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First terms in the sequence '3 | 1,3,19,193 " Submit

Results of Search by First Terms in the Sequence

1,3,19,193

Found 1 combinatorial structures for 1,3,19,193

Structure 1
Specification [S, {C = Prod(B,Z), S = Set(C), B = Sequence(C)}, labelled]

[1, 1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353,
28875761731, 1098127402131, 46150226651233, 2124008553358849,
First terms in the sequence 106246577894593683, 5739439214861417731, 332993721039856822081,
20651350143685984386753, 1363322103204314826347779,
95453198574445723828731283, 7064900016612187878152462721]

|Generating function exp(1/2-1/2 *(1-4 *x)A(1/2))

Recurrence {f(0) =1, f(1) = 1, -f(n) +(-4 *n-2) *f(n +1) +f(n +2)}
Asymptotics of the coefficients||1/4/PiA(1/2) *exp(1/2)/nA(3/2) *4An

References EIS AO0O1517 (up to a possible factor of n!)

ECS number 131
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I. Definition & Closure Properties



D-finite Series

Def. A power series y(z) is differentially finite (D-finite) if there exist
polynomials a; € Q|z] such that

ar(2)y ™ (2) + -+ ao(2)y(z) =0 (E)

Equivalent definition: y(z),vy'(2),y"”(2),... span a finite-dimensional

vector space over Q(z).

Fxamples of functions: exp, log, sin, cos, sinh, cosh,

arccos, arccosh, arcsin, arcsinh, arctan, arctanh,

arccot, arccoth, arccsc, arccsch, arcsec, arcsech, , I,
(iIlChldGS Bessel J, Y, I and K, AlI‘y Ai and Bi and HANDBOOK OF

MATHEMATICAL FUNCTIONS
wit atical Tables

polylogarithms), Struve, Weber and Anger fcns, the
large class of algebraic functions,. ..

About 60% of Abramowitz & Stegun.




Coefhicients <« Series

Thm. A series is D-finite if and only if its sequence of coefficients

satisfies a linear recurrence.

Proof (idea). zD, <> n, 271 < S,.

Cor 1. N first coefficients in complexity O(N).

Cor 2. [ChCh90] Nth coefficient in complexity Oy, (N1/?).

THE
ENCYCI(.)?PEDIA

INTEGER
SEQUENCES

Examples of sequences: rational sequences,

hypergeometric sequences (includes n!, multi-
N. J. A. SLOANE
SIMON PLOUFFE

nomials,...), classical orthogonal polynomials.
About 25% of Sloane & Plouffe. e




Examples

Ex. 1. From an algorithm in number theory
kth coefficient of P(x)" (k and n large)

(i) 1st order LDE;
(ii) linear recurrence of order deg P satisfied by coefficients;
(1i1) fast evaluation.

Ex. 2. Related to a complexity analysis of Grobner bases
Computation of P, (x) defined by

A 14+2\"7
> = (1)

n>0

Same as above!
(ii1) fast evaluation (without computing the polynomials).



Generalized Hypergeometric Series

& first order linear recurrences ( )

U,  (n+a—1)---(n+ap—1)
Up—1 nn+b—1)---(n+b,—1)
(0+ar—1)---(O+ap,—1)z=00+b—1)---(0+b; —1))y(z) =0,
d
0=2z—).
(0=2-")
. exp, log, polylogs, Bessel J, Y, I, K, Airy Ai & Bi,...

—



D-finite Series in Arithmetic

For k € Z, modular form of weight k: f defined on &z > 0 such
that f((az+b)/(cz+d)) = (cz + d)* f(z), for all matrices (¢9) in
SL(2,7Z) or one of its subgroups of finite index.

Modular function: modular form of weight 0.

Thm. [19th century] Let f(z) be a meromorphic modular form of
weight k£ > 0 and ¢(z) a modular function. Then the (many-valued)

function F(t) defined by F(t(z)) = f(z) satisfies a linear differential
equation of order k + 1 with algebraic coeflicients.

i () \ (n(2:)0(32))"
s 10 = (55005 ) + 9= (mtemy

F(t):1+5t+73t2+---:ZZ( ) (n+k) £




Closure Properties

The set of D-finite series in Q|[z]] forms a sub-algebra
of Q[[z]].
(idea): linear algebra!
The set of D-finite series is closed under Hadamard product.

