B , UA+V B = 0 = G(UÂ+V B̂) = UÂ+V B̂ = 0.
Since Â, B̂ are relatively prime, this is equivalent to the existence of a polynomial Q such that U = QB̂, V =
−QÂ. Since degU < m,, this polynomial Q has degree at most m−deg B̂ = m−(m−degG) = degG. Thus
the elements in the kernel of ϕA,B are in one-to-one correspondence with the polynomials in K[x]<degG.

5.1.3 Resultant

Definition 5.2. The resultant of the polynomials A,B in K[X] is the determinant of their Sylvester
matrix. It is denoted Res(A,B).

The resultant was introduced by Bézout in 1764.

Proposition 5.1. There is a polynomial Rn,m ∈ Z[A0, . . . , An, B0, . . . , Bm] such that

Res(A,B) = Rn,m(a0, . . . , bn).

In other words,
deg gcd(A,B) > 0 ⇔ Rn,m(a0, . . . , bn) = 0.
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This polynomial Rn,m is thus a ‘universal polynomial’. Over any field K, a pair of polynomials of degrees n
and m have a nontrivial gcd if and only if their coefficients make Rn,m vanish.

Proof. This comes from writing the formula for the determinant as a sum over permutations.

Example 5.1. If A = aX + b, B = cX + d, then

Syl(A,B) =

(
a c
b d

)
→ Res(A,B) = ad− bc.

Example 5.2. Let A = aX2 + bX + c and B = A′ = 2aX + b. Then

Syl(A,B) =

a 2a 0
b b 2a
c 0 b

 → Res(A,B) = −a(b2 − 4ac).

The second factor is the discriminant. This example is generalized below.

Example 5.3. If A = X − a and B = b0X
m + · · ·+ bm, then

Syl(A,B) =



1 0 . . . 0 b0

−a 1 0
... b1

0 −a
. . . 0 b2
. . . 1

...
0 . . . 0 −a bm


→ Res(A,B) = B(a).

This is obtained by expanding with respect to the first row and induction. A factor (−1)m comes from
b0 being in the column of index m+ 1, it is cancelled by another factor (−1)m coming from the number
of −a in the diagonal of the remaining minor.

5.2 Properties of the Resultant

5.2.1 Resultant as a Linear Combination

When A and B are relatively prime, the resultant is a common multiple of the denominators of the Bézout
cofactors. More precisely,

Proposition 5.2. There exist U, V in K[X] such that

Res(A,B) = UA+ V B.

The coefficients of U and V are integer polynomials in the coefficients of A and B.
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Proof. By linear combinations of the rows of Sylvester’s matrix, it follows that

Res(A,B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 b0

a1
. . . b1

. . .
... a0

... b0
an a1 bm b1

. . .
...

. . .
...

XmA(X) A(X) XnB(X) B(X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and the conclusion follows by expanding with respect to the last row.

5.2.2 Homogeneity

Lemma 5.4. If λ ̸= 0,

Res(λA,B) = λm Res(A,B), Res(A, λB) = λn Res(A,B).

Proof. This is a consequence of the multilinearity of the determinant.

5.2.3 Quasi-Symmetry

Lemma 5.5.
Res(B,A) = (−1)mn Res(A,B).

Proof. This is the consequence of the fact that the determinant is an alternating form.

5.2.4 Poisson’s Formula

Proposition 5.3. The linear map

Let ψB : K[X]/(A) → K[X]/(A)

V 7→ V B mod A

has for determinant a−m
0 Res(A,B).

Proof. Introduce the map of Euclidean division:

εA : K[X]<n+m → K[X]<m ×K[X]<n

P 7→ (Q,R) s.t. P = QA+R

and consider the composition ϵA ◦ ϕA,B . We have

εA ◦ ϕA,B : (U, V )
ϕA,B−−−→ UA+ V B

εA−−→ (U + (V B quoA), V B mod A).

The corresponding matrices are

εA :

a−10
⋱

a−10
1

⋱
1

0
0

*
0

0

* εA ∘ ϕA,B :

1
⋱

1
0

*
0

0

MψB

Taking the determinants on both sides gives the result.
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5.2.5 Multiplicativity

Proposition 5.4. If B1, B2 in K[X] have positive degree, then

Res(A,B1B2) = Res(A,B1)Res(A,B2).

Proof. This is a consequence of Poisson’s formula, since ψB1B2
= ψB2

◦ ψB1
.

5.2.6 Expression in the Roots
This is possibly the most useful result in this lecture.

Theorem 5.1. If A = a0(X − α1) · · · (X − αn), B = b0(X − β1) · · · (X − βm), then

Res(A,B) = am0 b
n
0

n∏
i=1

m∏
j=1

(αi − βj) = am0

n∏
i=1

B(αi) = (−1)mnbn0

m∏
j=1

A(βj).

Proof. The second equality is a consequence of homogeneity, multiplicativity and Example 5.3. The first one
follows from the expansion of B and the third one from the first one.

5.2.7 Discriminants
The discriminant is a polynomial in the coefficients of a polynomialA that detects multiple roots.

Definition 5.3. The discriminant of A = a0
∏n

i=1(X − αi) is

∆(A) = a2n−2
0

∏
i<j

(αi − αj)
2 = (−1)n(n−1)/2a2n−2

0

∏
i̸=j

(αi − αj).

Proposition 5.5. ∆(A) is a polynomial in the coefficients of A and

Res(A,A′) = (−1)n(n−1)/2a0∆(A).

Proof. Again by the theorem,
Res(A,A′) = an−1

0

∏
j

A′(αj),

and by expansion of the derivative,
A′(αj) = a0

∏
i̸=j

(αj − αi).

Proposition 5.1 shows that a0∆(A) is a polynomial in the coefficients of A. But a0 divides the resultant,
since it is a factor of the first row of Sylvester’s matrix.

5.3 Computation of the Resultant
Since the resultant characterizes the polynomials with a nontrivial gcd, it does not come as a surprise that
there is a strong relation between the resultant and Euclid’s algorithm.
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Proposition 5.6. If A = BQ+R, with n ≥ m and n > degR, then

Res(A,B) = (−1)mn bn−degR
0 Res(B,R).

Proof. Starting from the determinant of Sylvester’s matrix,

Res(A,B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 b0

a1
. . . b1

. . .
... a0

... b0
... a1

... b1

an
... bm

...
. . .

...
. . .

...
an bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

linear combinations of the columns using the coefficients of Q give

Res(A,B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 b0

r0
. . . b1

. . .
...

. . . 0
... b0

... r0
... b1

rd
... bm

...
. . .

...
. . .

...
rd bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By mn transposition of columns, this gives

Res(A,B) = (−1)mn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0 0

b1
. . . r0

. . .
... b0

...
. . . 0

... b1
... r0

bm
... rd

...
. . .

...
. . .

...
bm rd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This last matrix has an upper right block of zeroes of dimension n − degR. The corresponding upper left
block is triangular, with determinant bn−degR

0 . The lower right block is Sylvester’s matrix Syl(B,R).

A first simple algorithm for the resultant follows from a recursive use of the proposition:
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euclres:=proc(A,B,x)
local R:=A,S:=B,res:=1,T;

while degree(S,x)>0 do
T:=rem(R,S,x);
res:=res*(-1)^(degree(R,x)*degree(S,x))

*lcoeff(S,x)^(degree(R,x)-degree(T,x));
(R,S):=(S,T)

od;
if S=0 then 0 # non-trivial gcd
else S^degree(R,x)*res # last res. is a constant
fi

end:

Recall from the previous lecture that it is possible to compute all the quotients in the Euclidean algorithm
by the half-gcd algorithm. Using these quotients gives a fast algorithm for the resultant:

# degA ≥ degB
fastres:=proc(A,B,x)
local d,Q,alpha,ell,i;

d[0]:=degree(A,x);alpha[0]:=lcoeff(A,x);
Q:=hgcd(A,B,d[0],x)[1]; ell:=nops(Q);
for i to ell do d[i]:=d[i-1]-degree(Q[i],x) od; # di = degRi

if d[ell]>0 then return 0 fi; # αi = lcoeff(Ri)
for i to ell do alpha[i]:=alpha[i-1]/lcoeff(Q[i],x) od;
(-1)^add(d[i-1]*d[i],i=1..ell-1)*alpha[ell]^d[ell-1]*

mul(alpha[i]^(d[i-1]-d[i+1]),i=1..ell-1)
end:

First, the quotients are computed in O(M(n) log n) operations. From the quotients, the degrees of the
remainders are computed in O(n) operations, and similarly for their leading coefficients. Finally, using the
formula of the proposition gives the result in O(n) more operations. We have thus obtained:

Theorem 5.2. Given A,B in K[x] with n = degA > degB, then the resultant Res(A,B) can be computed
in O(M(n) log n) operations in K.

5.4 Bivariate Resultant
Up to now, the resultant has been defined for polynomials with coefficients in a field. An extension to a
more general setting is as follows.

Definition 5.4. If A,B belong to the ring A = K[X,Y ], one defines ResX(A,B) = det Syl(A,B), with
A,B viewed in Ã = K(Y )[X].

By the proof of Proposition 5.2, there exists U, V in A such that

ResX(A,B) = UA+ V B ∈ K[Y ].

It follows that if there exists x, y such that A(x, y) = B(x, y) = 0, then R(y) = 0. We now consider the
converse question: if y is such that R(y) = 0, does there exists x such that A(x, y) = B(x, y) = 0?
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Figure 5.1: Intersection of two Curves

5.4.1 Geometric Interpretation
First, observe that under appropriate conditions, the value of the resultant at a point is the value of the
resultant between the polynomials evaluated at that point.

Proposition 5.7 (Specialization). If A,B are in K[X,Y ] and R = ResX(A,B), then for any y ∈ K,

a0(y) ̸= 0 and b0(y) ̸= 0 ⇒ Res(A(X, y), B(X, y)) = R(y).

Proof. The conditions imply that degA(X, y) = degX A and similarly for B. Thus the Sylvester matrix of
A(X, y), B(X, y) is the specialization of that of A(X,Y ), B(X,Y ) and the conclusion follows from the same
specialization property for the determinant.

We can now conclude on the existence of common zeros.

Theorem 5.3 (Extension). If K is algebraically closed, A,B are in K[X,Y ] and there exists y ∈ K such
that

a0(y)b0(y) ̸= 0, ResX(A,B)(y) = 0,

then there exists x ∈ K such that
A(x, y) = B(x, y) = 0.

Note that by exchanging the roles of X,Y one would similarly obtain a polynomial that vanishes at the
abscissas of the common solutions.

Proof. By the previous proposition,

ResX(A,B)(y) = Res(A(X, y), B(X, y)).

If this vanishes, gcd(A(X, y), B(X, y)) has positive degree in X. Since K is algebraically closed, it has roots x,
where A(x, y) = B(x, y) = 0.

Geometrically, this means that the resultant vanishes on the projection of an intersection: its zeroes
correspond either to points of the projection on the y-axis or to points where one of the leading coefficients
vanishes (corresponding to projective solutions). This reasoning extends to K[X,Y1, . . . , Yk] for k ≥ 1.

Example 5.4. With A = XY − 1, B = X2Y +Y 2 − 4, the set defined by A = B = 0 in R2 is given by the
intersections of the blue and red curve in Fig. 5.1.
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The computation of the resultant gives

ResX(A,B) =

∣∣∣∣∣∣
Y 0 Y
−1 Y 0
0 −1 Y 2 − 4

∣∣∣∣∣∣ = Y (Y 3 − 4Y + 1).

Its roots correspond either to the vanishing of the common factor Y of the leading coefficients of A,B or
to the ordinate of the intersections, i.e., their projection on the y-axis.

Another observation that can be made in this example is that the resultant is not necessarily the small-
est degree polynomial that can be obtained by linear combination of A,B with polynomial coefficients.
Indeed, one can find that

Y B − (XY + 1)A = Y 3 − 4Y + 1.

(An algorithm for doing so will be given in the Lecture 9.)

5.4.2 Construction of Polynomials with Prescribed Roots
The use of bivariate resultants gives tools to construct polynomials that cancel sums, products, or quotients
of roots of polynomials, without knowing these roots.

Proposition 5.8. If A = a0(X − α1) · · · (X − αn), B = b0(X − β1) · · · (X − βm), then

ResX(A(T −X), B(X)) = (−1)mnam0 b
n
0

∏
i,j

(T − (αi + βj))

ResX(A(X), XmB(T/X)) = am0 b
n
0

∏
i,j

(T − αiβj)

If gcd(A,C) = 1,

ResX(A(X), C(X)T −B(X)) = a
max(degB−degC,0)
0 Res(A,C)

∏
i

(
T − B(αi)

C(αi)

)
.

Proof. This is a corollary to Theorem 5.1.
The polynomial A(T −X) has for roots T − αi. The first formula is then obtained by the first formula

of the theorem.
Substitution in the expression for B gives

XmB(T/X) = b0
∏

(T − βiX).

From this and the second formula of the theorem, the second result follows.
Still by the second formula of the theorem, using the fact that degX(C(X)T−B(X)) = max(degB,degC),

one obtains

ResX(A(X), C(X)T −B(X)) = a
max(degB,degC)
0

n∏
i=1

(C(αi)T −B(αi)).

Since gcd(A,C) = 1, none of the C(αi) is 0. They can thus be factored out, giving

am0

n∏
i=1

C(αi)

n∏
i=1

(
T − B(αi)

C(αi)

)
.

The theorem also gives

Res(A,C) = am0

n∏
i=1

C(αi),
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which gives the last formula.

5.4.3 Degree Bounds

These bounds are used in the design and analysis of an efficient algorithm for the resultant.

Proposition 5.9. Let A,B be in K[X,Y ].

1. If dA = degY A, dB = degY B, then degRes(A,B) ≤ mdA + ndB;

2. if dA = degA, dB = degB, then degRes(A,B) ≤ dAdB .

Proof. The first statement follows from the expansion of the determinant.
For the second one, considering the degree of the entry (i, j) of the Sylvester matrix gives

deg(Syl(A,B)i,j) ≤

{
dA − n+ i− j (j ≤ m),

dB + i− j (j > m).

It follows that for any permutation σ,

m+n∑
j=1

deg(Syl(A,B)σ(j),j) ≤
m∑
j=1

(dA − n+ σ(j)− j) +

m+n∑
j=m+1

(dB + σ(j)− j)

≤ mdA + ndB −mn+
∑

σ(j)−
∑

j

= dAdB − (dA − n)(dB −m) ≤ dAdB .

5.4.4 Bivariate Resultant

In view of the importance of the resultant in bivariate elimination, we give a last result on the complexity
of this operation. Consider two polynomials A,B in K[X,Y ] with degX B = m ≤ degX A = n and degY A,
degY B of degree at most d. By Proposition 5.9, the degree of ResX(A,B) is bounded by D := 2nd. A
simple evaluation-interpolation algorithm is as follows

1. Evaluate the coefficients of A and B at D + 1 points;

2. Evaluate D + 1 univariate resultants;

3. Interpolate.

With the complexities of the resultant, of multipoint evaluation and interpolation, this whole algorithm has
complexity

O

(
n
D

d
M(d) log(d) +DM(n) log n+M(D) logD

)
= Õ(n2d),

where the notation Õ means that the logarithmic factors are dropped, and this estimate comes from using
multiplication based on FFT.

This has been the best complexity for a very long time, until 2018 where G. Villard gave an algorithm
in O(n1.58d) operations in K, under some genericity assumptions.
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Additional bibliography
A very clear introduction to the resultant can be found in

Serge Lang. Algebra. 3rd edition. Vol. 211. Graduate Texts in Mathematics. New York: Springer-Verlag,
2002, pp. xvi+914

Note however that for simplicity, we made the choice of focusing on matrices with entries in a field, which is
not the case in Lang’s book and in a large part of the literature.

Another nice book for these questions and many more is

D.A. Cox, J.B. Little, and D. O’Shea. Ideals, varieties, and algorithms. 4th edition. Springer New York,
2015
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Lecture 6

Linear Recurrences and Differential
Equations

Summary

Linear recurrences and differential equations with polynomial coefficients provide a data-structure for
their solutions. In particular, they enjoy closure properties that lead to the automatic proof of identities.

In this lecture, K is a field of characteristic 0 (such as Q,C or Q(t)). We note [xn]A(x) the coefficient
of xn in the polynomial or power series A(x).

6.1 Definitions and Examples

6.1.1 Linear Recurrences

Definition 6.1. A sequence (an)n≥0 of elements of K is called polynomially finite (or P-finite) if it
satisfies a linear recurrence of the form

pd(n)an+d + · · ·+ p0(n)an = 0, n ≥ 0,

with pi ∈ K[n] and pd ̸= 0. The integer d is called the order of the recurrence.

Example 6.1. The Fibonacci sequence that satisfies Fn+2 = Fn+1 + Fn and more generally any sequence
solution of a linear recurrence with constant coefficients is P-finite.

Example 6.2. The Harmonic numbers Hn =
∑n

k=1 1/k satisfy

Hn+1 −Hn =
1

n+ 1

and therefore
(n+ 1)Hn+1 − (n+ 1)Hn = 1

and then by subtracting this from its shifted value at n+ 1:

(n+ 2)Hn+2 − (2n+ 3)Hn+1 + (n+ 1)Hn = 0.

More generally, if (an) is a rational sequence, vn =
∑n

k=1 ak is P-finite, by the same derivation. More

79



generally, if (an) is P-finite, then bn =
∑n

k=1 ak is P-finite too: it satisfies the recurrence obtained by
replacing an by bn − bn−1 in Definition 6.1.

Example 6.3. The sequences n!, 1/n!,
(
2n
n

)
, Cn = 1

n+1

(
2n
n

)
(the Catalan numbers) are P-finite, with

recurrences

an+1−(n+1)an = 0, (n+1)an+1−an = 0, (n+1)an+1−2(2n+1)an = 0, (n+2)an+1−2(2n+1)an = 0.

More generally, any quotient of products of factorials of the form (an + b)! with a a positive integer is
P-finite, with a recurrence of order 1.

The definition demands a homogeneous recurrence (the right-hand side of Definition 6.1 is 0), but there is
no loss in generality in doing so.

Lemma 6.1. If (an)n≥0 in KN satisfies

pd(n)an+d + · · ·+ p0(n)an = q(n), n ≥ 0, (6.1)

with q and pi in K[n] and pd ̸= 0, then (an) is a P-finite sequence.

Proof. If q(n) = 0 there is nothing to prove. Otherwise, this is as in the example of Harmonic numbers:
shift and subtract. Shifting gives

pd(n+ 1)an+d+1 + · · ·+ p0(n+ 1)an+1 = q(n+ 1), n ≥ 0.

Multiplying both sides of this recurrence by q(n), both sides of Eq. (6.1) by q(n+ 1) and subtracting give a
homogeneous linear recurrence for (an), whose leading coefficient pd(n+ 1)q(n+ 1) is nonzero.

Sometimes a linear recurrence is not satisfied by the first few values of the sequence. Still, again, the sequence
is P-finite.

Lemma 6.2. If (an) ∈ KN satisfies

pd(n)an+d + · · ·+ p0(n)an = 0, n ≥ K ≥ 0,

with pi in K[n] and pd ̸= 0, then (an) is P-finite.

Proof. Multiply both sides of the recurrence by the nonzero polynomial n(n− 1) · · · (n−K + 1).

The key to proving identities between sequences — that are infinite objects — from recurrences — that are
finite objects — is to use the fact that the solution of a recurrence is unique, once sufficiently many initial
conditions are known, and provided the leading coefficient does not vanish.

Proposition 6.1. If (un) and (vn) are two sequences in KN that both satisfy

pd(n)an+d + · · ·+ p0(n)an = 0, n ≥ 0,

with pi in K[n] and pd ̸= 0, then

a0 = b0, . . . , ad−1 = bd−1

0 ̸∈ pd(N)

}
=⇒ (an) = (bn).
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Proof. The proof is by induction on n. The identity is satisfied for n < d and the condition that pd does not
vanish on the elements of N shows that an+d is determined by the previous values for all n ∈ N.

This proposition will often be used to prove that a sequence is 0, by constructing a linear recurrence it
satisfies and checking that all initial conditions are 0.