The set of D-finite series is closed under formal Laplace & Borel

transforms (ogf < egf).



Mehler Identity for Hermite Polynomials

> L:=[seq(orthopoly[H] (n,x),n=0..5)];
L :=[1,2z, 42 — 2,8z% — 12z, 162* — 482 + 12, 322° — 1602 + 120x]

> gfun[listtodiffeq] (L,u(z));
d
[{u(0) = 1, u(z) + (22 — 20)ul2)}, ]
> deq:=%1[1] :hadamardproduct (deq, subs (x=y,deq) ,u(z)):
> Laplace(%,u(z),’diffeq’);

d
{u(0) =1, (1624—822+1)d—u(z)—|—(1623—1622xy—|—82y2—4z—|—82x2—4xy)u(z)}
2

> dsolve(%,u(z));

oxp (1ot

V1 — 422

u(z) =



Algebraic Series

[Tannery1874] Algebraic power series are D-finite.
(idea). Bézout identity!
If f is D-finite and g is algebraic, f o g is D-finite.

Same.



Motzkin Numbers (Unary-Binary Trees)

M(z) — (L +2M(2) + zM(2)*) =: P(M) = 0.
Bézout: AP+ BPy =1= M= —BP, mod P =: cM +d1.

> gfunlalgeqtodiffeq] (M=1+z*M+z*M~2,M(z)) ;

—1—z+ (=324 1) M (2)+ (2 — 62° + 2°) %M(z)

> gfun[diffeqtorec] (%,M(z),u(n));
{nu(n) + (-9 —6n)u(l +n) + (3 +n)u(n+2),u(0) = 1,u(l) = 2}

— fast computation.

Works for arbitrary degree.



Forests of Catalan Trees

Y (2) = exp (1 = W) |

—

{(n+2)(n+Du(n+2)=un)+2(n+1)2n+ Du(n + 1),
u(0)=1u(l)=1}



An Example in Asymptotics

I e 2 2 1
Ai(z) = \/E; / e Sllu—DMuHdut D] gy - £ = 52\/2’ u=1/1+ §U2.

— 0

change variable t* = (u — 1)(4u® + 4u + 1):

aie) = V2 " e g = 2,

— O

L ijo 1ya 6N~y qyne—n_ 2" T(Bn+1/2)
ot 7 C nz:%( D e T2)

(i) algebraic change of variable; (ii) recurrence
satisfied by coefficients; (iii) termwise integration.



No More Closure Properties

Thm. 1 [Harris & Sibuya 85| Both [ and are D-finite if and only
if
Thm. 2 [Singer 86] Both [ and are D-finite if and only if

Thm. 3 [Singer 86] Let g be algebraic of genus > 1. Both [ and
are D-finite if and only if



II. Interlude: Algorithms



Petkovsek’s Algorithm HYPER

ao(1)tn i + - -+ + ag(n)un = b(n), (R)

a; polynomials, b = 0 or hypergeometric or linear combination of
hypergeometric sequences.

All solutions that are linear combinations of hypergeometric

sequences, or a proof that none exists.

Motzkin numbers are not hypergeometric.



Derangements

—Zz

€ » ILDE — uy, = (n — Dtp_1 + (n — 1)tp_s

1 —2z
1. HYPER — n/!
n—1

2. Reduction of order: u,, =: n! Z Ve, (N +2)vpe1 +v, =0.

3

, and it is not hypergeometric.

. (—
. — ol E

3. Conclusion: u,, = n! I
k=0

[Petkovsek92] If (R) has a solution of the form

ki—1 km—1—1
Z hi(ky) ) ha(ks)- Z B,
k1=s1 ko=s2 m=5m

then it is found by applying HYPER and reduction of order.



Other Algorithms

|Kovacic, Singer, Bronstein, Ulmer, Weil| Partly

implemented in most CAs.
[ChCh90,vdH98| We have a prototype.

[ Tournier87, van Hoeij97]
Implemented in most CAs. (Maple DEtools[formal_sol])

by Padé-Hermite approximants. Implemented in gfun.

| Zeilberger90-91,ChSa98,Chyzak94-00]
Implemented in Mgfun.



Binary Splitting

|Chudnovsky-Chudnovsky87] Hypergeometric series

1 1 3 (—1)"(6n)!(13591409 + 545140134n)
T 53360640320 < (n!3(3n)!(8 - 100100025 - 327843840)")

20000 40000 60000 80000 100000 120000

Sort computation sequence so as to take advantage of
multiplication algorithms (operands of same sizes).