In terms of computation, recognizing that a sequence is P-finite lets one compute its nth term or its first
n terms in low complexity as seen in previous lectures: given the initial conditions, assuming that 0 ̸∈ pd(N)
and that the degrees of the coefficients pi are bounded by m, one can

— compute u0, . . . , uN in O(NdM(m) logm/m) arithmetic operations by using multipoint evaluation from
Lecture 3 to evaluate the coefficients;

— compute uN in O(dωM(N1/2m1/2) log(Nm)) arithmetic operations, using the baby steps-giant steps
method seen in Lecture 3;

— compute uN in O(dωMZ(mN logN + N log d) logN) bit operations when the coefficients pi belong
to Q[n] by the method of binary splitting seen in Tutorial 1.

Lower complexity estimates are available in the case of linear recurrences with constant coefficients. They
are left as an exercise.

6.1.2 Linear Differential Equations

Definition 6.2. A power series A ∈ K[[x]] is called differentially finite (or D-finite) if it satisfies a linear
differential equation of the form

pr(x)A
(r)(x) + · · ·+ p0(x)A(x) = 0, (6.2)

with pi in K[x] and pr ̸= 0.

Example 6.4. Many elementary functions have Taylor series that are D-finite (by extension, we say that
these functions are D-finite). For instance, this is the case for

exp(x), log(1 + x), sin(x), arcsin(x).

Example 6.5. If R is a rational function with R(0) = 1, then for any α ∈ Q, Rα is D-finite, with differential
equation

Ry′ − αR′y = 0.

Example 6.6. As a large part of physics is governed by the Laplace operator, that is linear, many of the
‘special functions’ of mathematical physics are D-finite. This is the case for the Bessel functions, Airy
functions, Struve functions, Weber functions,. . . .

Example 6.7. Another source of D-finite power series is provided by combinatorics. In this situation,
the power series of interest are generating functions, which means that the coefficients are nonnegative
integers that count objects of some type. The Catalan numbers above are a special case: they count
binary trees with n nodes. Other examples come from lattice path enumeration.

Here is the analogue of Lemma 6.1.
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Lemma 6.3. If the power series A ∈ K[[x]] satisfies a linear differential equation of the form

pr(x)A
(r)(x) + · · ·+ p0(x)A(x) = q(x)

with q ∈ K(x) and pr ̸= 0, then A is differentially finite.

Proof. Differentiate both sides of the equation, multiply by q and subtract the equation multiplied by q′.
Finally, multiply by a common denominator of all coefficients.

Useful characterization

The field of fractions of the integral domain K[[x]] is the field of Laurent series.

Definition 6.3. A Laurent series is a formal series of the form∑
n≥n0

anx
n, n0 ∈ Z.

The field of Laurent series with coefficients in K is denoted K((x)).

Compared to formal power series the difference is that the valuation can be a negative integer.
The following gives a way to prove that a power series is D-finite.

Proposition 6.2. A formal power series A ∈ K[[x]] is D-finite if and only if A,A′, A′′, . . . generate a
finite-dimensional vector space over K(x) in K((x)).

Proof. If A is D-finite, it satisfies a linear differential equation like Eq. (6.2). This implies that A(r) is a
linear combination of A, . . . , A(r−1) with rational function coefficients −pi/pr. By successive differentiation,
it follows by induction that for any k ≥ r, A(k) belongs to the vector space generated by A, . . . , A(r−1).

Conversely, ifA,A′, A′′, . . . generate a vector space of dimension r, then the r+1 power seriesA,A′, . . . , A(r)

are linearly dependent over K(x) and therefore satisfy a linear relation of the form

qr(x)A
(r) + · · ·+ q0A = 0,

with qi rational functions in K(x), not all 0. Multiplying by a common denominator gives a linear differential
equation of the type (6.2). Moreover, the leading coefficient qr is not 0: if it was, there would exist a
differential equation of order smaller than r, and by the previous part of the proof, the dimension of the
vector space generated by the derivatives of A would also be smaller than r.

While this result is useful in proofs, the actual computation of linear differential equations relies on linear
algebra in the underlying finite-dimensional vector space.

Notation 6.1. In this lecture, we denote by VA the vector space generated by A,A′, . . . and by dA its
dimension:

VA = VectK(x)(A,A
′, A′′, . . . ), dA = dimVA.

Equivalence

A source both of linear differential equations and of linear recurrences is the following.

Theorem 6.1. The formal power series A(x) =
∑

n≥0 anx
n is differentially finite if and only if the

sequence (an) is polynomially finite.
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Proof. In both directions, the proof is an algorithm.
Recall the notation [xn]A(x) for the coefficient of xn in the power series A(x). By convention, [xn]A(x) = 0

when n < 0. By induction on i and j, it follows that

[xn]xjA(i)(x) = (n− j + 1) · · · (n− j + i)[xn+i−j ]A(x).

Equation (6.2) can be written in the form ∑
i,j

ci,jx
jA(i)(x) = 0,

where the sum is finite. Extracting the coefficient of xn in both sides gives∑
i,j

ci,j(n− j + 1) · · · (n− j + i)an+i−j = 0, n ∈ Z. (6.3)

When n is such that n+ i− j is negative, this equation becomes 0 = 0. For n smaller than mini,j(j − i), it
gives a linear relation between the first coefficients of A. For n larger that this value, it gives a recurrence.
Lemma 6.2 then shows that (an) is polynomially finite.

Conversely, if (an) is the sequence of coefficients of a formal power series A(x), then multiplying the
recurrence (6.1) by xn and summing over n with the help of the relations1

∑
n≥0

nianx
n =

(
x
d

dx

)i

A(x),

∑
n≥0

an+jx
n =

A(x)− a0 − a1x− · · · − aj−1x
j−1

xj

leads to a linear differential equation with polynomial coefficients and a rational right-hand side. The
conclusion follows from Lemma 6.3.

Example 6.8. Since n! is a polynomially finite sequence,
∑

n≥0 n!x
n is a differentially finite power series.

Convergence is not a relevant issue in these matters.

Example 6.9. By Example 6.5, (1 + x)α is differentially finite. Translating the differential equation

(1 + x)y′ − αy = 0

into a recurrence gives
(n+ 1)cn+1 + (n− α)cn = 0.

This is a first-order linear recurrence satisfied by

cn =

(
α

n

)
=
α(α− 1) · · · (α− n+ 1)

n!
,

as can be checked by substitution in the recurrence.

Example 6.10. The same idea lets one compute high-order coefficients of the polynomial

(1 + x)2N (1 + x+ x2)N .

1The notation (xd/dx)i means that the operator xd/dx is iterated i times. For instance (xd/dx)2A(x) = x(xA′)′.
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Indeed, this polynomial satisfies the linear differential equation

y′

y
=

2N

1 + x
+N

1 + 2x

1 + x+ x2
.

Reducing to the same denominator gives

(1 + x+ x2)(1 + x)y′ − (2N(1 + x+ x2) +N(1 + 2x)(1 + x))y = 0.

Extracting the coefficient of xn gives the recurrence

(n+ 3)un+3 − (3N − 2n− 4)un+2 − (5N − 2n− 2)un+1 − (4N − n)un = 0,

with which it is easy to compute the first k coefficients (or just the kth one) for k = N for instance, more
efficiently than by expanding the polynomial.

The algorithms following from the proof of the proposition are implemented in the Maple package gfun under
the names diffeqtorec and rectodiffeq. They also keep track of the initial conditions if they are given in
their input. This simplifies the task of dealing with a computation such as the ones above.

Example 6.11.

> f:=(1+x)^alpha;

f := (1 + x)α

> diff(y(x),x)=normal(diff(f,x)/f)*y(x);

d

dx
y(x) =

αy(x)

1 + x

> gfun:-diffeqtorec({%,y(0)=1},y(x),u(n));

{(−α+ n)u(n) + (n+ 1)u(n+ 1), u(0) = 1}

> P:=(1+x)^(2*N)*(1+x+x^2)^N;

P := (1 + x)2N (1 + x+ x2)N

> rec:=gfun:-diffeqtorec({diff(y(x),x)=normal(diff(P,x)/P)*y(x),y(0)=1},y(x),u(n));

{(−4N + n)u(n) + (−5N + 2n+ 2)u(n+ 1) + (−3N + 2n+ 4)u(n+ 2) + (n+ 3)u(n+ 3) ,

u(0) = 1, u(1) = 3N, u(2) =
9

2
N2 − 1

2
N

}

6.2 Closure Properties

6.2.1 Sum and Product of Differentially Finite Power Series

Theorem 6.2. If A,B in K[[x]] are differentially finite, and α ∈ K, then αA,A + B and AB are
differentially finite.

Proof. 1. Since the differential equations considered here are linear, if A is a solution of such an equation,
so is αA.
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2. Let VA and VB be defined as the vector spaces generated by the derivatives of A and B. Then by
induction, for any k ∈ N,

(A+B)(k) = A(k) +B(k) ∈ VA + VB

and the dimension of VA + VB is at most dA + dB , showing that all the derivatives of A + B belong to a
finite-dimensional vector space and thus that A+B is differentially finite.

3. By Leibniz’s rule,

(AB)(k) =

k∑
i=0

(
k

i

)
A(i)B(k−i)

∈ VectK(x)(A
(i)B(j) | i < dA, j < dB)

and that vector space has dimension bounded by dAdB .

The algorithm underlying these proofs consists in constructing a matrix whose entries are the coordinates of
the successive derivatives of the power series of interest in the generators ((A(i), B(i)) for the sum, (A(i)B(j))
for the product) and then looking for the kernel of that matrix when it has more columns than rows. In
Maple, this is implemented the the function poltodiffeq of the package gfun.

Identities are proved using this theorem by constructing a linear differential equation and checking initial
conditions.

Example 6.12. Simple identities concerning linear differential equations with constant coefficients can be
obtained without even constructing the equations. For instance, here is a simple proof that

sin2 x+ cos2 x = 1.

The starting point is y′′+y = 0 that is satisfied by both sin and cos. Next, if y is a solution of this equation
then y2, yy′, y′2 generate the vector space of derivatives of y2: all of them have a derivative that is a linear
combination of the other ones. Thus sin2 and cos2 satisfy the same linear differential equation, that has
order at most 3. Since it is linear, their sum sin2 +cos2 is also solution to this equation. Adding −1 gives
a power series whose derivatives generate a vector space of dimension at most 3 + 1 = 4. It follows that
sin2 +cos2 −1 satisfies a linear differential equation of order at most 4. Moreover, all the computations
involve only constant coefficients, so that this equation has constant coefficients. In particular the leading
coefficient does not vanish at 0 and the Cauchy-Lipschitz theorem (also called Picard-Lindelöf theorem)
applies and shows uniqueness of the solution given the first 4 initial conditions. Now, a direct computation
shows

sin2 x+ cos2 x− 1 = O(x4),

showing that these initial conditions are 0 and concluding the proof of the identity.

Example 6.13. We derive the identity

(arcsin(x))2 =
∑
n≥0

n!(
1
2

)
· · ·
(
n+ 1

2

) x2n+2

2n+ 2
(6.4)

with intermediate computations in Maple. Let f = arcsinx. From f ′ = 1/
√
1− x2 it follows as in

Example 6.5 that f is differentially finite:

> f:=arcsin(x):
> diff(f,x);

1√
1− x2
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> deq:=diff(y(x),x,x)=normal(diff(%,x)/%)*diff(y(x),x);

d2

dx2
y(x) = − x

x2 − 1

d

dx
y(x)

This equation will be used to rewrite all instances of y′′ in terms of y′.
By direct computation using this equation, derivatives of linear combinations a(x)y2+b(x)yy′+c(x)y′2

are of the same form:

> diff(y(x)^2,x);

2y(x)

(
d

dx
(x)

)

> subs(deq,diff(y(x)*diff(y(x),x),x));(
d

dx
(x)

)2

−
xy(x) d

dx (x)

x2 − 1

> subs(deq,diff(diff(y(x),x)^2,x));

−2
x
(

d
dx (x)

)2
x2 − 1

This gives a matrix

> M:=Matrix([[0,0,0],[2,x/(1-x^2),0],[0,1,2*x/(1-x^2)]]); 0 0 0
2 x

−x2+1 0

0 1 2x
−x2+1


which is such that the derivative of a vector with coordinates a(x), b(x), c(x) in the generators y(x)2, y(x)y′(x), y′(x)2
is obtained by differentiation and multiplication by M . Thus starting with y(x)2, we get the successive
derivatives in this basis:

> H[0]:=Vector([1,0,0]):
> for i to 3 do H[i]:=diff(H[i-1],x)+M.H[i-1] od;

H1 :=

 0
2
0


H2 :=

 0
2x

−x2+1

2


H3 :=

 0
2

−x2+1 + 6x2

(−x2+1)2

6x
−x2+1


This produces 4 vectors in dimension 3. A linear dependency is obtained by looking for the kernel of the
matrix

> Matrix([seq(H[i],i=0..3)]);
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 1 0 0 0

0 2 2x
−x2+1

2
−x2+1 + 6x2

(−x2+1)2

0 0 2 6x
−x2+1


The differential equation is given by the coordinates of a vector in its kernel:

> op(LinearAlgebra[NullSpace](%)); 
0
1

x2−1
3x

x2−1

1


> add(%[i]*diff(y(x),[x$(i-1)]),i=1..4);

d
dxy(x)

x2 − 1
+

3x
(

d2

dx2 y(x)
)

x2 − 1
+

d3

dx3
y(x)

This differential equation satisfied by arcsin(x)2 can now be translated into a linear recurrence for its
Taylor coefficients:

> gfun:-diffeqtorec(%,y(x),c(n));(
n2 + 2n+ 1

)
c(n+ 1) +

(
−n2 − 5n− 6

)
c(n+ 3)

> collect(subs(n=n-1,%),c,factor);

n2c(n)− (n+ 2) (n+ 1) c(n+ 2)

From this linear recurrence and the initial conditions c0 = 1, c1 = 0, the formula (6.4) follows.

Corollary 6.1. If A,B in K[[x]] are differentially finite, the truncated product AB + O(xN ) can be
computed in O(N) operations.

This is to be contrasted with O(M(N)) for arbitrary power series.

Proof. From the linear differential equations satisfied by A,B, one computes a linear differential equation
for the product AB and from there a linear recurrence for its coefficients. Unrolling this recurrence leads to
the O(N) complexity.

6.2.2 Sum and Product of Polynomially Recursive Sequences
The analogue of the previous theorem is the following.

Theorem 6.3. If (an) and (bn) are polynomially finite sequences in KN and α ∈ K then (αan), (an+ bn)
and (anbn) are polynomially finite.

In Maple, this is implemented in the function poltorec of the package gfun.

Proof. Let (an) and (bn) satisfy the linear recurrences

pd(n)an+d + · · ·+ p0(n)an = 0, n ≥ 0,

qδ(n)bn+δ + · · ·+ q0(n)bn = 0, n ≥ 0.
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Since pd and qδ are nonzero polynomials, there exists K ∈ N such that pd(n)qδ(n) ̸= 0 for n ≥ K. Then for
k ∈ N,

an+k = r
[k]
d−1(n)an+d−1 + · · ·+ r

[k]
0 (n)an, n ≥ K

bn+k = s
[k]
δ−1(n)bn+δ−1 + · · ·+ s

[k]
0 (n)bn, n ≥ K,

with r[k]i and s[k]i rational functions whose denominators do not vanish in N.
It follows that for n ≥ K, the shifted sequences (an+k + bn+k) can be rewritten as linear combinations of

the shifted sequences (an+i) and (bn+j) for i < d, j < δ and similarly for the products (an+kbn+k) in terms
of (an+ibn+j) for i < d, j < δ. By Lemma 6.2, these sequences are polynomially finite.

Example 6.14. Cassini’s identity on the Fibonacci numbers

Fn+2Fn − F 2
n+1 = (−1)n, n ≥ 0

is proved exactly in the same way as sin2 +cos2 = 1 above, by counting dimensions. Since the recurrences
have constant coefficients, there is no need to discuss the largest integer root of the leading coefficient.

As a consequence of the theorem above, another closure property holds for differentially finite power
series.

Definition 6.4. If A =
∑
anx

n and B =
∑
bnx

n are two power series, then their Hadamard product is

A⊙B =
∑
n≥0

anbnx
n.

Corollary 6.2. If A and B are two differentially finite power series, then so is their Hadamard product
A⊙B.

Proof. Since A and B are differentially finite, their sequences of coefficients (an) and (bn) are polynomially
finite. By the previous theorem, so is their product (anbn) and thus the power series

∑
anbnx

n is differentially
finite.

Example 6.15. Mehler’s identity for the Hermite polynomials,

∞∑
n=0

Hn(x)Hn(y)
un

n!
=

exp
(

4u(xy−u(x2+y2))
1−4u2

)
√
1− 4u2

,

was proved in Lecture 1 using the linear recurrence for the Hermite polynomials and closure properties
of sequence. Alternatively, one can start from the generating function

Hx(z) :=
∑
n≥0

Hn(x)
zn

n!
= exp(z(2x− z))

and use closure by Hadamard product, writing the left-hand side of Mehler’s identity as

Hx(z)⊙Hy(z)⊙
∑
n≥0

n!zn.

The resulting computation is as follows:
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> f1:=exp(z*(2*x-z)):
> deq1:=gfun:-holexprtodiffeq(f1,f(z));

deq1 := {(−2x+ 2z) f(z) +
d

dz
f(z) , f(0) = 1}

> deq2:=subs(x=y,deq1):
> deq3:=gfun:-hadamardproduct(deq1,deq2,f(z));

deq3 :=

{
(−16xy + 16z) f(z) +

(
8x2 + 8y2 − 12

)( d

dz
f(z)

)
+ (−4xy − 8z)

(
d2

dz2
f(z)

)
+3

d3

dz3
f(z) + z

(
d4

dz4
f(z)

)
, f(0) = 1, D(f)(0) = 4xy,D(2)(f)(0) = 8x2y2 − 4x2 − 4y2 + 2

}
> deq4:=gfun:-hadamardproduct(deq3,

gfun:-rectodiffeq({u(n+1)-(n+1)*u(n),u(0)=1},u(n),f(z)),f(z));

{
(
−16xy z2 + 8x2z + 8y2z + 16z3 − 4xy − 4z

)
f(z) +

(
16z4 − 8z2 + 1

)( d

dz
f(z)

)
, f(0) = 1}

This is a linear differential equation of order 1, whose solution reduces to integrating a rational function,
whence the result

> dsolve(deq4,f(z)) assuming z>0,z<1/2;

f(z) =
e

−4xyz+x2+y2

(2z+1)(2z−1)

√
1

(2z+1)(−2z+1)

e−x2−y2

6.3 Algebraic Power Series

Besides rational power series (whose coefficients satisfy linear recurrences with constant coefficients, see
Lecture 3) and their rational powers (Example 6.5), a large class of differentially finite power series is
provided by algebraic power series.

Definition 6.5. A power series A ∈ K[[x]] is algebraic if there is a nonzero polynomial P ∈ K[x, y] such
that P (x,A(x)) = 0.

Example 6.16. Many generating functions coming from combinatorics are algebraic. This is the case for
the generating series of the Catalan numbers

1−
√
1− 4x

2x
=
∑
n≥0

1

n+ 1

(
2n

n

)
,

that count binary trees with n nodes; the Schröder numbers, with generating series

1− x−
√
1− 6x+ x2

2x
= 1 + 2x+ 6x2 + 22x3 + 90x4 + · · ·

and many other ones. A large class is provided by the number of words of length n in an unambiguous
context-free language.
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The main result is that such series are differentially finite, with an explicit bound on the order of the
differential equation.

Theorem 6.4 (Abel 1827; Cockle 1860). If A ∈ K[[x]] satisfies a polynomial of degree ≤ d, then it
satisfies a linear differential equation of order ≤ d.

Proof. Let P (x, y) be a nonzero polynomial of minimal degree in y such that P (x,A) = 0. By Bézout’s
theorem (see Lecture 4), there exist two polynomials U, V in K(x)[y] such that

UP + V
∂P

∂y
= 1

(P having minimal degree and K having characteristic 0, P is relatively prime with its derivative with respect
to y.) Differentiating the equation P (x,A) = 0 with respect to x gives

∂P

∂y
(x,A)A′ +

∂P

∂x
(x,A) = 0.

Multiplying by V (x,A) gives

A′ = −V (x,A)
∂P

∂x
(x,A).

Taking the remainder of the Euclidean division of the right-hand side by P (x,A) shows that

A′ ∈ VectK(x)(1, A, . . . , A
d−1).

By induction, it follows that for all k ≥ 0,

A(k) ∈ VectK(x)(1, A, . . . , A
d−1).

This shows that A is differentially finite.

Corollary 6.3. If A is an algebraic power series, then the truncated power series A(x) +O(xN ) can be
computed in O(N) arithmetic operations in K.

This complexity is to be contrasted with the complexity O(M(N)) that would be obtained by Newton’s
iteration.

Proposition 6.3. If F ∈ K[[x]] is differentially finite and A ∈ xK[[x]] is algebraic, then the composition
F (A) is differentially finite.

Proof. From the previous proof, it follows that

A(k) ∈ VectK(x)(1, A, . . . , A
d−1)

for all k ∈ N, where d is the degree of a nonzero polynomial cancelling A. By the chain rule, it follows by
induction that

dk

dxk
(F (A(x)) ∈ VectK(x)(F

(i)(A)Aj | 0 ≤ i < dF , 0 ≤ j < d),

which concludes the proof.
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Example 6.17. It follows without any computation that many power series are differentially finite, like

sin

(
x

1− x

)
, exp

(
1−

√
1− 4x

2

)
, arctanh

(
x 3

√
1 + x

1− x

)
, . . . .

6.4 Solutions of Linear Recurrences
The closure properties presented before allow to compute with solutions of linear recurrences using the
equations as a data-structure. Still, there are cases when it is useful to detect solutions of a special type as
a sub-step in other algorithms. We now present algorithms that decide the existence of solutions of given
types: either they find one or they prove that none exists.

6.4.1 Space of Solutions
Again, we consider the recurrence

pd(n)an+d + · · ·+ p0(n)an = 0, n ≥ 0, (6.5)

with polynomial coefficients pi ∈ K[n] and pd ̸= 0. We first consider the set of all sequences that are
solutions of this recurrence. This is slightly different from the more familiar setting of linear recurrences
with constant coefficients, as the dimension of the space of solutions can be larger than the order of the
recurrence.

Proposition 6.4. The set V of solutions of Eq. (6.5) in KN is a K-vector space and its dimension satisfies

d ≤ dimV ≤ d+ cardH,

where H = {k ∈ N | pd(k) = 0}.

In the rest of this section, we make the assumption that this set H can be computed (this is not a difficulty
for the fields K that we encounter in this course).

Proof. When n ̸∈ H, an+d is determined by the recurrence and thus for n larger than K := max({0, . . . , d−
1} ∪H), the sequence is determined by its previous values. The values a0, . . . , aK+d−1 are given by a linear
system of K equations in K + d unknowns. The rank of the corresponding matrix is at most K and it is at
least K−cardH as it has a band shape with nonzero entries at the right-most end of the rows corresponding
to indices not in H.

6.4.2 Solutions with finite support
The support of a sequence (un) ∈ KN is the set of indices where un ̸= 0. A sequence has finite support when
only finitely many of its values are nonzero. For instance, the recurrence

2(n− 2)(n− 4)un+2 − (7n− 24)un+1 + 6(n− 3)un = 0

has for solution (u0, u1, u2, u3, . . . ) = (572, 309, 180, 108, 0, . . . ) where all uk = 0 for k ≥ 4.
If a solution of Eq. (6.5) has finite support with maximal element k, then uk ̸= 0 while uk+1 = uk+2 =

· · · = 0 and by considering Eq. (6.5) at n = k, it follows that necessarily, p0(k) = 0. Conversely, if k is a
nonnegative integer such that p0(k) = 0, then one can consider a sequence defined by un = 0 for n > k,
uk = 1 and unrolling the recurrence to compute uk−1, uk−2, . . . , u0. As in the situation of Section 6.4.1, this
leads to considering a rectangular matrix whose kernel has dimension bounded by the number of nonnegative
integers k such that p0(k) = 0. Thus we have.
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Proposition 6.5. The recurrence Eq. (6.5) admits solutions with finite support if and only if the set
J := {k ∈ N | p0(k) = 0} is nonempty. In that case, the vector space of solutions with finite support has
dimension between 1 and card J .

6.4.3 Polynomial solutions
A sequence (un) is called polynomial when there exists a polynomial p ∈ K[n] such that un = p(n) for
all n ≥ 0. For instance, the recurrence

(n+ 1)(2n− 41)un − (4n2 − 72n+ 104)un+1 + (2n+ 5)(n− 19)un+2 = 0

has the polynomial solution

un =1024n10 − 102400n9 + 4363008n8 − 103280640n7 + 1484617344n6 − 13296944640n5

+ 73171198112n4 − 234070964480n3 + 384903129612n2 − 240900096240n+ 7202019825.

A simple way of finding such a solution is to start by finding an upper bound on its possible degree and then
using an undeterminate coefficients method, which leads to solving a linear system in the coefficients of the
unknown polynomial.

In order to bound the possible degrees of polynomial solutions, one can use the fact that the difference
operator

∆ : (un) 7→ (un+1 − un)

has the property that it maps polynomials of degree d to polynomials of degree d− 1. Moreover, it is easily
seen by induction that

(un+k) =

k∑
i=0

∆i(un).

This allows to rewrite the recurrence Eq. (6.5) in the form

qd(n)∆
d(an) + · · ·+ q0(n)(an) = 0. (6.6)

If an were a polynomial of degree δ, then the terms of this equations have degrees δ−d+deg qd, δ− (d−1)+
deg qd−1, . . . , δ + deg q0. Let then b = maxk(deg qk − k) and E = {k | deg qk − k = b} be the set of indices
where this maximal value is reached. The coefficient of degree δ+ b in Eq. (6.6) is, up to a nonzero constant
factor,

I(δ) =
∑
k∈E

lc(qk)δ(δ − 1) · · · (δ − k + 1),

where lc denotes the leading coefficient of a polynomial. As a consequence, a solution of degree δ can only
exist if I(δ) = 0. If the polynomial I(δ) does not have nonnegative integer roots, then there does not exist
any polynomial solution to Eq. (6.5) and otherwise, the largest nonnegative integer roots of I thus gives the
desired bound on the possible degrees of polynomial solutions.

In the example above, the recurrence rewrites

(2n+ 5)(n− 19)∆2un + (6n− 294)∆un − 240un = 0.

From there, it follows that b = 0, E = {0, 1, 2} and

I(δ) = 2δ(δ − 1) + 6δ − 240 = 2(δ + 12)(δ − 10).

It follows that the degree of polynomial solutions is bounded by 10 and then substituting un = c0 + c1n +
· · · + c10n

10 into the recurrence and extracting coefficients of n gives a linear system in the ci having the
coefficients as a solution.
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6.4.4 Rational solutions

There exists a more recent and less straightforward algorithm for the problem of finding whether the recur-
rence admits a solution un = r(n) with r ∈ K(n) a rational function. For instance,

(n+ 2) (n− 8) (n− 3)
(
n2 − 14n+ 50

)
un+2

− (n+ 1) (n− 9) (n− 4)
(
3n2 − 39n+ 130

)
un+1

2n (n− 10) (n− 5)
(
n2 − 12n+ 37

)
un = 0

has for solution un = 1/(n(n− 10)) and the question is to detect it.
The strategy of the algorithm, due to Abramov (in 1995), is to find a multiple Q(n) of all possible

denominators of solutions of the recurrence. Given such a denominator, injecting an = bn/Q(n) into the
recurrence and normalizing, one is left with a linear recurrence in bn of which a polynomial solution sought.
Such a solution exists if and only if the original equation had a rational solution.

The key to finding multiples of the denominator is the following.

Lemma 6.4. If an = P (n)/Q(n) is a solution of Eq. (6.5) with P,Q two polynomials in K[n] and
gcd(P,Q) = 1, then

Q(n) | gcd (p0(n) · · · p0(n+H), pd(n− d) · · · pd(n− d−H)) ,

where H := max{k ∈ N | gcd(p0(n+ k), pd(n− d)) ̸= 1}.

Proof. Assume that a solution an = P (n)/Q(n) as in the lemma exists and let M(n) := lcm(Q(n +
1), . . . , Q(n+ d)). Substituting an = P (n)/Q(n) and taking the numerator gives

M(n)

(
pd(n)

P (n+ d)

Q(n+ d)
+ · · ·+ p1(n)

P (n+ 1)

Q(n+ 1)

)
+ p0(n)

P (n)M(n)

Q(n)
= 0.

The first term is a polynomial while gcd(P,Q) = 1. This implies that

Q(n) | p0(n)M(n) = p0(n) lcm(Q(n+ 1), . . . , Q(n+ d)).

From this divisibility, it follows that Q(n+ 1) | p0(n+ 1)M(n+ 1) and therefore

Q(n) | p0(n) lcm(p0(n+ 1) lcm(Q(n+ 2), . . . , Q(n+ d+ 1)), Q(n+ 2), . . . , Q(n+ d)).

It follows that
Q(n) | p0(n)p0(n+ 1) lcm(Q(n+ 2), . . . , Q(n+ d+ 1))

and by induction for all j ≥ 1,

Q(n) | p0(n) · · · p0(n+ j) lcm(Q(n+ j + 1), . . . , Q(n+ j + d)).

Similarly, on gets

Q(n) | pd(n− d) · · · pd(n− d− j) lcm(Q(n− d− j − 1), . . . , Q(n− d− j − d)).

As Q is a polynomial, there exists K such that gcd(Q(n), Q(n+ j)) = 1 for j ≥ K. Thus, letting j increase,
taking the gcd and using the definition of H gives the conclusion of the lemma.

Abramov’s algorithm for rational solutions follows from this idea:
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# Input:
# the extremal coefficients p0, pd of the recurrence
# its order;
# the variable
# Output:
# a multiple of the denominators of rational solutions
abramov:=proc(p0,pd,d,n)
local R,X,H,Q,A,B,i,h,g;

R:=resultant(subs(n=n+X,p0),subs(n=n-d,pd),n);
H:=roots(R,X);
H:=sort(select(type,map2(op,1,H),nonnegint));
if H=[] then return 1 fi;
Q:=1; A:=p0; B:=subs(n=n-d,pd);
for i to nops(H) do

h:=H[-i];
g:=gcd(subs(n=n+h,A),B);
Q:=Q*mul(subs(n=n-i,g),i=0..h);
A:=normal(A/subs(n=n-h,g));
B:=normal(B/g)

end do;
return Q

end:

The proof of its correctness that follows is due to Chen et al. (2008). It relies on two lemmas.

Lemma 6.5. The maximal value of the list H computed by the algorithm is is H from the previous
lemma.

Proof. The resultant of p0(n + X) and pd(n − d) with respect to n vanishes when those two polynomials
have a root in common. It follows that the maximal integer root of this resultant is the maximal k ∈ N such
that gcd(p0(n+ k), pd(n− d)) ̸= 1.

Lemma 6.6. The output of the algorithm is

gcd(p0(n) · · · p0(n+H), pd(n− d) · · · pd(n− d−H)).

Proof. Write Ai, Bi, Qi, gi for the values of A,B,Q, g at the entry of the loop and hi for the value of h during
the loop. By induction, we prove simultaneously two properties: gcd(Ai(n+ k), Bi(n)) = 1 for k > hi and

Qi(n) gcd(Ai(n) · · ·Ai(n+ hi), Bi(n) · · ·Bi(n− hi))

is invariant. Initially, by the previous lemma, for k > H, gcd(A(n + k), B(n)) = 1 and the gcd is what we
want to compute.

Next, we have

gcd(Ai(n) · · ·Ai(n+ hi), Bi(n) · · ·Bi(n− hi))

= gcd
( Ai(n)

gi(n− hi)︸ ︷︷ ︸
Ai+1(n)

· · · Ai(n+ hi)

gi(n)
,
Bi(n)

gi(n)︸ ︷︷ ︸
Bi+1(n)

· · · Bi(n− hi)

gi(n− hi)

)
gi(n) · · · gi(n− hi)

= gcd(Ai+1(n) · · ·Ai+1(n+ hi+1), Bi+1(n) · · ·Bi+1(n− hi+1))Qi+1(n)/Qi(n).
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The property on gcd(Ai+1(n + k), Bi+1(n)) comes from the fact that all common factors of Ai(n + k) and
Bi(n) with k ≥ hi have been removed by the loop.

6.5 Solutions of Linear Differential Equations

We now start from a linear differential equation

qr(x)y
(r)(x) + · · ·+ q0(x)y(x) = 0, (6.7)

with qi(x) ∈ K[x] and qr ̸= 0 and we study the existence and computation of solutions of various types. It
turns out that this study also gives simple criteria to detect that a power series such as tanx is not a solution
of a linear differential equation.

6.5.1 Polynomial solutions

A simple algorithm to recover polynomial solutions of linear differential equations comes from the observa-
tion that their sequences of coefficients have finite support. The algorithm then consists in translating the
differential equation into a recurrence, finding its solutions with finite support and returning the polyno-
mials with those sequences as coefficients. Conversely, if there are not solutions with finite support to the
recurrence, there are no polynomial solutions to the differential equation.

6.5.2 Power series solutions

If the differential equation Eq. (6.7) has a series solution
∑

n≥0 ynx
n, one can compute a linear recurrence

that the sequence (yn) satisfies. Assume that this recurrence has the form Eq. (6.5) (note that the translation
may also give linear constraints on y0, . . . , yd−1). An important question when unrolling the recurrence is
whether its leading term vanishes at nonnegative integers, as these correspond to indices where the sequence
cannot necessarily be extended.

Definition 6.6. The indicial polynomial of Eq. (6.7) at 0 is the polynomial Ind0(n) := pd(n− d).

An important observation is that this polynomial is known when qr(0) ̸= 0.

Lemma 6.7. If qr(0) ̸= 0, the indicial polynomial at 0 is

Ind0(n) = qr(0)n(n− 1) · · · (n− r + 1).

Proof. The recurrence is given explicitly in Eq. (6.3). When qr(0) ̸= 0, the maximal value of i−j is obtained
with j = 0 and i = r, where ci,j = cr,0 = qr(0) and the result follows.

The indicial polynomial gives very precise information on the power series solutions.

Definition 6.7. The valuation valA of a power series is the smallest index of its nonzero coefficients
(and by convention val 0 = ∞).

Proposition 6.6. If A ∈ K[[x]] is a power series solution of Eq. (6.7), then its valuation valA is a zero
of the indicial polynomial Ind0(n).

Proof. This follows from evaluating the recurrence Eq. (6.5) satisfied by the coefficients of A at n = valA−
d.
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Corollary 6.4. If qr(0) ̸= 0, then Eq. (6.7) has a basis of r power series solutions. They can be taken
with valuations 0, . . . , r − 1.

Proof. This is a consequence of the fact that in this situation, the set H from Proposition 6.4 is empty,
together with the previous result.

6.5.3 Generalized power series
One can extend slightly the class of solutions one is looking for. For instance, the differential equation

4x2y′′ + 4xy′ + (4x2 − 1)y = 0

has for solution
√
x

(
1− 1

6
x2 +

1

120
x4 − 1

5040
x6 + · · ·

)
.

The following definition captures such solutions.

Definition 6.8. A series of the form xαF (x) with F a power series in K[[x]], F (0) ̸= 0 and α ∈ K is
called a generalized power series.

Again, the indicial polynomial lets one detect such solutions.

Proposition 6.7. If xαF (x) is a generalized power series solution of Eq. (6.7), then Ind0(α) = 0. If
moreover, α ̸∈ {0, . . . , r − 1}, then qr(0) ̸= 0.

Proof. The idea is to inject xαF (x) into the equation, multiply by 1/xα and extract the coefficient of xn.
This gives the same recurrence as in Eq. (6.3), but with n− α in place of n.

6.5.4 Change of points
Instead of considering power series in powers of the variable x, one can consider power series in powers
of x− c for some c ∈ K, or generalized power series of the form

Y (x− c) = (x− c)α
∑
k≥0

yk(x− c)k. (6.8)

Such a generalized power series is a solution of Eq. (6.7) if and only if the power series Y (x) is solution of

qr(x+ c)y(r)(x) + · · ·+ q0(x+ c)y(x) = 0. (6.9)

Definition 6.9. The indicial polynomial of Eq. (6.7) at c is the indicial polynomial of Eq. (6.9) at 0.

The same reasoning as before gives a way to find those points where a nontrivial generalized power series
solution exists.

Corollary 6.5. If Y (x − c) is a solution of Eq. (6.7) such that y0 ̸= 0 and α ̸∈ {0, . . . , r − 1}, then
qr(c) = 0.

This corollary shows that functions like tanx, that have infinitely many points where they have an expansion
of the form Eq. (6.8) with α = −1 cannot be differentially finite, as all those points should be roots of the
nonzero polynomial qr, whose number of roots is finite.
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6.5.5 Rational solutions
By the previous discussion, the denominator of a rational solution can only vanish at roots c of the leading
coefficient qr. The multiplicity of c as a root of the denominator has to be the opposite of a negative integer
root of the indicial polynomial at c. Taking the minimal such integer root at each root of qr (and 0 when no
negative integer root exists) and multiplying over all c such that qr(c) = 0 gives a multiple Q of the possible
denominators of the rational solutions of the differential equation. Then, changing the unknown function
as y(x) = P (x)/Q(x) gives a linear differential equation in P whose polynomial solutions have to be found.

Additional bibliography
The material discussed in this lecture is not usually present in computer algebra books, except

Alin Bostan et al. Algorithmes Efficaces en Calcul Formel. Auto-édition, Sept. 2017. isbn: 979-10-699-
0947-2. url: https://hal.archives-ouvertes.fr/AECF/

In English, part of it can be found in the very accessible

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics. 2nd edition. Reading,
MA: Addison-Wesley Publishing Company, 1994, pp. xiv+657

and, from a more mathematical point of view, in

Richard P. Stanley. Enumerative combinatorics. Vol. 2. Cambridge University Press, 1999, pp. xii+581
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Lecture 7

Fast Linear Algebra

Summary

Given an n× n matrix A with entries in a field K, common questions covered in this lecture are the
computation of its determinant, its inverse, or the solution of the linear system Ay = b given a vector b.
The model of complexity is in terms of number of arithmetic operations in K. While the questions
are of an exact nature, it is sometimes possible to take advantage of approximation, provided one pays
attention to the quality of the result. This is discussed in the first section. The second one recalls the
classical Gaussian elimination method. Next, it is shown that many operations can be computed in
O(nω) operations, where ω < 3 is the complexity of matrix multiplication. Finally, the equivalence of
these problems from the complexity point of view is explored.

7.1 Approximations
Even for exact operations, fast algorithms may rely on approximations in intermediate steps.

7.1.1 Approximation by Floating-Point Numbers
The advantage of using floating-point approximation is that operations become very fast. For instance, a
random 8 × 8 matrix with integers bounded by 109 in absolute value has a determinant of order ≈ 1070,
which is correctly and efficiently approximated by a numerical method. However, one can exhibit an innocent-
looking 8×8 matrix with integers of that size, for which the numerical computation of the determinant with
precision 20, 40 and 60 returns ≈ 1035,≈ 1016,≈ 96, while the exact result computed in exact arithmetic
is found to be exactly 96. On that same example, an inverse computed numerically with precision 20 or
40, when multiplied by the original matrix, is not close to the identity. (Such matrices are well-known in
numerical analysis and called ill-conditioned.)

Thus the question is to determine how trustful a numerical result is when one wants to extract exact
information out of it. For instance, given two matrices M,A it may be possible to certify that A is close to
M−1 thanks to the following.

Proposition 7.1. If ∥AM − I∥∞ < 1 then A and M are invertible.

Proof. The spectral radius ρ(M) (the maximum of the absolute values of the eigenvalues) satisfies

ρ(M) ≤ ∥M∥∞.

(Proof: consider an eigenvector u for an eigenvalue λ of maximum modulus then ∥Mu∥ = |λ| · ∥u∥ =
ρ(M)∥u∥ ≤ ∥M∥∞∥u∥.)
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Thus the hypothesis implies that ρ(AM−I) < 1. As the eigenvalues of AM−I are those of AM minus 1,
this implies that 0 cannot be an eigenvalue of AM , therefore its determinant is not 0, and neither is that
of M or A. So in that situation we can certify that a matrix is invertible from an approximate inverse.

Now, when we compute this bound numerically, it is necessary to make sure that a numerical value
smaller than 1 corresponds to an actual value smaller than 1. In this instance of certifying inverses, this can
be achieved by changing the default rounding mode, so that each arithmetic operation in the product AM
is computed with a rounding mode towards infinity (in Maple this is done with the environment variable
Rounding). Then, increasing the precision if necessary, one can certify invertibility numerically.