III. Analytic Behaviour

Most properties will be stated for analytic

rather than polynomial coefficients.



Motivation: Singularity Analysis of Coefficients

Singularity of smallest modulus —

Local behaviour —

Thm. [F10d84] Under mild conditions (granted for isolated
singularities)

f(2) = g(2) + O(h(2)), z—p=

A simple asymptotic scale translates

z 1
2"(1 — 2)%log” ~ , a&N,.
2" )( p) =2/
Method: Find dominant singularity; Expand locally;
Translate.

Connection problem



Location of Singularities

(E) Y'(z) = A(2)Y (2), Y—< y ) AZ(_%l_n N _O_)

y(n.—l) ag ag

Thm. [Cauchy] If A(z) is analytic in a simply connected
domain R C C, then for any a € R and a € C", (F) has a unique
solution analytic in R such that Y (a) = «.

y solution of Ly = 0, p singularity of y implies ag(p) = 0.
If ag is a polynomial, the singularities are isolated
(— singularity analysis).

Singularity at co: y(1/z) singular at 0.



Indicial Polynomial

Motivation: a polynomial whose roots are the possible (algebraic)

valuations of formal power series solutions (z — Z (U) (z —
n>0
Ly = ap(2)y™(2) + -+ + ao(2)y(2) = 0. (E)

ap (2)(z = p)F 7 L(z = p)7 = f(o) + -+ € Qlo][[z — p]l.
If the coefficients a;’s are polynomials, {cff@o)}nzo satisfies
bp(n)eyp + -+ bo(n)el) = 0,
where f(0) = b,(0 — p) up to a constant multiple.

 IfY'(2) = %’ZP)Y(Z), the indicial polynomial is
the characteristic polynomial of B(p).



Regular and Irregular Singular Points

A singular point p of (E) is called regular when the indicial
polynomial f(o) at p has degree k, it is called irregular otherwise.

At a singular point p, (E) admits a basis of formal solutions

(i=1,...,k):
d; .
p regular:  W;(z) = (2 — p)~* Z log’ (z — p) @, (2 —p), f(oi) =0.
j=0 o,
convergent p. s.
p irregular :  y;(t) = exp( P;i(1/t) ) W;(t) , the = (z—p).
(2) (Pi(1/t) ) Wy(t) ' =(z—p)
polynomial as above pri EN

Power series generally divergent in the irregular case.

for everything. Maple DEtools[formal_sol].



Quicksort with Median-of-3

" (k—=1)(n—k)
C, = n+1 2 Cr_q.
Ll 22

# comparisons

1 1 1

J— 1 _ 2 (3) - — / o .
o(c—1)(c—-2) o
; 54 5 roots —2,0, 5.

. O ~ (1—2)_2,02 ~1,C3 ~ (1—2)5, z — 1.
121In(1 — 2) o
: = — 1 — :
C 7 1 =2) +O((1—2)77)
12

. C,, = —nlogn + O(n).

7



Pathlength in Quadtrees

]HILP i Filling rate of the pages?
11

Model: points distributed uniformly at random in (0, 1)¢.

d
(0= ) (6~ o)~ 2 =0

2 1 1 &

_ 1
I =aa— et
2

—z =22

fn = gnlogn + pign + O(log n 4 n~1T2eos2r/d)y,

[F1GoPuRo091,FlLaLaSa95]



((3) is irrational [Apéry78]|

Y

B e
1. m3(n> <n+m> >n® = lim LI C(3).

m m n—o0o @,
2. a, € N*, d>b,, € Z, where d,, := lem(1,...,n):

2 /\2 n\ (n+k\ (m—m)\ [ n+k

0" _GOEDE (4,

2m?() () om3(*) m
3. Both a,, and b,, satisfy

(n + 1)%ups1 = (34n° + 51n° + 27n + 5)u, — n°uy—1, n > 1.



n

4. an((3) = by ~ O, o = 17+ 12y/2 and
n
lim =0= a_

bn by, br—1 6
. — — = - D bpap—1 — bp_1ar = —
5. 0 < ((3) - g o ar kGk—1 = Ok—10k = 73
k>n—+1
6. Conclusion: 0 < a,d> ((3) — d>b, ~ Ca" e’ — 0.
~—~— N~

eN €N
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