7.1.2 Approximation by Modular Evaluation
For matrices with rational functions in Q(x1, . . . , xk) as entries, another type of approximation is achieved
by evaluating the variables at random integers modulo a prime number. In particular if the determinant
computed that way is not 0, then the exact determinant is not 0. More generally, this method allows to
obtain a lower bound on the rank, which is (probabilistically) equal to the actual rank.

7.1.3 Approximation by Series Expansion
In order to solve AY = b where A and b have polynomial entries in K[x], an idea is to solve as power series
and reconstruct rational functions from there by Padé approximants (see Lecture 4). This time, one can
certify the result by multiplying the matrix by the resulting vector of rational functions. If the solution does
not match, one can increase the precision of the series expansions.

If the matrix is an n × n matrix of polynomials of degree < d and d is also a bound on the degree of b,
then by Cramer’s rule, all the entries of the solution are rational functions with numerator and denominator
of degree < nd, so in order to reconstruct the result, it is known in advance that a precision 2nd in the series
expansions is sufficient.

In this context, this approach (with a lifting method which is beyond the scope of this course) gives a
complexity that is the fastest known.

7.1.4 Approximation for Small Relations (Kannan-Lenstra-Lovász)
This is used to compute factors of polynomials in Q[x], with numerical computations in intermediate steps.
From a numerical approximation λ of a root of the polynomial, the aim is to find a ‘small’ vector of coefficients
so that p0 + p1λ+ · · ·+ pnλ

n ≈ 0. The technique is to consider the matrix

A =


1 0 . . . 0 [C]
0 1 0 [Cλ]

. . . 0
...

0 1 [Cλn]


for a large integer C, where [·] denotes rounding to the nearest integer. Then the algorithm LLL computes
small vectors that can be obtained by linear combination of the rows with integer coefficients. The coefficients
of the factor of p having λ as its root appear as coefficients of the smallest vector in the basis. They can be
certified by division.

7.2 Gaussian Elimination
There are basically two methods for exact linear algebra: Gaussian elimination that we consider in this
lecture and Krylov methods.
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Definition 7.1. A matrix in Kn×m is in row echelon form if

• the zero rows come after the nonzero ones;

• the first nonzero entry in each row is on the right of that of the previous row.

The process of Gaussian elimination brings a matrix A to row echelon form by a sequence of two elementary
operations: linear combination of a row with a multiple of a row above it and permutation of two rows.
Both these operations are linear and can be represented as multiplication of the original matrix on the left
by either a simple lower triangular matrix for the first one and a simple permutation matrix for the second
one. Because these matrices can be grouped according to their type, one obtains that

EQA = U,

where the lower triangular matrix E is a product of linear combinations of rows, while the matrix Q is a
permutation matrix. Reversing the operations gives the following.

Theorem 7.1. Using O(n3) arithmetic operations in K, a matrix A ∈ Kn×n can be written

A = PLU,

with P a permutation, L a non-singular lower triangular matrix and U in row echelon form.

This form has many applications:

• inverse: if A is invertible, then U is triangular and invertible as well and the inverse is simply
U−1L−1P−1;

• rank: the number of nonzero rows in U is the rank of A;

• determinant: by computing the product of the diagonal elements of L and U , and the signature of P ;

• linear system solving: by solving the triangular U starting from the bottom row.

7.3 Gaussian Elimination is not Optimal

This is the title of a landmark article by Strassen in 1969. The starting point is that matrix multiplication
can be achieved in a better complexity that O(n3) and then many operations can be performed in the same
complexity as matrix multiplication. This is parallel to the situation of polynomials where M(n) becomes
the yardstick for fast algorithms.

7.3.1 Fast Matrix Multiplication

Definition 7.2. A feasible matrix exponent θ is a real number such that two matrices in Kn×n can be
multiplied with O(nθ) operations in K. The matrix multiplication exponent is ω = inf θ.

Strassen proved that ω < 3 by exhibiting a divide-and-conquer algorithm whose complexity is O(nlog2 7)
operations and log2 7 ≃ 2.807. Since then, decreasing the bound on ω has been an active area of research
with new progress every year. The last result (in 2025) gives ω ≤ 2.371339. The most recent algorithms are
not intended to be practical, but aim at reducing the gap with 2 until a definite answer is known.
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7.3.2 Reductions

Reducing problems to matrix multiplication is important both theoretically (to obtain algorithms of sub-
cubic complexity) and practically. Indeed, matrix multiplication is implemented very efficiently at low level
and thus reducing to it can bring huge practical savings. This is true not only in a computer algebra setting,
but also in a numerical setting, where numerical libraries rely on carefully handcrafted and very efficient
matrix multiplication.

7.3.3 Matrix Inversion

Let M ∈ Kn×n and assume for simplicity that n is a power of 2. Then M can be split into 4 blocks

M =

[
A B
C D

]
.

It is easy to check the key identity[
I 0

−CA−1 I

] [
A B
C D

] [
I −A−1B
0 I

]
=

[
A 0
0 D − CA−1B

]
.

Writing S = D − CA−1B (that is called the Schur complement of the block D), one deduces the inverse

M−1 =

[
I 0

−CA−1 I

] [
A−1 0
0 S−1

] [
I −A−1B
0 I

]
.

Thus, inversion can be performed recursively on two blocks of half the size. The complexity for doing so
satisfies

C(n) ≤ 2C(n/2) + 6(n/2)ω +O(n2),

from which the “Master theorem of divide-and-conquer” allows to deduce the following.

Theorem 7.2. Matrix inversion can be achieved in 3nω + O(n2) arithmetic operations if all matrices
encountered are invertible.

The next step is to ensure that the blocks are invertible. The algorithm is probabilistic of the Last Vegas
type: it either returns the correct result or fails.

7.3.4 Algebraic Preconditioning

The idea is to multiply the original matrix by a random structured matrix in such a way that

– multiplication can be performed fast;

– the result can be recovered fast.

Permutation matrices would be sufficient thanks to the following.

Lemma 7.1. If A is invertible, there exists a permutation P such that all principal minors of PA are
nonzero.

Proof. This follows from Gaussian elimination: there exists a permutation P such that PA = LU with L
lower triangular and U upper triangular. The principal minors in PA are then obtained as the product of
the corresponding minors of L and U that are both non-singular since A is.

An argument is needed to show that the principal minors of the Schur complement are nonzero as well.
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Beneš Networks

The permutation is constructed inductively from a basic block that can be one of[
1 0
0 1

]
,

[
0 1
1 0

]
,

i.e., either the identity matrix or a transposition. To construct all permutations of {1, . . . , 4}, one combines
such matrices by multiplication. This can be depicted in the form of a network as

where each of the squares represent one of the 2× 2 matrices above. Following the arrows from left to right
makes it clear that any permutation can be obtained that way. More generally, a Beneš network over 2k

inputs is obtained recursively by this construction:

In terms of matrices, the left and right column in this picture are each obtained by one 2k × 2k matrix,
product of 2k−1 instances of a transposition or the identity. For n = 2k, this network has 2k − 1 layers
and can realize any permutation. Computing the product is performed one layer at a time, each for O(n2)
operations, so the whole multiplication costs O(n2 log n) operations.

Probabilistic Analysis by the Schwartz-Zippel Lemma

One could draw a permutation at random, but it is unclear what the probability of success (nonzero principle
minors) would be. Instead, it is possible to resort to a design technique for probabilistic algorithms in
computer algebra based on concentrating the ‘bad’ situations into the zero-set of a polynomial.

The matrix

E(a, b, c, d) =
[
a b
c d

]
is the identity matrix at (a, b, c, d) = (1, 0, 0, 1) and the transposition matrix at (0, 1, 1, 0). It has a known
inverse provided its determinant, a polynomial in a, b, c, d is not zero. The matrix associated to a Beneš
network can therefore be interpreted as a matrix with polynomial entries, evaluated at a point (different
permutations arising from different points). Its inverse is also easy to compute. There are 4 variables for
each 2× 2 block, thus a total of ck = 4× 2k +2ck−1 = 4(2k+1)2k = O(n log n) variables. The degree of the
entries in the matrix is bounded by the number of layers, that is 2k − 1 = 2 logn− 1.
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The principal minors in the product PA for a permutation P constructed this way are therefore obtained
by evaluating a nonzero polynomial of degree at most 2 logn − 1 in these variables. The probability of
obtaining a 0 minor can be controlled by the following classical tool in the probabilistic analysis of algorithms
in computer algebra.

Lemma 7.2 (Schwartz-Zippel). Given ∆(x1, . . . , xℓ) ̸= 0 a polynomial of degree d and α1, . . . , αℓ chosen
uniformly and independently from a finite subset S of K, one has

Prob (∆(α1, . . . , αℓ) ̸= 0) ≥ 1− d

cardS
.

Note that the bound does not depend on the number of variables.

Proof. Let s = cardS. By induction on the number of variables we show that the polynomial has at most
dsℓ−1 in Sℓ. For 1 variable, this is clear, as the polynomial has at most d zeros. For ℓ variables, write the
polynomial as

∆(x1, . . . , xℓ) = qk(x1, . . . , xℓ−1)x
k
ℓ + · · ·+ q0(x1, . . . , xℓ−1),

with deg qi ≤ d− i and qk ̸= 0. By the induction hypothesis, the leading coefficient has at most (d− k)sℓ−2

zeros in Sℓ−1, that correspond to at most (d− k)sℓ−1 zeros of ∆ since xℓ takes at most s values. When the
leading coefficient does not vanish, then there are at most k values of xℓ where ∆ vanishes. Thus, in total,
we have at most

(d− k)sℓ−1 + ksℓ−1 = dsℓ−1

zeros, as was to be proved.

Thus if K is a field with more than d = 2 log n− 1 elements one can take each of the O(n log n) variables
uniformly at random in a sufficiently large set, multiply the input matrix A by the resulting Beneš network,
perform Strassen’s inversion and multiply back by the inverse of the network. This succeeds with a nonzero
probability that can be made arbitrarily close to 1 by repeating the process until success is encountered. If
the field K is not large enough, a common technique is to construct an algebraic extension, which leads to
an extra factor of order d = O(log n) for each of the arithmetic operations.

7.4 Program Transformations and Complexity
In the previous section it is shown that the inversion of a nonsingular matrix in Kn×n can be achieved
in O(nω) operations, i.e., for a constant number of matrix multiplications. It turns out that in the same
complexity, it is possible to compute: the determinant; the solution of a linear system Ax = b for b ∈ Kn

(or detect that no such solution exists); the rank; an echelon form; the row rank profile (minimal indices of
linearly independent rows); a basis of the kernel; the characteristic polynomial.

This section shows that in many cases, one cannot expect a better complexity: not only do these op-
erations cost as much as matrix multiplication, but also improving them would give a faster algorithm for
matrix multiplication. More precisely, we now show that

1. the inverse of a matrix can be computed in O(Cdet ) where Cdet is the complexity of the determinant
(in a certain complexity model);

2. the product of matrices can be computed in O(Cinv), where Cinv is the complexity of matrix inversion
(paying attention to the complexity model too).

The previous section shows that Cinv = O(nω) and a variant of the algorithm giving this result also
implies that Cdet = O(nω). The results presented here then imply

nω = O(Cinv) = O(Cdet ) = O(nω),

so that all these operations have the same complexity, up to constant factors.
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Figure 7.1: Circuit evaluating (a2 + b2)/c

7.4.1 Automatic Differentiation of Straight-Line Programs

Definition 7.3. A straight-line program (SLP) over a field K is a sequence of elementary instructions
of the form vi = ai ∈ K or vi = ◦(ai, bi) with ◦ ∈ {+,−,×,÷} and ai and bi either a constant in K or a
vj with j < i; the input is given as the first vi. The number of instructions is the length of the program.
(It is understood that a/b raises an error if b is not invertible.)

Example 7.1. The following SLP computes (x4 − 1)/(x− 1):

t0 := x; t1 := t20; t2 := t21; t3 := t0 − 1; t4 := t2 − 1; t5 := t4/t3.

(An analogous decomposition is performed in Maple by the command codegen[optimize] that is used
for code generation.)

A SLP can also be viewed as an arithmetic circuit in the form of a directed acyclic multigraph, as shown
in Fig. 7.1. Such a program or graph computes a rational function of its input variables. The remarkable
result is that, whatever the number of input variables, the gradient (the list of partial derivatives) with
respect to those input variables can be computed in roughly the same cost as the original program.

Theorem 7.3 (Baur-Strassen 1983). Given a SLP of length L for f ∈ K(x1, . . . , xn), there exists a SLP
of length O(L) for the n first-order partial derivatives of f .

Example 7.2. Even with n = 1, this result is not trivial. With p(x) = (x− 1)× · · · × (x− n), the naive
program for the computation of the derivative from the formula

p′ = (x− 2)× · · · × (x− n) + · · ·+ (x− 1)× · · · × (x− n− 1)

has complexity O(n2). From a straight-line program computing p, like

t0 := x; t1 := t0 − 1; t2 := t0 − 2; . . . ; tn := t0 − n;

tn+1 = t1 × t2; tn+2 = tn+1 × t3; . . . ; t2n−1 = t2n−2 × tn,

the computation can proceed backwards: since p(x) = q(x)× (x−n), then p′(x) = q′(x)× (x−n)+ q(x).
Thus the derivative is obtained by the program

t0 := x; t1 := t0 − 1; t2 := t0 − 2; . . . ; tn := t0 − n;

tn+1 = t1 × t2; t
′
n+1 = t1 + t2;

. . .

t2n−1 = t2n−2 × tn; t
′
2n−1 = t′2n−2 × tn + t2n−2.

105



The length of the program for p is 2n; the program for p′ has length only 3n− 1.

Proof of Theorem 7.3. Let x1, . . . , xn be the input variables and g1, . . . , gℓ be the variables introduced
at each step so that gℓ = f(x1, . . . , xn). Write ∆0 = f and to each of the gi, associate a function
∆i(x1, . . . , xn, g1, . . . , gi) expressing f in terms of all the variables up to gi, so that

f(x1, . . . , xn) = ∆0(x1, . . . , xn) = ∆1(x1, . . . , xn, g1) = · · · = ∆ℓ(x1, . . . , xn, g1, . . . , gℓ) = gℓ.

The partial derivatives of ∆i will be obtained in terms of those of ∆i+1 by the chain rule in a constant
number of operations, proving the theorem. The starting point of the induction is that

∂∆ℓ

∂gi
=

{
1 if i = ℓ,

0 otherwise.

Next, we consider the case when ◦ ∈ {+,−,×,÷}. These are all similar, we treat ÷ in detail. If gi+1 = gj/gk
with j, k less than i+ 1, then

∆i(x1, . . . , xn, g1, . . . , gi) = ∆i+1(x1, . . . , xn, g1, . . . , gi, gj/gk),

so that

∂∆i

∂gm
=


∂∆i+1

∂gm
, if m ̸∈ {j, k},

∂∆i+1

∂gj
+ 1

gk

∂∆i+1

∂gi+1
(x1, . . . , xn, g1, . . . , gi, gj/gk), if m = j,

∂∆i+1

∂gk
− gj

g2
k

∂∆i+1

∂gi+1
(x1, . . . , xn, g1, . . . , gi, gj/gk), if m = k.

Thus, from the partial derivatives of ∆i+1, only 5 operations are required to compute all the partial derivatives
of ∆i. (The other operations ◦ ∈ {+,−,×} need even fewer operations.)

In Maple, this operation is implemented in the codegen[GRADIENT] function. This is in particular very
useful to find zeros of a function given by a program by means of Newton iteration.

7.4.2 From Determinant to Inversion by Differentiation
The Laplace expansion along the jth column of the determinant of a matrix A = (ai,j) is

detA =

n∑
i=1

aijCij , (7.1)

where Cij is the determinant of the submatrix obtained by removing the ith row and the jth column of A.
The Cij are the entries of the cofactor matrix of A, that satisfies

ACT = (detA)In.

This implies that, up to a constant factor detA, the entries of the comatrix give those of A−1. Differentiating
Eq. (7.1) shows that these entries are exactly the partial derivatives of detA with respect to the entries of A.
In follows from the previous section that from any SLP computing the determinant of A in L operations,
one can deduce a SLP for A−1 in at most 5L operations. In other words, computing the inverse has the same
complexity as computing the determinant.

7.4.3 From Inversion to Matrix Multiplication
Winograd observed the following reductionI A 0

0 I B
0 0 I

−1

=

I −A A ·B
0 I −B
0 0 I

 ,
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whose verification is straightforward. It follows that any algorithm that is able to compute the inverse of a
3n× 3n matrix is also able to compute the product of n× n matrices in the same complexity.

In summary, we have showed that inversion and determinant are equivalent to matrix multiplication from
the complexity point of view. Other operations are also known to be in the same complexity class: rank,
basis of the kernel, LU decomposition and computation of the characteristic polynomial (this last result was
proved in 2021). At this point, only one fundamental problem resists this reduction: solving systems of
linear equation for which it is not known whether a method faster than O(nω) could exist or not.

7.5 Transposition

Recall from Lecture 4 that multipoint evaluation of a polynomial of degree n in K[x] can be achieved in
O(M(n) log n) arithmetic operations in K and that interpolation can be achieved in the same complexity.
We now prove the following.

Theorem 7.4 (Bostan-Schost 2004). A SLP of length L for interpolation at a1, . . . , an with distinct ai
can be transformed into a program for multipoint evaluation at these points of length O(L) +O(M(n)).

In particular, for special sets of points ai for which one can interpolate in only O(M(n)), one gets multipoint
evaluation at the same cost.

This section is devoted to a proof of this result. Recall that evaluation of a polynomial P of degree < n
at a1, . . . , an corresponds to multiplication of the vector of coefficients of P by the Vandermonde matrix
associated with the ai,

V =


1 a1 a21 · · · an−1

1

1 a2 a22 · · · an−1
2

1 a3 a23 · · · an−1
3

...
...

...
. . .

...
1 an a2n · · · an−1

n

 .

Interpolation is the multiplication of the vector of values by V −1. It is the operation that is given by the
SLP in the theorem. Instead of computing the product by V directly, the algorithm starts from the product
H = V T · V . This is

H =



∑
k 1

∑
k ak

∑
k a

2
k · · ·

∑
k a

n−1
k∑

k ak
∑

k a
2
k

∑
k a

3
k · · ·

∑
k a

n
k∑

k a
2
k

∑
k a

3
k

∑
k a

4
k · · ·

∑
k a

n+1
k

...
...

...
. . .

...∑
k a

n−1
k

∑
k a

n
k

∑
k a

n+1
k · · ·

∑
k a

2n−2
k

 .
This matrix is a Hankel matrix : its entries are constant along ascending diagonals. Here, its entries are

the Newton sums (or power sums) of the ai,

hi =

n∑
k=1

ai.

This implies that the entries can be computed in O(M(n)) operations from their generating function: if
Â =

∏
(1− xai), then

Â′

Â
= −

∑ ai
1− xai

=
∑
i≥1

(∑
k

aik

)
xi.
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(The complexity follows by Newton’s iteration, see Lecture 3.) The consequence of the structure of the
matrix H is that it can be multiplied by a vector in only 2M(n) operations: if

H

pn−1

...
p0

 =

 q0
...

qn−1

 ,
then it is a direct observation that the entries are related by

(h0 + h1x+ · · ·+ h2n−2x
2n−2)(p0 + xp1 + · · ·+ xn−1pn−1) = · · ·+ xn−1(q0 + q1x+ · · ·+ qn−1x

n−1) + · · · .

This shows that the coefficients q0, . . . , qn−1 are recovered from the terms of degree xn−1 to x2n−2 in this
polynomial of degree 3n − 3. (This operation where only the terms of degree n, . . . , 2n are needed in the
product of a polynomial of degree 2n by a polynomial of degree n is called the middle product.) The algorithm
computing multipoint evaluation of P (x) at a1, . . . , an follows:

1. compute P = xn−1P (x) (no arithmetic operation);

2. compute the product h(x)P (x) and extract its middle part in O(M(n)) operations;

3. multiply the resulting vector by the transpose of V −1.

For this last operation, we are given as input a program that computes the product by V −1. The proof
of the theorem is then a consequence of the following.

Proposition 7.2 (Transposition principle). Given a SLP program of length L that computes A · u, one
deduces a program for AT · v in O(L) operations.

Proof. From the program u 7→ A · u, one easily deduces a program for (u, v) 7→ vT ·A · u, which computes

f(u1, . . . , un) =
∑
i,j

viaijuj .

The partial derivatives are
∂f

∂uj
=
∑
i

viaij = (vT ·A)j = (AT · v)j ,

giving the product by AT.

This proof gives the announced result in O(L), but a tighter bound L−n+m is possible for A ∈ Kn×m. We
leave it as an exercise to show that as a consequence, the middle-product can be obtained in only M(n)+O(n)
operations.
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Lecture 8

Polynomial and Integer Matrices

Summary

In the previous lecture, the algorithms deal with matrices with entries in a field and their complexity
estimates measure the number of arithmetic operations that are used.

For integer or polynomial matrices, these estimates do not reflect the time complexity, as the inter-
mediate computations and the results may turn out to be much larger than the input.

This lecture shows how one can control the growth in the computation, using new tools designed
specifically for integer or polynomial matrices.

Example 8.1. Gaussian elimination on the integer matrix

A =


60 −50 22 19
84 −29 39 26
85 −96 5 −36
−45 −20 −71 −79


produces a sequence of more and more triangular matrices of larger and larger rational numbers

60 −50 22 19
0 41 41

5 − 3
5

0 − 151
6 − 157

6 − 755
12

0 − 115
2 − 109

2 − 259
4

 ,

60 −50 22 19
0 41 41

5 − 3
5

0 0 − 317
15 − 155681

2460
0 0 −43 − 10757

164

 ,

60 −50 22 19
0 41 41

5 − 3
5

0 0 − 317
15 − 155681

2460
0 0 0 1642157

25994

 .
Denoting by Li the rows of the matrices, the transformation from A to the last matrix is a sequence of
operations of the type Li := Li − αLj for some j < i. This leaves the determinant invariant and in the
end we obtain in particular the integer detA = −3284314 as a product of the rational diagonal elements
of the last matrix. The sequence above was obtained by taking for pivots the diagonal elements. One
could also start each stage from the bottom row and add a linear combination with a random row above
it that has the same number of initial 0. The final matrix is the same, but empirically at least, the
intermediate rational numbers that occur in the computation are much larger, so much so that the bit
complexity does not remain polynomial in the dimension.

It is thus important to keep control over all sizes that play a role in the computations. The situation
here is similar to what happens for multiplication: algorithms for matrices of polynomials resemble their
counterpart for matrices of integers, but are usually easier to state and analyse.

Notation 8.1. We write K[x]n×m
≤d for the set of n×m matrices with polynomial entries whose degree is at

most d.
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8.1 Determinant Bounds
For a matrix A ∈ K[x]n×n

≤d , using the Leibniz formula for its determinant in terms of permutations shows
that deg detA ≤ nd. Over subrings of R, one can use the following.

Proposition 8.1 (Hadamard’s inequality on the determinant). For A ∈ Rn×n,

| detA| ≤ ∥A1∥2 · · · ∥An∥2,

where the Ai are the columns of A.

The geometric meaning is that the determinant is a measure of the volume marked out by the column vectors,
which is bounded by the case when they are orthogonal. A consequence is that if the entries of A are all
bounded in absolute value by β, one obtains

| detA| ≤ nn/2βn.

Proof. A 1-line proof is by Gram-Schmidt orthogonalization; a slightly longer but more elementary one can
be found on Wikipedia.

8.2 Gauss-Bareiss Elimination
Denote by a[k]ij the (i, j) entry of the matrix obtained from A after pivoting with the entry (k, k), i.e., after
adding to row i the product of row k with −a[k−1]

ik /a
[k−1]
kk . This means that

a
[k]
ij = a

[k−1]
ij −

a
[k−1]
ik

a
[k−1]
kk

a
[k−1]
kj . (8.1)

A remarkable result is that these entries can be related to minors of the original matrix. If A = (aij), u
and v are integers or integer intervals, denote by Auv the submatrix obtained by extracting from A the rows
in u and the columns in v. Then, define

a
(k)
ij =

∣∣∣∣A1..k,1..k A1..k,j

Ai,1..k aij

∣∣∣∣
and note that detA1..k,1..k = a

(k−1)
kk .

Theorem 8.1 (Bareiss 1968). For all i, j, k where a[k]ij is defined, one has

a
[k]
ij =

a
(k)
ij

a
(k−1)
kk

.

Proof. A consequence of an identity on determinants due to Sylvester (1851) is that the minors a(k)ij are
related by

a
(k)
i,j a

(k−2)
k−1,k−1 = a

(k−1)
kk a

(k−1)
ij − a

(k−1)
ik a

(k−1)
kj . (8.2)

The proof follows by induction. For k = 0, a(k)ij = aij and the principal minor of order 0 is 1. Next,
injecting the induction hypothesis in Eq. (8.1) gives

a
[k]
ij =

a
(k−1)
ij

a
(k−2)
k−1,k−1

−
a
(k−1)
ik

a
(k−1)
kk

a
(k−1)
kj

a
(k−2)
k−1,k−1

.
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Multiplying both sides by a(k−1)
kk and using Eq. (8.2) concludes the proof.

Two consequences follow: the elements on the diagonal of the final triangular matrix are quotients of succes-
sive principal minors of A; the size of all the entries in the intermediate matrices are controlled by Hadamard’s
bound which makes the complexity of the algorithm on integer matrices polynomial.

This reasoning assumes that the pivot at position (k, k) is always nonzero. The result persists otherwise,
by performing an appropriate permutation of the rows of the matrix.

8.3 Polynomial Matrices by Gaussian Elimination

8.3.1 Determinant
Since the determinant has degree ≤ nd it can be computed by evaluation-interpolation in O(n4d) operations
using cubic Gaussian elimination at each point, which reduces to O(nω+1d) if one uses fast determinant
at each point. By contrast, one can multiply two matrices in K[x]n×n

≤d in only Õ(nωd) operations (e.g., by
evaluation-interpolation, or if the ring is too small, by viewing the matrices of polynomials as polynomials
with matrix coefficients and using an algorithm due to Cantor and Kaltofen that performs the product of
polynomials of degree ≤ d over any algebra in Õ(d) operations in the algebra).

8.3.2 Linear System Solving
Consider the linear system A(x)Y (x) = b(x) with degA, b ≤ d. By Cramer’s formula, the entries of the
solution is a rational function with numerator and denominator of degree upper bounded by 2nd. This gives
an algorithm based on Padé approximants to solve the system:

1. Compute the truncated power series Ŷ (x) such that A(x)Ŷ (x) = b(x) mod x2nd+1 (e.g., by Newton’s
iteration);

2. Reconstruct Y (x) from Ŷ (x) by rational reconstruction.

The second step costs Õ(n2d), its complexity is dominated by that of the first step, in Õ(nω+1d) opera-
tions.

For this algorithm to succeed, the series expansion must exists, which is the case when detA(0) = 0. If not,
one picks another point α ∈ K where A(α) is nonsingular and solves the system A(x+α)Y (x+α) = b(x+α).
Shifting the matrix A and the vector b can be achieved by evaluation-interpolation in a complexity that is
negligible compared to the resolution.

Thus in both cases the cost obtained by these algorithms is of order the product of the algebraic cost nω

by the output size nd. Faster algorithms have appeared since the 1990s that decrease this complexity and
the one of other problems on polynomial matrices to only Õ(nωd). This is the object of the next sections.

8.4 Minimal Approximant Bases
The key tool that is as the basis of fast algorithms is the following.

Definition 8.1. Given a matrix of power series H ∈ K[[x]]n×m with m ≥ n, an approximant basis of
H at order σ is a matrix B ∈ K[x]m×m such that HB = O(xσ) and all vectors v such that Hv = O(xσ)
are linear combinations with polynomial coefficients of the columns of B. The basis B is called minimal
when the degree of its columns is minimal.
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Example 8.2. The following formula shows the product HB in a case where n = 1,m = 2, σ = 6:

[
5 + 3x+ 2x2 + x3 + x4 −1

] [x2 − x− 1 2x4 − 3x3

−8x− 5 x4 − 15x3

]
=
[
x6 x6 − x7 + 2x8

]
The first column of B gives the denominator and numerator of a Padé approximant of order (1, 2) of
H1,1.

More generally, for a square matrix A, a minimal approximant basis of [A − I] splits into two blocks
D,N such that AD −N = O(xσ), showing how these bases give a matrix variant of Padé approximants.

8.4.1 Kernel Basis

Intuitively, if σ becomes large enough, the columns of a minimal approximant basis should contain a basis
of the kernel of the matrix A. This can be made more precise thanks to the following result, that we give
without proof.

Theorem 8.2. Generically, a matrix A ∈ K[x]m×2m of degree d has a kernel basis over K[x] of degree
at most d.

Here, ‘generically’ means that there exists a nonzero polynomial P in the entries aij of A such that whenever
P (aij) ̸= 0, the result holds.

Corollary 8.1. Generically, a minimal approximant basis of A ∈ K[x]m×2m
≤d at precision σ = 2d + 1

contains m columns of degree ≤ d that form a basis of the kernel of A.

Proof. By definition of the approximant basis, if A(x)u(x) = 0, then u(x) is a K[x]-linear combination of
the columns of B. Generically, the kernel of A has dimension m and by the previous theorem, it has a basis
of degree bounded by d. Therefore by minimality, B has at least m linearly independent columns of degree
bounded by d. It does not contain more such columns since generically the dimension of the kernel is m.

Note also that as a consequence, if deg v ≤ d and Av = O(x2d+1) then Av = 0.

8.4.2 Computation of an Approximant Basis

Incremental Computation

A first algorithm proceeds incrementally. We present it in the simpler case when H has dimension 1 ×m.
(This special case, which generalizes Padé approximants, is interesting in its own right as it corresponds to
Hermite-Padé approximants — the tool underlying the guessing routines of gfun used in the tutorials.)

At step i < σ, one has a matrix Bi such that HBi = O(xi). Initially B0 = Im. At step i, one can write
HBi = R + O(xi+1) with R ∈ K1×m. If R = 0 then one can take Bi+1 = Bi. Otherwise, take as pivot the
column C of Bi which is such that: the corresponding column of R is not zero; among those, its degree is
minimal; among those, the index of its highest degree polynomial is minimal. Then, by linear combination
with a constant coefficient of each of the other columns of Bi with C, the corresponding entry of R can be
set to 0 and finally one replaces C by xC to cancel the remaining entry of R. Proceeding this way, increasing
the degree of only one column, one gets from O(xi) to O(xi+1). As one always picks the column of minimal
degree, these increments spread out in the matrix and one ends up, in general, with a matrix of degree
roughly σ/m. We state without proof that this does produce a minimal approximant basis.
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Divide-and-Conquer Algorithm

We sketch an algorithm that takes advantage of fast polynomial multiplication in the same way as in the
half-gcd algorithm of Lecture 4. The basic idea is that if one has computed an approximant basis B(1) at
order σ/2, then by multiplication one can compute a new matrix H ′ s.t.

HB(1) = xσ/2H ′ mod xσ.

From there, one computes an approximant basis B(2) of H ′ at precision σ/2, so that

HB(1)B(2) = xσ/2H ′B(2) mod xσ = O(xσ)

and thus B = B(1)B(2) satisfies the first condition HB = O(xσ) of an approximant basis.
If this was always an approximant basis, one would obtain a complexity C(σ) = 2C(σ/2) + Õ(mωσ) =

Õ(mωσ) operations. Actually, a variant can be designed in the same way that the half-gcd algorithm needs
adjustment of the degrees in the intermediate steps. The complexity is then as in the simplified situation
above. We state without proof the result of this line of work.

Theorem 8.3. Given A ∈ K[[x]]m×2m, an approximant basis of order O(σ) can be computed in Õ(mωσ)
arithmetic operations.

Corollary 8.2. Given A ∈ K[x]n×n
≤d , a kernel basis of A can be computed in Õ(nωd) arithmetic operations.

Proof. At least in generic situations, this is a consequence of the previous theorem and of Corollary 8.1.

8.5 Fast Matrix Inverse

We consider a matrix M ∈ K[x]n×n
≤d . Recall that Strassen’s algorithm for the inverse of a matrix proceeds

recursively on blocks of half the size by computing the transformation

M =

[
A B
C D

]
7→
[
A 0
0 D − CA−1B

]
.

When applied with integer or polynomial matrices, what happens is that the size of the entries increases
too much along the diagonal. The idea of the new algorithm (Jeannerod, Villard 2005) is to use kernel bases
of the top and lower halves of the matrix to reach the same situation. More precisely, let U ∈ K[x]n/2×n be
a (left) kernel basis of the second half of the columns, i.e.,

U

[
B
D

]
= 0.

(Compared to the previous convention, this is obtained as the transpose of the kernel basis of the transpose
of the block formed by the last n/2 columns of A.) Similarly, let U ∈ K[x]n/2×n be a left kernel basis of the
first half of the columns. Stacking these two matrices one obtains[

U
U

] [
A B
C D

]
=

[
A′ 0
0 D′

]
.

Compared to Strassen’s algorithm what happens, generically, is that the degree of the matrix U = [U,U ]T is
bounded by d and the degrees of A′ and D′ are therefore bounded by 2d. Computing again the left kernels
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of the first and second halves of the columns of A′ and D′ and stacking the blocks properly gives a new
matrix U ′ of degree bounded by 2d such that

U ′UM =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 ,
where each entry denotes a block of size (n/4) × (n/4), with entries of degree bounded by 4d. Iterating
this process log2 n steps, we get a polynomial matrix V = · · ·U ′′U ′U and a diagonal matrix D such that
VM = D and therefore

M−1 = D−1V.

The matrix V has degree bounded by (d + 2d + 4d + · · · + 2log2 nd) ≤ 2nd and similarly for the matrix D.
Efficiency is achieved by making use of the block structure of the matrices. At step i = 1, . . . , log2 n, the
computation performs:

1. 2i computations of approximant bases of dimension n/2i and degree 2i−1d;

2. the update of the diagonal blocks with 2i multiplications of blocks of degree 2i−1d;

3. the update of the product on the left with 2i−1 block-rows of dimension n/2i and degree 2i−1d.

In total, the complexity for computing U,U ′, U ′′, . . . and D is bounded by a constant times

log2 n∑
i=1

( n
2i

)ω
2id = O(nωd).

This completes the (sketch of the) proof of the following.

Theorem 8.4. The inverse of an n × n polynomial matrix of degree d can be computed in essentially
optimal time Õ(n3d).

Note that more work is needed to extend the idea presented here that works generically to an algorithm
that works in all cases. This has been completed by Zhou, Labahn and Storjohann in 2015.

Example 8.3. A surprising application is to the computation of A,A2, . . . , An for a constant matrix A in
only Õ(n3) operations (which is optimal). The starting point is the expansion

(I − xA)−1 = I + xA+ x2A2 + · · · .

Thus one computes the inverse of I−xA in Õ(n3) operations by the previous theorem and then the series
expansion at order n of each of its rational entries. By Newton’s iteration (Lecture 3) this uses Õ(n)
operations for each entry, whence a total complexity of Õ(n3) for that step too.
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Lecture 9

Hypergeometric Summation

Summary

Hypergeometric sequences occur in a large number of formulas from combinatorics, probability or
special function theory. Their indefinite sums, when hypergeometric, can be computed by Gosper’s
algorithm. For definite sums, the starting point of all the modern developments is Zeilberger’s algorithm.
This algorithm produces a linear recurrence with polynomial coefficients. The hypergeometric solutions
of such recurrences can be found by Petkovšek’s algorithm.

In this lecture, K denotes an arbitrary field of characteristic 0.

Typical sums that can be computed by the algorithms presented here are

n∑
k=0

4k(
2k
k

) =
(2n+ 1)4n+1

3
(
2(n+1)
n+1

) +
1

3
(9.1)

n∑
k=1

(−1)
k+1

(4k + 1) (2k)!

4k (2k − 1) k! (k + 1)!
=

2 (−1)
n+1

(n+ 2) (2n+ 2)!

4n+1 (2n+ 1) (n+ 2)! (n+ 1)!
+ 1 (9.2)

n∑
k=0

(
n

k

)2

=

(
2n

n

)
(9.3)

n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)
= 4n. (9.4)

For another similar sequence,

un =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

,

that plays an important role in Apéry’s proof that ζ(3) is irrational, Zeilberger’s algorithm finds

(n+ 1)3un+1 − (34n3 + 51n2 + 27n+ 5)un + n3un−1 = 0

and Petkovšek’s algorithm proves that (un) cannot be made much simpler, in the technical sense that it is
not hypergeometric (Definition 9.2 below).
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9.1 Gosper’s Algorithm for Indefinite Summation

9.1.1 Indefinite Sums

Definition 9.1. An indefinite sum of a sequence (fk) ∈ KN is a sequence (Fk) ∈ KN such that

Fk+1 − Fk = fk, k ∈ N.

Indefinite sums are discrete analogues of primitives: given such a sum, one can compute sums between
endpoints, as

p∑
k=m

fk = Fp+1 − Fm.

In the case of integrals, there are functions without any nice primitive, but whose integral over some domain
can be expressed simply. The discrete analogue of this phenomenon will be the object of Section 9.2.

9.1.2 Hypergeometric Sequences

The basic algorithms for symbolic summation focus on a special class of sequences, that are polynomially
finite (Lecture 6) or order 1.

Definition 9.2. The sequence (uk) ∈ KN is hypergeometric if there exist two non-zero polynomials P
and Q in K[k] such that

Q(k)uk+1 = P (k)uk, k ∈ N.

Example 9.1. The name comes from the special case of geometric sequences (ak), obtained with Q =
1, P = a. Other examples are the sequences (k!), (

(
3k
k

)
)k, (

(
x
k

)
)k, (

(
k
m

)
)k when m ∈ N, since

(k + 1)! = (k + 1)k!,

(
3(k + 1)

k + 1

)
=

3(3k + 1)(3k + 2)

2(2k + 1)(k + 1)

(
3k

k

)
, (9.5)(

x

k + 1

)
=
x− k

k + 1

(
x

k

)
,

(
k + 1

m

)
=

k + 1

k + 1−m

(
k

m

)
. (9.6)

In the case of complex sequences, since polynomials can be fully factored, a complete characterisation of
hypergeometric sequences is possible.

Lemma 9.1. The sequence (uk) ∈ CN is hypergeometric if and only if there exists N ∈ N, C, A,
a1, . . . , ap, b1, . . . , bq in C such that

uN+k = C Ak

∏p
i=1(ai)(ai + 1) · · · (ai + k − 1)∏q
j=1(bj)(bj + 1) · · · (bj + k − 1)

, k ∈ N.

Proof. First, if uk is as given in the lemma, then

uN+k+1

uN+k
= A

∏p
i=1(ai + k)∏q
j=1(bj + k)

.

Since both numerator and denominator of the right-hand side are polynomials, this sequence is indeed
hypergeometric.

Conversely, for two polynomials P and Q in C[k], the fraction P/Q can be written as in the right-hand
side above, with −ai the roots of P , −bj the roots of Q and A the quotient of their leading coefficients. Let
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−N be a strict lower bound for the negative integer roots of Q and let vk = uN+k. Then

vk+1

vk
=
P (N + k)

Q(N + k)
, k ∈ N,

since the denominator does not vanish in N. Taking ãi = ai +N , b̃j = bj +N gives the result with ãi and
b̃j in place of ai and bj .

9.1.3 Indefinite Hypergeometric Summation
The problem of indefinite hypergeometric summation is to decide whether a given hypergeometric sequence
admits a hypergeometric indefinite sum, and if so, to compute this indefinite sum.

More formally, the input is formed of two polynomials P,Q in K[k] that define a sequence (uk) as in
Definition 9.2. The output is either a hypergeometric sequence (vk) such that vk+1−vk = uk, or a statement
that no such sequence exists.

Example 9.2. For the sequence uk = 4k/
(
2k
k

)
of Eq. (9.1), the input would be

P = 2k + 2, Q = 2k + 1.

The output will be

vk =
2k − 1

3
uk.

9.1.4 Reduction to Rational Sequences
If the desired indefinite hypergeometric sequence (vk) exists, then there exists a rational function S(k) such
that vk+1 = S(k)vk for k larger than the largest integer root of the denominator of S, therefore

uk = vk+1 − vk = (S(k)− 1)vk

implies that vk is actually the product of uk by a rational unknown function T (k) = 1/(S(k)− 1).
Since (uk) is hypergeometric, there also exists a rational function R(k) such that uk+1 = R(k)uk for k

sufficiently large. Injecting vk = T (k)uk and this formula into vk+1 − vk = uk gives

T (k + 1)R(k)− T (k) = 1, (E)

an equation where R is known and T is the unknown.

Example 9.3. With R = (2k + 2)/(2k + 1) from the previous example, this equation has for rational
solution T (k) = (2k − 1)/3.

Example 9.4. With R(k) = −(4k + 5) (2k − 1)/(2 (4k + 1) (k + 2)), the desired solution would be

T (k) = −2
k + 1

4k + 1
.

9.1.5 Gosper Normal Form
The resolution of Eq. (E) is made difficult by the fact that roots of the numerator and denominator of R
could differ by an integer. This difficulty is circumvented by a normal form of rational functions introduced
by Gosper in 1978.
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Lemma 9.2. Any rational function R(k) ∈ K(k) can be written in the form

R(k) =
A(k)

B(k)

C(k + 1)

C(k)
,

with A,B,C polynomials in K[k] and the property that for all m ∈ N, gcd(A(k), B(k +m)) = 1.

Proof. The proof is effective. It is given by the following algorithm

# Gosper form of P/Q
GosperForm:=proc(P,Q,k)
local A,B,C,R,H,h,i,j,G;

A:=P; B:=Q; C:=1;
# 1. Integer differences between roots of P,Q
R:=resultant(A,subs(k=k+d,B),k);
H:=select(type,map2(op,1,roots(R,d)),nonnegint);
# 2. Construct C and update A,B
for h in sort(H) do

G:=gcd(subs(k=k+h,B),A);
A:=quo(A,G,k); B:=quo(B,subs(k=k-h,G),k);
C:=C*mul(subs(k=k-j,G),j=1..h)

end do;
A,B,C

end:

First, the algorithm finds all the nonnegative integers h ∈ N such that gcd(P (k), Q(k + h)) ̸= 1, by
computing the resultant between those polynomials and finding its integer roots. The idea is that for such
a root h, writing G(k) for this gcd and P = GP̃ , Q = G(k − h)Q̃, one has

P (k)

Q(k)
=
P̃ (k)

Q̃(k)

G(k) · · ·G(k − h+ 1)

G(k − 1) · · ·G(k − h)
.

These roots are then sorted by increasing order and the polynomial C is used to accumulate fractions as
above.

Writing h1 < h2 < · · · < hm the elements of H and Gi, Ai, Ci the polynomials constructed with h = hi,
the correctness of the algorithm follows from two properties that are maintained at the end of each iteration
of the loop:

1.
Ai(k)

Bi(k)

Ci(k + 1)

Ci(k)
=
P (k)

Q(k)
;

2. gcd(Ai(k), Bi(k + ℓ)) ̸= 1, ℓ ∈ N ⇒ ℓ ≥ hi+1 (with the convention hm+1 = ∞.)

They both follow from a simple induction.

The following extra property will be used later.

Exercise 9.1. At the end of the algorithm, gcd(A(k), C(k)) = 1, gcd(B(k), C(k + 1)) = 1.

9.1.6 Reduction to a Polynomial Unknown
Armed with Gosper’s Normal Form, we can now prove the main result of this section.
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Theorem 9.1 (Gosper, 1978). If T (k) ∈ K(k) is a rational solution of the recurrence Eq. (E) and A,B,C
are given by Lemma 9.2, then

T (k) =
B(k − 1)

C(k)
X(k),

with X(k) a polynomial solution of the recurrence

A(k)X(k + 1)−B(k − 1)X(k) = C(k). (E ′)

Proof. Injecting the given form of T (k) into Eq. (E) and reducing common denominators gives Eq. (E ′), but
at that stage X(k) is only known to be rational.

Assume now that X(k) = P (k)/Q(k) with gcd(P,Q) = 1. We are going to show that Q = 1. Injecting
this expression for X in Eq. (E ′) and multiplying by Q(k)Q(k + 1) gives

A(k)P (k + 1)Q(k)−B(k − 1)P (k)Q(k + 1) = C(k)Q(k)Q(k + 1).

Now one observes that Q(k) dividing two of the three terms, it has to divide the third one. As it is relatively
prime with P , it follows that

Q(k) | B(k − 1)Q(k + 1).

Therefore Q(k + 1)|B(k)Q(k + 2) and so on, so that for any K ∈ N \ {0},

Q(k) | B(k +K − 2) · · ·B(k − 1)Q(k +K).

Similarly, Q(k + 1) divides two of the terms, leading to

Q(k) | A(k − 1) · · ·A(k −K)Q(k −K).

As Q is a polynomial, there exists K such that gcd(Q(k), Q(k +K)) = gcd(Q(k), Q(k −K)) = 1. Then

Q(k) | gcd(B(k +K − 2) · · ·B(k − 1), A(k − 1) · · ·A(k −K)) = 1,

where the last equality comes from the properties demanded by the Gosper normal form.

9.1.7 Polynomial Solution
The problem of indefinite hypergeometric summation has thus been reduced to finding polynomial solutions
of an equation of the form

A(k)X(k + 1)−B(k − 1)X(k) = C(k). (E ′)

A simple strategy to solve such equations is to first find a bound on the possible degrees of its polynomial
solutions, then use undeterminate coefficients, which results in a linear system for those coefficients by
extracting the coefficients of powers of k in the equation.

In order to find a bound, assume that as k → ∞,

X(k) ∼ γkD, A(k) ∼ λkd, A(k)−B(k − 1) ∼ µkδ,

where all quantities are known from the input, except for the degree D, and also the linear factor γ that is
irrelevant. Rewriting the recurrence as

A(k)(X(k + 1)−X(k)) + (A(k)−B(k − 1))X(k) = C(k)

and exploiting the fact that X(k + 1)−X(k) ∼ γDkD−1, one obtains the following distinction of casesIf d− 1 ̸= δ, D ≤

{
degC −max(δ, d− 1), if degC ̸= δ,
0 if degC = δ,

otherwise, D ≤ max(degC − δ,−µ/λ),

where the bound −µ/λ only appears if it is an integer.
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9.1.8 Gosper’s Algorithm
The algorithm is obtained by putting together the results of the discussion so far.

# Indefinite sum of u(k)
# Input: P,Q s.t. u(k + 1)/u(k) = P/Q
# Output: t s.t. t(k)u(k) is an indefinite sum of u(k)
# or FAIL if none exists
Gosper:=proc(P,Q,k)
local v,a,b,c,eq,x,pol;

a,b,c:=GosperForm(P,Q,k);
eq:=a*x(k+1)-subs(k=k-1,b)*x(k)=c;
pol:=LREtools[polysols](eq,x(k),{});
if pol=NULL then FAIL
else pol*subs(k=k-1,b)/c fi

end:

Example 9.5. If

uk =

∏k−1
j=1 j

2∏k
j=1(j

2 + 1)
,

one obtains
uk+1

uk
=

k2

(k + 1)2 + 1

which is already in Gosper normal form. The equation to be solved becomes

k2X(k + 1)− (k2 + 1)X(k) = 1.

With the notation of our discussion on degree bounds, we have d = 2, δ = 0,degC = 0. It follows that
a bound on the degree of solutions is D ≤ 0. Setting X(k) = λ and extracting the coefficients of 1, k, k2
gives a system of one equation:

−λ = 1.

An indefinite hypergeometric sum has thus been found:∑
k

uk = −(k2 + 1)uk.

Since the denominator of uk does not vanish on N, one deduces for instance that

n∑
k=1

∏k−1
j=1 j

2∏k
j=1(j

2 + 1)
= 2u1 − (n2 + 1)un+1 = 1−

n∏
j=1

j2

j2 + 1
.

As Gosper’s algorithm is a decision algorithm, it also allows to determine when sequences do not admit
a hypergeometric indefinite sum.

Example 9.6. With uk = k!, the equation to be solved becomes

(k + 1)X(k + 1)−X(k) = 1

and since the degree of the first term is always one more than the degree of X, this equation cannot have
a polynomial solution, proving that the sequence (k!) does not have an hypergeometric indefinite sum.
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Similarly, with uk =
(
n
k

)
, the equation becomes

(n− k)X(k + 1)− kX(k) = 1,

the quantities for the degree bounds are d = 1, δ = 0,degC = 0,−µ/λ = n ̸∈ N, leading to the
bound D ≤ 0 and the system

−2λ = 0, λn− 1 = 0,

that does not have any solution.

9.2 Zeilberger’s Algorithm for Definite Summation

As shown by the last example, the sequence (
(
n
k

)
) with n fixed does not admit an indefinite hypergeometric

sum. However, it has a very simple definite sum

n∑
k=0

(
n

k

)
= (1 + 1)n = 2n.

Other similar examples of sequences that do not have an indefinite hypergeometric sum but a nice definite
one are

n∑
k=0

(
n

k

)2

=

(
2n

n

)
,

n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)
= 4n

and a larger one, due to Dixon around 1900,∑
k∈Z

(−1)k
(
a+ b

a+ k

)(
b+ c

b+ k

)(
c+ a

c+ k

)
=

(a+ b+ c)!

a!b!c!
, a, b, c ∈ N,

where the sum indicated over Z reduces to max(−a,−b,−c) ≤ k ≤ min(a, b, c), as at least one of the binomial
coefficients is 0 outside of that range.

9.2.1 Definitions

We first extend the definition of hypergeometric sequences to a bivariate setting.

Definition 9.3. The sequence (fn,k) ∈ KN×N is hypergeometric if there are four non-zero polynomials
in K[n, k] such that

B(n, k)fn,k+1 = A(n, k)fn,k, D(n, k)fn+1,k = C(n, k)fn,k.

Example 9.7. The binomial coefficient sequence
(
n
k

)
is hypergeometric: it satisfies(

n+ 1

k

)
=

n+ 1

n+ 1− k

(
n

k

)
,

(
n

k + 1

)
=
n− k

k + 1

(
n

k

)
.

The problem of definite hypergeometric summation is, given two rational functions as above that define
a hypergeometric sequence fn,k, to find a linear recurrence with polynomial coefficients for the sequence

Fn =
∑
k∈Z

fn,k.

Actually, a more useful result is obtained by Zeilberger’s algorithm described below.
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9.2.2 Creative Telescoping
If one knows Pascal’s triangle (

n+ 1

k + 1

)
=

(
n

k + 1

)
+

(
n

k

)
,

then subtracting this identity in
∑(

n+1
k

)
leads to a telescoping:

Fn+1 =
∑
k

(
n+ 1

k

)
=
∑
k

((
n+ 1

k

)
−
(
n+ 1

k + 1

)
+

(
n

k + 1

)
−
(
n

k

)
+ 2

(
n

k

))
= 2Fn.

Writing fn,k for
(
n
k

)
, this process has produced the identity

fn+1,k − 2fn,k = (fn,k+1 − fn+1,k+1)− (fn,k − fn+1,k),

from which the result Fn+1 = 2Fn is obtained by summing over k. The method of creative telescoping
generalizes this example.

Definition 9.4. A telescoping identity for a bivariate hypergeometric sequence fn,k is an equation of the
form

tp(n)fn+p,k + · · ·+ t0(n)fn,k = gn,k+1 − gn,k

with rational ti in K(n), not all 0. The left-hand side is called a telescoper and the right-hand side a
certificate.

The reason for the name certificate is that given a certificate gn,k, one can check the identity obtained by
summing over k, which is not straightforward without it.

9.2.3 Zeilberger’s Algorithm
The equation of Definition 9.4 expresses gn,k as an indefinite sum of the left-hand side. The principle of
Zeilberger’s algorithm is to use Gosper’s algorithm with unknown ti in order to find gn,k. Let

Uk = tp(n)fn+p,k + · · ·+ t0(n)fn,k,

where we focus on k, but Uk also depends on n, and on the ti. Then

Uk+1

Uk
=
tp(n)

fn+p,k+1

fn,k+1
+ · · ·+ t0(n)

fn,k+1

fn,k+1

tp(n)
fn+p,k

fn,k
+ · · ·+ t0(n)

fn,k

fn,k

fn,k+1

fn,k
=:

P (k + 1, t)/q(k + 1)

P (k, t)/q(k)

fn,k+1

fn,k
,

where P (k, t) is a linear combination of the ti with coefficients in K(n)[k] and q ∈ K(n)[k] exist since fn,k is
hypergeometric.

Next, consider the Gosper normal form of q(k)fn,k+1/(q(k + 1)fn,k) in the field K′(k), with K′ = K(n),

q(k)fn,k+1

q(k + 1)fn,k
=
A(k)

B(k)

C(k + 1)

C(k)
.

It follows that
Uk+1

Uk
=
A(k)

B(k)

P (k + 1, t)C(k + 1)

P (k, t)C(k)
.

This leads to the equation

(E ′) A(k)X(k + 1)−B(k − 1)X(k) = C(k)P (k, t),

where the ti appear only in the right-hand side. The question is to find values of ti such that this equation
has a polynomial solution X(k) in K(n)[k].
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Figure 9.1: Zeilberger’s Algorithm

Going back to the discussion on degree bounds in Section 9.1.7, one observes that these bounds depend
only on A,B and degC + degP , none of which depends on the unknown ti. Thus one can compute a
degree bound as before. And then, extracting coefficients of powers of k gives a system that is linear in the
coefficients of X and also in the ti. This is Zeilberger’s algorithm, presented in Fig. 9.1. The algorithm loops
over increasing orders for the left-hand side. In general, there is no guarantee that any telescoping identity
will be found, which is why it also takes a bound m on the orders to be tried. There is an important class
of proper hypergeometric sequence for which it is proved to terminate, but we do not discuss it here.

9.2.4 Example
We show the steps of the algorithm on the sum

Sn =

n∑
k=0

(n+ a+ b+ c+ k)!

(n− k)!(a− k)!(b+ k)!(c+ k)!k!
.

If
fn,k =

(n+ a+ b+ c+ k)!

(n− k)!(a− k)!(b+ k)!(c+ k)!k!
,

the input of the algorithm is formed of the two rational functions

fn+1,k

fn,k
=
n+ a+ b+ c+ k + 1

n− k
,

fn,k+1

fn,k
=

(n+ a+ b+ c+ k + 1)(n− k)(a− k)

(b+ k + 1)(c+ k + 1)(k + 1)
(9.7)

in Q(a, b, c, n, k).
Having no a priori bound on the order of a telescoper for fn,k, we start by looking for a telescoper of

order p = 1. With Uk = t1fn+1,k + t0fn,k, we find

Uk+1

Uk
=

P (k+1,t)
n−k

P (k,t)
n+1−k

fn,k+1

fn,k
,

where
P (k, t) = (n+ k + 1 + a+ b+ c)t1(n) + (n+ 1− k)t0(n).

Next, we observe that
(n+ a+ b+ c+ k + 1)(n+ 1− k)(a− k)

(b+ k + 1)(c+ k + 1)(k + 1)
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is already in Gosper normal form, since no root of the numerator differs from a root of the denominator by
an integer.

Thus the linear recurrence for the polynomial X is

(n+ 1− k)(a− k)(a+ b+ c+ n+ k + 1)X(k + 1)− k(b+ k)(c+ k)X(k) = P (k, t).

With the notation of the discussion on degree bounds in Section 5.4.3, we have

d = 3, δ = 1, degC = 1,

from where the bound D ≤ 0 follows. Setting X(k) = λ, the coefficients of k3 and k2 vanish and extracting
the coefficients of k0, k1 gives the system

{−a (−n− 1) (n+ 1 + a+ b+ c)λ− t0 (−n− 1)− (−n− 1− a− b− c) t1,

− (a (−n− 1) + (a+ n+ 1) (n+ 1 + a+ b+ c))λ− bcλ− t0 + t1} ,

linear in λ, t0, t1. It has a nonzero solution

t0 = − (a+ b+ n+ 1) (a+ c+ n+ 1) (a+ b+ c+ n+ 1) ,

t1 = (n+ 1) (b+ n+ 1) (c+ n+ 1) ,

λ = −(a+ b+ c+ 2n+ 2).

This means that with these values,

t1(n)fn+1,k + t0(n)fn,k = ∆k

(
B(k − 1)x(k)

P (k)
Uk

)
,

where ∆k is the difference operator: ∆k(vk) = (vk+1 − vk).
One checks that the denominator does not vanish for k ∈ {−1, 0, . . . , n+1}. Thus, summing this identity

for k from −1 to n gives
λB(n)

P (n+ 1)
Un+1 − λ

B(−2)

P (−1)
U−1.

Normalizing Eq. (9.7) and evaluating at k = n shows both fn,n = 0 and fn,n+1 = 0. Therefore Un+1 =
t1(n)fn+1,n+1+t0(n)fn,n+1 = 0. Similarly, U−1 = 0 is obtained by evaluating the second equation of Eq. (9.7)
at k = −1. This shows that Sn satisfies the linear recurrence of order 1

(n+ 1) (b+ n+ 1) (c+ n+ 1)Sn+1 − (a+ b+ n+ 1) (a+ c+ n+ 1) (a+ b+ c+ n+ 1)Sn = 0.

In view of the initial condition
S0 =

(a+ b+ c)!

a!b!c!
,

we have found

Sn =

n∑
k=0

(n+ a+ b+ c+ k)!

(n− k)!(a− k)!(b+ k)!(c+ k)!k!
=

(a+ b+ n)!(a+ c+ n)!(a+ b+ c+ n)!

n!a!(a+ b)!(a+ c)!(b+ n)!(c+ n)!
.

9.3 Petkovšek’s Algorithm
The last algorithm of this lecture aims at finding hypergeometric solutions of linear recurrences. One source
of such recurrences is Zeilberger’s algorithm from the previous section. For instance, with

Dn =

n∑
k=0

(−1)k
(
n

k

)(
3k

n

)
,
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Zeilberger’s algorithm finds the linear recurrence

2(2n+ 3)Dn+2 + 3(5n+ 7)Dn+1 + 9(n+ 1)Dn = 0.

Petkovšek’s algorithm starts from there and finds that Dn is indeed hypergeometric (see below).
Similarly, for the sequence

An =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

from Apéry’s proof, Zeilberger’s algorithm returns the recurrence

(n+ 1)3An+1 − (34n3 + 51n2 + 27n+ 5)An + n3An−1 = 0,

from which Petkovšek’s algorithm shows that An is not hypergeometric.

9.3.1 Petkovšek’s Algorithm
The given recurrence is

pr(n)un+r + · · ·+ p0(n)un = 0

and un is assumed to be hypergeometric. The analysis is simpler if one takes a stronger form of the Gosper
normal form of un+1/un:

un+1

un
= Z

A(n)

B(n)

C(n+ 1)

C(n)
,

where it is assumed that A,B,C satisfy the same property as earlier, and moreover are all monic. This is
easy to achieve for any rational function P/Q: take Z to be the quotient of the leading coefficients of P
and Q, then run the algorithm on P/ lc(P ) and Q/ lc(Q) (lc denotes the leading coefficient) paying attention
to take monic gcds.

Injecting this expression in the recurrence and multiplying by common factors gives

Zrpr(n)A(n+ r − 1) · · ·A(n)C(n+ r)+

Zr−1pr−1(n)B(n+ r − 1)A(n+ r − 2) · · ·A(n)C(n+ r − 1)

+ · · ·+
Zp1(n)B(n+ r − 1) · · ·B(n+ 1)A(n)C(n+ 1)+

p0(n)B(n+ r − 1) · · ·B(n)C(n) = 0.

(9.8)

If A and B are known, this equation first gives Z by extracting the leading coefficient of the recurrence. Next,
C has to be a nonzero polynomial solution of the recurrence, which is searched for as before, by bounding
the degree and then using undeterminate coefficients.

The properties of the Gosper form (including Exercise 9.1) prove divisibilities of A and B:

A(n) | p0(n), B(n+ r − 1) | pr(n).

Thus A and B are factors of the extremal coefficients. The resulting algorithm is given in Fig. 9.2.

9.3.2 Examples

Example 9.8. With the recurrence

2(2n+ 3)Dn+2 + 3(5n+ 7)Dn+1 + 9(n+ 1)Dn = 0, (9.9)

the monic factors of the extremal coefficients are

{1, n+ 3/2}, {1, n+ 1}.
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Input:  with  
Output: A hypergeometric solution if one exists; 0 otherwise 
1. For all monic factors  of  of  

(a) Set  
for  

(b) Let  

(c) For all  s.t.  
If  
has a nonzero polynomial solution  
return  

2. Return 0

pr(n)un+r + ⋯ + p0(n)un = 0 pi ∈ #[n]
a(n) p0(n), b(n) pr(n − r + 1),

Pi = pi(n)a(n)⋯a(n + i − 1)b(n + i)⋯b(n + r − 1)
i = 0,…, r;
M := max deg Pi; αi = [nM]Pi; Q = ∑

i

αiZi;
z ∈ # Q(z) = 0,

zrPr(n)c(n + r) + ⋯ + P0(n)c(n) = 0
c(n) ∈ #[n],

un+1/un = za(n)c(n + 1)/(b(n)c(n)) .

Figure 9.2: Petkovšek’s Algorithm

The algorithm loops over the 4 choices. The first one is, say, A = B = 1. Then Eq. (9.8) becomes

2(2n+ 3)Z2C(n+ 2) + 3(5n+ 7)ZC(n+ 1) + 9(n+ 1)C(n) = 0.

Extracting the coefficient of n in each coefficient gives

4Z2 + 15Z + 9 = (Z + 3)(4Z + 3).

The next loop is over the roots z = −3, z = −3/4 of this polynomial. Taking the first choice (z = −3)
gives the recurrence

18(2n+ 3)c(n+ 2)− 9(5n+ 7)c(n+ 1) + 9(n+ 1)c(n) = 0,

which can be rewritten in the form

18(2n+ 3)(c(n+ 2)− 2c(n+ 1) + c(n)) + 9(3n+ 5)(c(n+ 1)− c(n)) = 0,

where the first term has degree deg c−1 when deg c ≥ 2 and the second one deg c when deg c ≥ 1. It follows
that the only possibility for a polynomial solution is deg c = 0. Indeed, c(n) = 1 is clearly a solution,
which shows that (−3)n is a solution of Eq. (9.9). Since the initial conditions D0 = 1 and D1 = −3
match, this proves the identity

Dn =

n∑
k=0

(−1)k
(
n

k

)(
3k

n

)
= (−3)n.

Example 9.9. The case of Apéry’s sequence is more complicated. The recurrence

(n+ 1)3An+1 − (34n3 + 51n2 + 27n+ 5)An + n3An−1 = 0

leads to considering all the possible monic factors among

{1, n+ 1, (n+ 1)2, (n+ 1)3}, {1, n, n2, n3},

which gives 16 choices. For each of them, one constructs Eq. (9.8) and for each of the solutions of the
equation for Z, one searches for a polynomial solution. It is better to have a computer algebra system do
it automatically. In Maple, this is achieved by the command

> LREtools[hypergeomsols](rec,A(n),{});
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0

showing that this recurrence does not admit any hypergeometric solution and therefore that the sequence
(An) is not hypergeometric.

Additional Bibliography
The most elementary introduction is by the authors of these algorithms themselves

Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger. A = B. Wellesley, MA: A. K. Peters, 1996,
pp. xii+212

Another clear introduction to Zeilberger’s algorithm is in the recent editions of

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics. 2nd edition. Reading,
MA: Addison-Wesley Publishing Company, 1994, pp. xiv+657
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Lecture 10

Gröbner Bases

Summary

Gröbner bases are bases of polynomial ideals that play a fundamental role in the manipulation of
polynomial systems. They allow to test ideal membership, to solve elimination problems and to test
membership in the radical of a polynomial ideal. This lets one answer geometric questions, thanks to
Hilbert’s Nullstellensatz.

In this lecture, A = K[x1, . . . , xn], with K an arbitrary field.

Polynomial systems can be used to encode a variety of problems, from geometry (where circles and lines
are encoded by polynomial equations), to robotics (the possible movements of each joint of a robot being
translations or rotations are also encoded by polynomials), or graph coloring (colors are values, each vertex
is given a variable). For all these problems, Gröbner bases can help answer questions related to the encoded
situation.

10.1 Questions about Polynomial Systems

10.1.1 Existence of Solutions
A first question is the existence and the number of solutions. In some cases, like the system

{x+ y = 0, x+ y + 1 = 0},

the answer is that there is no solution, whatever the situation. In other cases, like

x2 + y2 + 1 = 0,

the answer depends on the field K where solutions are considered. This equation does not have any solution
in R2 but it does have solutions in C2. This latter situation is the one to which Gröbner bases are more
suited. There are also ways to answer this type of problems over the real numbers for systems using Gröbner
bases in intermediate computations, but they will not be discussed here.

Another situation where the existence of solutions is important is in SAT-solving. For instance, a boolean
formula like

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ · · ·

translates into the polynomial system

{x1(1− x1) = 0, x2(1− x2) = 0, x3(1− x3) = 0, . . . , x1(1− x3)x4 = 0, x2x3(1− x4) = 0, . . . }
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Figure 10.1: Intersection of a sphere and a cylinder and its projection

Since SAT-solving is known to be an NP-complete problem, this shows that answering this type of questions
for polynomial systems is not going to be easy computationally. Indeed, computational complexity turns
out to be a major obstacle in the efficient solution of questions related to polynomial systems and a major
source of frustration for users of Gröbner bases.

10.1.2 Elimination

There are many applications of elimination. As mentioned in Lecture 5, elimination corresponds to projec-
tion. For instance, the projection of the intersection of a sphere and a cylinder displayed in Fig. 10.1 has an
equation given by eliminating z between the equations{

x2 + y2 + z2 = 1,

y2 + (z − 3/4)2 = 1/16

which gives
4x4 − 3x2 + 9y2 = 0.

Another application is implicitation, where parameters are eliminated from a parameterization in or-
der to obtain an implicit equation for a curve or a surface. The most basic example is to go from the
parameterization of a circle by the tangent of the half-angle:{

x = 1−t2

1+t2 ,

y = 2t
1+t2

to the equation x2 + y2 − 1 = 0 by eliminating t.
Again, Gröbner bases can perform those computations.

10.1.3 Solutions

“Solving” a polynomial system can take many forms. Usually, one aims at finding a representation of the set
of solutions on which further computations can be performed easily. For instance, the system

x2 + y + z = 1,

x+ y2 + z = 1,

x+ y + z2 = 1,

(10.1)

has for solutions the intersections of the three surfaces displayed in Fig. 10.2. The system itself is obviously a
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Figure 10.2: Solutions of Eq. (10.1)

representation of its solutions. Other convenient representations can be computed with the help of Gröbner
bases, such as a triangular system: 

x+ y + z2 = 1,

y2 − y − z2 + z = 0,

z2(2y + z2 − 1) = 0,

z2(z − 1)2(z2 + 2z − 1) = 0,

where the last equation has only one variable z and for each of its solutions, the two previous ones let one
find corresponding values for y and from there the first one gives x. Moreover, this representation keeps
track of the multiplicity of the solutions (a notion which we do not define precisely here).

Another useful representation is called a rational parameterization:
p(u) = (u− 1)(u− 2)(u− 4)(u2 + 14u− 49) = 0,

x = −u4+36u3−251u2+618u−504
p′(u) ,

y = −u4+37u3−241u2+513u−308
p′(u) ,

z = −u4+39u3−215u2+387u−210
p′(u) .

It consists of a square-free polynomial in one variable p(u) (square-free means that it has only simple roots)
and a set of rational functions that give a solution point for each root of p. The division by p′(u) might seem
unnecessary, since p′ can be inverted modulo p, but keeping it leads to parameterizations with smaller integer
coefficients (not proved here either). Another interest of this representation is that there exist algorithms
computing it more efficiently than going through a Gröbner basis computation, at least in theory.

10.1.4 Ideals

Given a polynomial system, its solutions are also solutions of all linear combinations of its equations with
polynomial coefficients. These form an ideal (the definition of an ideal is recalled in Appendix A.)

Definition 10.1. The ideal generated by (f1, . . . , fs) ∈ As is

⟨f1, . . . , fs⟩ =

{
s∑

i=1

Uifi | Ui ∈ A

}
.

That it is an ideal is readily checked.
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Figure 10.3: Intersection of a circle and a hyperbola

Example 10.1. In one variable (n = 1,A = K[x]), ideals of K[x] are principal (generated by one element)
and

⟨f1, . . . , fs⟩ = ⟨gcd(f1, . . . , fs)⟩.

10.1.5 Ideal Membership

An ideal can be given by generators in many ways. Thus the intersection of a circle and a hyperbola in
Fig. 10.3 can be described by the ideal

I = ⟨x2 + y2 − 2, xy − 1⟩.

In the vocabulary of the next section, a Gröbner basis of I (for the graded reverse lexicographic order) is
found to be

I = ⟨x2 + y2 − 2, xy − 1, x− 2y + y3⟩.

It contains the original two polynomials, plus another one that can be obtained as y(x2+ y2− 2)−x(xy− 1)
and has the advantage of having x as its only monomial in the variable x. Another basis, for the lexicographic
order, is the triangular system

I = ⟨y4 − 2y2 + 1, x− 2y + y3⟩.

That this is the same ideal is not completely obvious at first sight. The first polynomial, in y only, can be
found as y(x− 2y+ y3)− (xy− 1), showing the inclusion of this last ideal in the previous one. For the other
direction, one can first observe that

xy − 1 = y(x− 2y + y3)− (y4 − 2y2 + 1)

and next, that
x2 + y2 − 2 = x(x− 2y + y3)− (y2 − 2)(xy − 1).

These computations are special cases of the ideal membership problem. Given a polynomial f and the
generators f1, . . . , fs of an ideal, the question of ideal membership is to test whether f ∈ ⟨f1, . . . , fs⟩.

For instance, in the previous example, where the solutions all satisfy y2 − 1 = 0, it is natural to wonder
whether y2 − 1 ∈ I. Again, Gröbner bases can be used to answer this question.

An important special case is to test whether 1 ∈ ⟨f1, . . . , fs⟩, i.e., detect that the equations are inconsis-
tent.
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10.2 Gröbner Bases
Gröbner bases can be viewed as a common generalization of Euclidean division and of Gaussian elimination.
In Euclidean division, one takes two polynomials, compares their highest degree terms, multiplies by an
appropriate monomial that allows to perform a subtraction that reduces the degree of the higher degree
polynomial. One difficulty in several variables is that there can be several “highest degree terms” and choices
have to be made. This is the purpose of monomial orders.

10.2.1 Monomial Orders
Recall that A = K[x1, . . . , xn]. We use the notation

xα = xα1
1 · · ·xαn

n , (α1, . . . , αn) ∈ Nn.

Definition 10.2. A monomial is an element of A of the form xα, α ∈ Nn. A term is an element of A
of the form λxα with λ ̸= 0 ∈ K and α ∈ Nn.

Definition 10.3. A monomial order is a total order on the monomials, that is compatible with multi-
plication (xα ≺ xβ ⇒ xαxγ ≺ xβxγ) and such that every nonempty set of monomials has a smallest
element.

The following consequence of the definition plays an important role later.

Lemma 10.1. 1 ⪯ xα, α ∈ Nn.

Proof. By contradiction. If 1 ≻ xα, then by compatibility with multiplication, the set {xkα | k ∈ N} does
not have a smallest element.

Example 10.2. In one variable, since 1 ≺ x, compatibility with multiplication implies that

m ≥ k ⇔ xm ⪯ xk.

The case when n > 1 is much more diverse.

10.2.2 Examples of Monomial Orders

Definition 10.4. In the lexicographic order, xα ⪯ xβ when α = β or the first nonzero entry of (α−β) ∈
Zn is positive.

In Maple, this order is denoted ‘plex’ for pure lexicographic order.
Other orders can be defined with the help of matrices that indicate how ties are broken. Important

matrices in practice are Examples

Def. lexicographic order: .M = Id
Def. graded lexicographic order: .M = Mgrlex
Def. graded reverse lexicographic order: .M = Mgrevlex

Maple plex

Maple tdeg

 when  or  
the first nonzero entry of  is positive

xα ⪰ xβ α = β
M ⋅ (α − β)

Mgrlex =
1 1 ⋯ 1
1

⋱
1

, Mgrevlex =
1 1 ⋯ 1

−1
−1

, M(i)
elim =

1 1 0 0
0 0 1 1

−1

−1

.

i⏞

Def. th elimination order: .i M = M(i)
elim Maple lexdeg

Intuition: tdeg faster, plex gives more information, lexdeg in between
8/31
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Definition 10.5. For M ∈ {Id,Mgrlex,Mgrevlex,M
(i)
elim}, one defines a monomial order by xα ⪯ xβ when

α = β or the first nonzero entry of M · (α−β) is positive. The corresponding monomial orders are called:

– lexicographic order if M = Id;

– graded lexicographic order if M =Mgrevlex;

– graded reverse lexicographic order if M =Mgrevlex (‘tdeg’ in Maple, for total degree order);

– ith elimination order if M =M
(i)
elim.

It is readily checked that the first definition is equivalent to the one above.
The intuition for practical use of these monomial orders is that computations with the graded reverse

lexicographic order (tdeg) tend to be faster, computations with the lexicographic order (plex) tend to be
slower but give more direct information, the elimination orders are in between.

10.2.3 Gröbner Bases
Only a few more definitions stand between us and the definition of Gröbner bases.

Definition 10.6. Given a monomial order ⪯ and a polynomial P ̸= 0, one calls leading monomial of P
(denoted LM(P )) the largest monomial for ⪯; one calls leading term (denoted LT(P )) the corresponding
term and leading coefficient (LC(P )) the corresponding coefficient.

Definition 10.7. The stairs of an ideal I ⊂ A is the set {LM(P ) | P ∈ I \ {0}}.

The stairs are visualized by displaying the exponents, and typically look as in Fig. 10.4. By compatibility
of the monomial order with multiplication, for each point p of this picture, the region p + Nn belongs to it
too.

Gröbner Bases

 a monomial order⪯

Def. Leading monomial ( ), leading term ( ) 
of a polynomial : largest for .

LM(P) LT(P)
P ⪯

Def. Stairs of an ideal : 
 .

ℐ ⊂ $
{LM(P) ∣ P ∈ ℐ∖{0}}

Def. Gröbner basis of : a finite subset  such that ℐ G ⊂ ℐ
⟨LM(G)⟩ = ⟨LM(ℐ)⟩ .

Existence unclear at this stage

Def. Leading coefficient ( ): LC(P)
LT(P) = LC(P)LM(P) .

9/31

Figure 10.4: Stairs of an ideal

And finally,

Definition 10.8. A finite subset G of an ideal I ⊂ A is a Gröbner basis of I if ⟨LM(G)⟩ = ⟨LM(I)⟩.

The proof that Gröbner bases exist for all ideals of A is postponed to the next section.
In the example of the picture of the stairs above, the basis would contain one polynomial for each of the

three corners of they gray area.
An easy result at this stage is a characterization of trivial ideals.
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Corollary 10.1. The ideal I is trivial (I = A) if and only if 1 ∈ G, where G is a Gröbner basis of I for
any monomial order.

Proof. Note that 1 is the only polynomial with leading monomial 1, up to nonzero constant factors. It follows
that if 1 ∈ I, then 1 ∈ G. Conversely, if 1 ∈ G, there is a polynomial with leading monomial 1 in I, and this
implies 1 ∈ I.

10.2.4 Examples

Intersection Circle-Hyperbola

In Section 10.1.5, we gave the Gröbner bases for the ideal I = {x2 + y2 − 2, xy − 1}, for the graded reverse
lexicographic order and for the lexicographic order. Underlining their leading monomials, they are

{x2 + y2 − 2, xy − 1, x− 2y + y3}, {y4 − 2y2 + 1, x− 2y + y3}. (10.2)

Note in particular that the number of elements in the basis depends on the monomial order. The corre-
sponding stairs are given in Fig. 10.5.

Examples

ℐ = ⟨x2 + y2 − 2, xy − 1⟩
= ⟨x2 + y2 − 2, xy − 1, x − 2y + y3⟩
= ⟨y4 − 2y2 + 1, x − 2y + y3⟩

tdeg

plex

#elts depends on the order

10/31Figure 10.5: Stairs of the ideal of Eq. (10.2)

The second one is typical of a favorable situation (called ‘shape lemma’), where one polynomial involves
only one variable; the other ones each involve that variable and another one with respect to which it is linear.
Thus, the solution set is completely parameterized by the solutions of the univariate polynomial.

Univariate Situation

If n = 1 (univariate case), then recall from Example 10.1 that any ideal is generated by the gcd g of its
elements. Then ⟨LM(g)⟩ = ⟨xdeg g⟩ and this is clearly equal to ⟨LM(I)⟩, since all elements of I have degree
≥ deg g. Thus, {g} is a Gröbner basis of the ideal.

Linear Systems

If the degree of all polynomials is 1, then we are dealing with a linear system of equations. Assume that A
is a matrix in row echelon form (the first nonzero entry of each row is to the right of the first nonzero entry
of the row above it), as depicted here: 

0 ■ ⋆ ⋆ ⋆ ⋆ ⋆
0 0 0 ■ ⋆ ⋆ ⋆
0 0 0 0 ■ ⋆ ⋆
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 .
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Such matrices are the result of Gaussian elimination. Then the system

G =


n∑

j=1

aijxj | i = 1, . . . ,m


is a Gröbner basis of the ideal ⟨G⟩ for the lexicographic order. This is easier to prove with the tools introduced
in the next section.

10.2.5 Division
Monomial orders have let us define the leading monomial of a polynomial. This is the first step in the
Euclidean division in K[x], that we now generalize to the multivariate setting.

Proposition 10.1. If G = {g1, . . . , gm} ⊂ A and F ∈ A, there exists (B, r) ∈ A2 such that

– F = B + r;

– B ∈ ⟨G⟩;

– r = 0 or no LM(gi) divides a monomial of r.

If G is the Gröbner basis of an ideal I, then (B, r) is unique.

The polynomial r is denoted F
G

.
Before proving this proposition, we discuss a few consequences of this result.

Corollary 10.2. Ideal membership in I can be tested with a Gröbner basis G of I: F ∈ I ⇔ F
G
= 0.

Proof. If F
G

= 0 then F is equal to the polynomial B of the proposition, which is in I since G ⊂ I.
Conversely, if F ∈ I, then r = F

G
= F − B ∈ I. Then by definition of a Gröbner basis, either r = 0 or

LM(r) ∈ ⟨LM(G)⟩. As the second case does not occur by the proposition, it follows that r = 0.

Corollary 10.3. An ideal I is generated by a Gröbner basis of it: I = ⟨G⟩.

Proof. It is a consequence of the previous corollary: if F ∈ I, then F
G
= 0 and F ∈ ⟨G⟩. The other inclusion

comes from G ⊂ I.

Proof of Proposition 10.1. Uniqueness is easy: if F = B1+r1 = B2+r2 with the properties of the proposition,
as no LM(gi) divides the monomials of r1 and r2 the same happens for the monomials of r2−r1 = B1−B2 ∈ I,
which implies that it is 0.

The existence is constructive and given by the algorithm of Fig. 10.6. This algorithm is very similar to
Euclidean division, except that one divides by a set of polynomials rather than only one. The correctness of
the algorithm comes from three properties:

– invariant: at the end of each iteration of the loop,

F − f = a1g1 + · · ·+ amgm + r,

as can be checked by induction;

– invariant: at the end of each iteration of the loop, no LT(gi) divides a monomial of r, this comes from
the way monomials are added to r;
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Input:  
Output:  and  s.t.  

 
 While  do 
   
  If  then 
    
  else  
    
    

 Return 

F, G = {g1, …, gm}
r (a1, …, am) F = a1g1 + ⋯ + amgm + r

r = a1 = ⋯ = am = 0; f = F;
f ≠ 0

S := {i s.t. LT(gi) |LT( f )}
S = ∅
r = r + LT( f ); f = f − LT( f )
i = min S; ai = ai + LT( f )/LT(gi);
f = f − (LT( f )/LT(gi))gi(r, a1, …, am)

Figure 10.6: Division Algorithm

– variant: each iteration of the loop decreases LM(f). This follows from the fact that f is always
subtracted a polynomial whose leading term is LT(f). Since the set of {LT(f)} constructed during the
algorithm has a smallest element, by the properties of monomial orders, it follows that the loop can
only be performed a finite number of times. Then at the end the set S is empty and f = 0.

10.2.6 Elimination

Gröbner bases solve elimination problems.

Theorem 10.1. Let G = {g1, . . . , gm} be a Gröbner basis of I ⊂ A for the lexicographic order. Then
G ∩K[xi, . . . , xn] is a Gröbner basis of the ideal I ∩K[xi, . . . , xn] for the lexicographic order.

Proof. We use the notation

Ai = K[xi, . . . , xn], Gi = G ∩ Ai, Ii = I ∩ Ai.

Since Gi ⊂ Ii, it follows that ⟨LM(Gi)⟩ ⊂ ⟨LM(Ii)⟩ in Ai.
Conversely, if F ∈ Ii \ {0} ⊂ I, then there exists gj ∈ G such that LM(gj) | LM(F ). By definition of

the lexicographic order, this implies LM(gj) ∈ Ai and thus also gj ∈ Ai and thus gj ∈ Gi. We have proved
LT(F ) ∈ ⟨LT(Gi)⟩.

It is an exercise to show that the same result holds for the ith elimination order, except that now Gi is a
basis for the graded reverse lexicographic order.

Example 10.3. Coming back to the ideal I encoding the intersection of three surfaces in Section 10.1.3,
it follows that the entirety of I ∩K[y, z] is generated by

{y2 − y − z2 + z, z2(2y + z2 − 1), z2(z − 1)2(z2 + 2z − 1)},

while the intersection of I with K[z] is generated by the last polynomial.

10.3 Buchberger’s Algorithm

We now describe Buchberger’s algorithm, which computes a Gröbner basis for an ideal of A and a monomial
order, and thereby proves that such a basis always exists.
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10.3.1 S-polynomials

Definition 10.9. The S-polynomial of f and g in A is the polynomial

S(f, g) = lcm(LM(f),LM(g))

(
f

LT(f)
− g

LT(g)

)
∈ ⟨f, g⟩.

Note that this is indeed a polynomial, as the lcm in the numerator is a multiple of both leading terms in the
denominators. The idea behind this construction is summarized in the following.

Lemma 10.2. The leading monomial of the S-polynomial of f and g is smaller than the lcm of their
leading monomials:

LM(S(f, g)) ≺ lcm(LM(f),LM(g)).

Proof. Both leading terms of f and g are multiplied by monomials in such a way that the leading terms of
both summands in S(f, g) are lcm(LM(f),LM(G)), with opposite signs. It follows that the sum has smaller
leading monomial.

The following characterization of Gröbner bases in terms of S-polynomials is the basis of Buchberger’s
algorithm.

Proposition 10.2. The set of polynomials G = {g1, . . . , gm} ⊂ A is a Gröbner basis of ⟨G⟩ if and only
if

S(gi, gj)
G
= 0, 1 ≤ i < j ≤ m.

Exercise 10.1. Use this characterization to prove the Gröbner basis for linear systems from Section 10.2.4.

Proof. Since S(gi, gj) ∈ ⟨gi, gj⟩ ⊂ ⟨G⟩, it follows from Proposition 10.1 that it reduces to 0 by the division
algorithm.

For the converse inclusion, starting from F ∈ ⟨G⟩, the aim is to show that there is gi ∈ G such that
LM(gi) | LM(F ). Since F ∈ ⟨G⟩, it decomposes as

F = h1g1 + · · ·+ hmgm. (10.3)

There is no uniqueness of these decompositions and among all of them, we choose one such that

δ = max
i

LM(higi) is minimal,

which is possible, since the set of LM(higi) among all possible decompositions has a smallest element by the
monomial order.

Of course, if δ = LM(F ), the result is proved. Otherwise, δ ≻ LM(F ) and the idea is to use the S-
polynomials S(gi, gj) to obtain a decomposition of F with a smaller δ, a contradiction. Up to renumbering
the gi, we may assume that

LM(higi) = δ for i ≤ k, LT(higi) ≺ δ for i > k.

Thus F rewrites as

F =

k∑
i=1

LT(hi)gi +

k∑
i=1

(hi − LT(hi))gi +
∑
i>k

higi, (10.4)

where the last two sums have leading monomial smaller than δ. Furthermore, one can rewrite

LT(hi)gi = LT(hi) LT(gi)
gi

LT(gi)
= LC(higi)δ

gi
LT(gi)

.
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For any i ≤ k, since δ = LM(higi) = LM(hkgk), it follows that

γi,k = lcm(LM(gi),LM(gk)) | δ.

In view of the definition of S-polynomials, we get an identity among polynomials

δ
gk

LT(gk)
+

δ

γi,k
S(gi, gk) = δ

gk
LT(gk)

+
δ

γi,k
γi,k

(
gi

LT(gi)
− gk

LT(gk)

)
= δ

gi
LT(gi)

.

This can be used to rewrite all gi in terms of gk, plus smaller order terms. Injecting in Eq. (10.4) gives

k∑
i=1

LT(hi)gi =

(
k∑

i=1

LC(higi)

)
δ

gk
LT(gk)

+

k∑
i=1

LC(higi)
δ

γi,k
S(gi, gk).

If the sum in the first term on the right-hand side is not 0, then the leading monomial of the right-hand side
is δ, which is impossible since δ ≻ LM(F ). Thus the first sum 0. In the second sum, all terms have leading
term smaller than δ and, since S(gi, gj)

G
= 0, they decompose as linear combinations of the gi. Putting

together this identity and the right-hand side of Eq. (10.4) gives a decomposition of F like Eq. (10.3), but
with a smaller leading monomial, a contradiction.

10.3.2 Buchberger’s Algorithm
The algorithm, given in Fig. 10.7, is a direct consequence of the previous proposition. It was discovered by
Buchberger in 1965.

Input:  in a monomial order  
Output: a Gröbner basis of  for  

 
 

While  
 Pick  
  
  
 If  
   
   
Return 

f1, …, fm !; ⪯
⟨ f1, …, fm⟩ ⪯

G = {f1, …, fm}
S = {S( fi, fj) ∣ i < j}

S ≠ ∅
p ∈ S

S := S∖{p}
g := pG

g ≠ 0
S := S ∪ {S(g, h) ∣ h ∈ G}
G := G ∪ {g}
G

Figure 10.7: Buchberger’s algorithm

A clear invariant is that ⟨G⟩ = ⟨f1, . . . , fm⟩ at each iteration of the loop. That the algorithm is correct
if it terminates is a consequence of Proposition 10.2. At each iteration, we also have the variant that either
the number of elements of S decreases, or the ideal ⟨LT(G)⟩ increases.

Proposition 10.3 (Dickson’s Lemma). For any A ⊂ Nn, the ideal I = ⟨xα | α ∈ A⟩ admits a finite
basis {xα(1), . . . , xα(s)}.

Proof of termination of Buchberger’s algorithm. Consider the sequence of ideals ⟨LT(G)⟩ constructed during
the execution of the algorithm. Note that it is strictly increasing every time a new g is added to G. The
union of these ideals is an ideal as in Dickson’s lemma and therefore admits a finite basis. Each of the
generators must belong to one of the ideals and therefore the sequence becomes stationary after a finite
number of steps.
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Xα(1)

m
k

Xα(s)

Figure 10.8: Illustration of the proof of Dickson’s lemma

Proof of Dickson’s lemma. The proof is by induction on the dimension n. For n = 1, the generator is xmin(A).
For n > 1, the proof proceeds by projection on the case with n− 1 variables. It is illustrated in a simple

situation in Fig. 10.8. Let X = x1, . . . , xn−1 and Y = xn and consider the ideal

J = {Xα | ∃m,XαY m ∈ I}.

By the induction hypothesis, it admits a basis {Xα(1), . . . , Xα(s)}. For each i = 1, . . . , s, let

mi := min{m ∈ N | Xα(i)Y m ∈ I}, m = maxmi.

Then, for k = 0, . . . ,m, let
Jk = {Xα | XαY k ∈ I}.

Again by the induction hypothesis, each of these ideals has a finite basis Bk. It follows that

{MY k |M ∈ Bk, 0 ≤ k ≤ m}

is a finite basis of I.

Another consequence of Dickson’s lemma is the following.

Theorem 10.2 (Hilbert’s Basis Theorem). Every ideal I ⊂ K[x1, . . . , xn] has a finite generating set.

Proof. By Dickson’s lemma, the ideal ⟨LM(I)⟩ has a finite basis {LM(g1), . . . ,LM(gm)}. ThenG = {g1, . . . , gm}
is a Gröbner basis of ⟨G⟩, since

⟨LM(⟨G⟩)⟩ ⊃ ⟨LM(G)⟩ = ⟨LM(I)⟩ ⊃ ⟨LM(⟨G⟩)⟩.

For any F ∈ I, the division algorithm can thus be applied to F with respect to G and gives

F = h1g1 + · · ·+ hmgm + r.

In this decomposition, r ∈ I by subtraction. But since none of its monomials is divisible by the LM(gi) that
generate ⟨LM(I)⟩, it has to be 0, which proves that G generates I and is thus a Gröbner basis of it.

10.4 Radicals and Nullstellensatz
Ideal membership is not a complete answer to the characterization of solutions of polynomial systems. In
the example from Section 10.1.5 of the intersection of a circle and a hyperbola, one can test that y2− 1 does
not belong to the ideal I = ⟨x2+y2−2, xy−1⟩, using Gröbner bases. The corresponding Maple commands
are:
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> F:=[x^2+y^2-2,x*y-1]:
> G:=Groebner[Basis](F,tdeg(x,y));

G := [xy − 1, x2 + y2 − 2, y3 + x− 2y]

> Groebner[NormalForm](y^2-1,G,tdeg(x,y));

y2 − 1

This shows that y2 − 1
G
̸= 0 and thus that y2 − 1 is not in the ideal, although it vanishes on all solutions of

the system. The right object to describe this situation is the radical of the ideal.

10.4.1 Radicals

Definition 10.10. The radical of an ideal I of a ring A is the ideal
√
I = {f ∈ A | ∃m ∈ N, fm ∈ I}.

Testing whether a polynomial belongs to the radical of a polynomial ideal can be performed using Gröbner
bases thanks to the following important result.

Proposition 10.4 (Rabinowitsch’s Trick).

f ∈
√
⟨f1, . . . , fm⟩ ⇔ ⟨f1, . . . , fm, 1− tf⟩ = ⟨1⟩ = K[x1, . . . , xn, t].

Using this proposition, the previous computation can be concluded:

> Groebner[Basis]([op(F),1-t*(y^2-1)],tdeg(x,y,t));

[1]

This shows that y2 − 1 ∈
√
I and therefore vanishes on all the solutions of the system.

Proof. If fp ∈ ⟨f1, . . . , fm⟩, then writing

1 = (1− tf)(1 + · · ·+ tp−1fp−1)− tpfp

shows that 1 ∈ ⟨f1, . . . , fm, 1− tf⟩.
Conversely, if 1 belongs to this ideal, then it can be written

1 = g1(x, t)f1 + · · ·+ gm(x, t)fm + g(x, t)(1− tf)

for polynomials gi(x, t) and g(x, t) in K[x1, . . . , xn, t]. Evaluating this identity at t = 1/f and multiplying by
the common denominator (a power of f) gives a decomposition of that power of f as a linear combination
of f1, . . . , fm, showing that f is in the radical of the ideal they generate.

10.4.2 Hilbert’s Nullstellensatz
The last result of this lecture makes an explicit relation between algebra and geometry, when the field is
algebraically closed.

Theorem 10.3 (Hilbert’s Nullstellensatz). If K is algebraically closed and f, f1, . . . , fm belong to A =
K[x1, . . . , xn] then f belongs to the ideal

√
⟨f1, . . . , fm⟩ if and only if f vanishes on the common solutions

of (f1, . . . , fm) in Kn.

141



Proof. The direct implication is clear: if there exists p such that fp ∈ ⟨f1, . . . , fm⟩, then fp vanishes at the
common zeros of f1, . . . , fm and therefore so does f .

The converse implication requires more work.

Lemma 10.3 (Noether Normalization Lemma). Let f ∈ K[x1, . . . , xn] with n ≥ 2 have degree d > 0. If
K is infinite, there exists (λ1, . . . , λn−1) ∈ Kn−1 such that the coefficient of xdn of

f(x1 + λ1xn, . . . , xn−1 + λn−1xn, xn)

is not zero.

This lemma is illustrated in Fig. 10.9. The polynomial xy − 1 does not have the property: there is value
of x, x = 0, where its degree in y decreases. The change to (x+ y/5)y − 1 corrects this.

Figure 10.9: Noether Normalization

Proof. Denote by aα the coefficient of xα in f for all α ∈ Nn. Since the degree of f is d, the homogeneous
polynomial

g(x1, . . . , xn) =
∑

α1+···+αn=d

aαx
α

is not 0. The coefficient in the lemma is precisely g(λ1, . . . , λn−1, 1). We now construct a point (λ1, . . . , λn−1, 1)
where g does not vanish, by induction on n. If n = 2, g is a univariate nonzero polynomial. Therefore it
has a finite number of zeros and since K is infinite, one can find a λ1 which is not one of them. Otherwise,
viewing g as a polynomial in λn−1, we first find by induction a point (λ1, . . . , λn−2) where the leading co-
efficient does not vanish. At this point, we are left with a nonzero polynomial in xn−1 for which again, a
suitable λn−1 can be found.

Another ingredient in the proof is the weak Nullstellensatz, that asserts that the polynomials of an
ideal that does not contain 1 have common zeros when the field is algebraically closed (and therefore infi-
nite).

Lemma 10.4 (Weak Nullstellensatz). If I is a strict ideal of A = K[x1, . . . , xn] and K is algebraically
closed, there exists a ∈ Kn such that for all f ∈ I, f(a) = 0.

A consequence is that if f1, . . . , fs are polynomials in A that do not have any common solution in the
algebraically closed K, then there exist polynomials g1, . . . , gs such that

1 = g1f1 + · · ·+ gsfs.

Indeed, the lemma asserts that the ideal I generated by (f1, . . . , fs) is not strict and therefore contains 1.

Proof. The proof is by induction on n. The case when n = 1 follows from the algebraic closure of K.
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Since I is a strict ideal of A, there exists g ̸= 0 in I of degree at least 1. By the Noether normalization
lemma, up to changing coordinates, one can assume that

g = xdn + gd−1x
d−1
n + · · ·+ g0, gi ∈ K[x1, . . . , xn−1].

(Indeed, for any (λ1, . . . , λn−1) ∈ Kn−1, the ideal K = {f(x1 + λ1xn, . . . , xn−1 + λn−1xn, xn) | f ∈ I} is a
strict ideal since it is the case for I.)

By induction, there exists a′ ∈ Kn−1 a common zero of the polynomials in the ideal I ′ = I∩K[x1, . . . , xn−1].
Consider now the ideal

J = {f(a′, xn) | f ∈ I} ⊂ K[xn].

We want to show that J is a strict ideal of K[xn], since then the case n = 1 of the lemma gives an that
concludes the proof. If J is not strict, there exists f ∈ I,

f = fex
e
n + · · ·+ f0, fi ∈ K[x1, . . . , xn−1],

such that f(a′, xn) = 1. This means that f0(a′) = 1 and fi(a
′) = 0 for i > 0. The resultant Resxn(f, g)

belongs to I ′ (see Lecture 5). However, looking at its expression

ResXn(f, g) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 g0

f1
. . . g1

. . .
... f0

... g0
fe f1 1 g1

. . .
...

. . .
...

fe 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
shows that it is 1 at a′ rather than 0, a contradiction.

We can now conclude the proof of the Nullstellensatz itself.
If f vanishes on the common solutions of (f1, . . . , fm) in Kn, then (f1, . . . , fm, 1−tf) do not have common

zeros. By the weak Nullstellensatz, this implies that the ideal ⟨f1, . . . , fm, 1 − tf⟩ is not strict. Then by
Rabinowitsch’s trick, f belongs to the radical of ⟨f1, . . . , fm⟩, as was to be proved.

Additional bibliography
A wonderful and very readable account of the questions related to Gröbner bases and their applications is
the classical

D.A. Cox, J.B. Little, and D. O’Shea. Ideals, varieties, and algorithms. 4th edition. Springer New York,
2015
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Appendix A

Basic Algebraic Structures

A group is a set G with a law of composition such that: the law is associative; G has an identity element e
for this law; any element of G has an inverse for this law.

The order of an element a ∈ G is the smallest positive integer n such that an = e, if it exists (denoting
the composition law by a product). If such a n does not exist, the order is infinite.

A ring is a set A with two laws of compositions, called addition and multiplication and: A is a commutative
group for addition; multiplication is associative; A has an identity element for multiplication, noted 1;
multiplication is distributive over addition. The identity element for addition is noted 0.

The characteristic of the ring is the order of 1 for the additive law.
A unit of A is an element that has a left and right inverse for multiplication. The units of the ring form

a group, sometimes denoted A∗.
A zero divisor x ∈ A is a nonzero element such that there exists y ̸= 0 with xy = 0. Examples are: 2 in

Z/6Z; the matrix ( 0 1
0 0 ), whose square is 0.

A ring is called commutative when its multiplication is.
An integral domain is a commutative ring where 1 ̸= 0 and that has no zero divisor. Examples are Z and

Q[x1, . . . , xn].
A field is a commutative ring where 1 ̸= 0 and every nonzero element is invertible.
The field of fraction of an integral domain A is the smallest field that contains A. Its elements are denoted

b−1a or a/b, with a and b in A. Examples are Q, field of fractions of Z, and K(x1, . . . , xn), field of fractions
of K[x1, . . . , xn] for K a field.

An ideal I in a commutative ring A is a subset of A that is an additive subgroup of A, closed by
multiplication by elements of A.

An ideal is principal if it is of the form Aa for some a ∈ A, called a generator of the ideal. More generally,
given elements a1, . . . , an of A, the set {u1a1 + · · ·+ unan | (u1, . . . , un) ∈ An} is an ideal and the ai are its
generators. This ideal is often denoted (a1, . . . , an).

A commutative ring is principal when all of its ideals are principal. This is the case of Z and K[X] with a
field K. It is not the case of K[X,Y ]: the ideal generated by (X,Y ) cannot be generated by a single element.

An ideal I of a commutative ring A is prime if I ̸= A and whenever a, b in A have their product in I,
then one of a, b belongs to I. Examples are: the ideal pZ of Z with p a prime number; the ideal (P (X)) of
Q[X] with P an irreducible polynomial.

An ideal different from the ring is maximal if is contained in only two ideals: itself and the ring. Maximal
ideals are prime. If the ring is principal, then the converse holds.

The quotient ring of a ring A by an ideal I is the set of equivalence classes for the relation a ∼ b when
a − b ∈ I. This set forms a commutative ring denoted A/I. A quotient by a prime ideal is an integral
domain. A quotient by a maximal ideal is a field. Examples are Z/kZ for k ∈ Z\{0} or R[x]/(x2+1), which
is isomorphic to C.
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A field K is algebraically closed if every non-constant polynomial in K[X] has a root in K. The basic
example is C. A finite field cannot be algebraically closed.

A vector space V over a field K is a commutative group, usually written additively, together with an
external law of multiplication by elements of K on V such that for all a, b in K and all x, y in V : (a+ b)x =
ax+ bx, a(x+ y) = ax+ ay, (ab)x = a(bx), 1x = x.

An algebra A over a field K (or a K-algebra) is a ring that is also a vector space over K with the same
addition and the scalar multiplication satisfies a · (xy) = (a · x)y = x(a · y). Examples are : n× n matrices
of elements of K; polynomials in K[x1, . . . , xn].

If I is an ideal of a K-algebra A, then the quotient A/I is also a K-algebra. For example, for any nonzero
P ∈ K[X], the quotient K[X]/(P ) is an algebra (it has finite dimension, that is the degree of P ).

Additional bibliography
Wikipedia is usually reliable for these notions. Much more detailed information can be found in the classical

Serge Lang. Algebra. 3rd edition. Vol. 211. Graduate Texts in Mathematics. New York: Springer-Verlag,
2002, pp. xvi+914

An amazingly compact book that is a pleasure to read and leads its readers to very advanced material is

Igor R. Shafarevich. Basic notions of algebra. Vol. 11. Encyclopaedia of Mathematical Sciences. Trans-
lated from the 1986 Russian original by Miles Reid, Reprint of the 1997 English translation [MR1634541],
Algebra, I. Berlin: Springer-Verlag, 2005, pp. ii+ 258. isbn: 978-3-540-25177-4; 3-540-25177-4
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