
Introduction aux séries D-finies
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Search a combinatorial structure by:
First terms in the sequence  1,3,19,193 Submit

Results of Search by First Terms in the Sequence
1,3,19,193

Found 1 combinatorial structures for 1,3,19,193
Structure 1

Specification [S, {C = Prod(B,Z), S = Set(C), B = Sequence(C)}, labelled]

First terms in the sequence

[1, 1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353,
28875761731, 1098127402131, 46150226651233, 2124008553358849,
106246577894593683, 5739439214861417731, 332993721039856822081,
20651350143685984386753, 1363322103204314826347779,
95453198574445723828731283, 7064900016612187878152462721]

Generating function exp(1/2-1/2 *(1-4 *x)^(1/2))
Recurrence {f(0) = 1, f(1) = 1, -f(n) +(-4 *n-2) *f(n +1) +f(n +2)}
Asymptotics of the coefficients 1/4/Pi^(1/2) *exp(1/2)/n^(3/2) *4^n
References EIS A001517 (up to a possible factor of n!)
ECS number 131
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I. Definition & Closure Properties



D-finite Series

Def. A power series y(z) is differentially finite (D-finite) if there exist
polynomials ai ∈ Q[z] such that

ak(z)y(k)(z) + · · ·+ a0(z)y(z) = 0. (E)

Equivalent definition: y(z), y′(z), y′′(z), . . . span a finite-dimensional
vector space over Q(z).

Examples of functions: exp, log, sin, cos, sinh, cosh,
arccos, arccosh, arcsin, arcsinh, arctan, arctanh,
arccot, arccoth, arccsc, arccsch, arcsec, arcsech, pFq

(includes Bessel J , Y , I and K, Airy Ai and Bi and
polylogarithms), Struve, Weber and Anger fcns, the
large class of algebraic functions,. . .

About 60% of Abramowitz & Stegun.



Coefficients ↔ Series

Thm. A series is D-finite if and only if its sequence of coefficients
satisfies a linear recurrence.

Proof (idea). zDz ↔ n, z−1 ↔ Sn.

Cor 1. N first coefficients in complexity O(N).

Cor 2. [ChCh90] Nth coefficient in complexity Olog (N1/2).

Examples of sequences: rational sequences,
hypergeometric sequences (includes n!, multi-
nomials,. . . ), classical orthogonal polynomials.

About 25% of Sloane & Plouffe.



Examples

Ex. 1. From an algorithm in number theory
kth coefficient of P (x)n (k and n large)

Computation (given n and k):
(i) 1st order LDE;
(ii) linear recurrence of order deg P satisfied by coefficients;
(iii) fast evaluation.

Ex. 2. Related to a complexity analysis of Gröbner bases
Computation of Pn(x) defined by∑

n≥0

Pn(x)
zn

n!
=
(

1 + z

1 + z2

)x

.

Computation (given n and x): Same as above!
(iii) fast evaluation (without computing the polynomials).



Generalized Hypergeometric Series

y(z) := pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ z) =
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)nn!︸ ︷︷ ︸
un

zn,

(x)n := x(x + 1) · · · (x + n− 1).

⇔ first order linear recurrences (hypergeometric sequences)

un

un−1
=

(n + a1 − 1) · · · (n + ap − 1)
n(n + b1 − 1) · · · (n + bq − 1)

=⇒

((θ + a1 − 1) · · · (θ + ap − 1)z − θ(θ + b1 − 1) · · · (θ + bq − 1)) y(z) = 0,

(θ = z
d

dz
).

Special cases: exp, log, polylogs, Bessel J , Y , I, K, Airy Ai & Bi,. . .



D-finite Series in Arithmetic

Def. For k ∈ Z, modular form of weight k: f defined on =z > 0 such
that f((az + b)/(cz + d)) = (cz + d)kf(z), for all matrices

(
a b
c d

)
in

SL(2, Z) or one of its subgroups of finite index.

Def. Modular function: modular form of weight 0.

Thm. [19th century] Let f(z) be a meromorphic modular form of
weight k > 0 and t(z) a modular function. Then the (many-valued)
function F (t) defined by F (t(z)) = f(z) satisfies a linear differential
equation of order k + 1 with algebraic coefficients.

Ex. [Apéry] t(z) =
(

η(z)η(6z)
η(2z)η(3z)

)12

, f(z) =
(η(2z)η(3z))7

(η(z)η(6z))5
,

F (t) = 1 + 5t + 73t2 + · · · =
∑
n≥0

∑
k

(
n

k

)2(
n + k

k

)2

tn.



Closure Properties

Thm. 1 The set of D-finite series in Q[[z]] forms a sub-algebra
of Q[[z]].

Proof (idea): linear algebra!

Thm. 2 The set of D-finite series is closed under Hadamard product.

Cor. The set of D-finite series is closed under formal Laplace & Borel
transforms (ogf ↔ egf).



Mehler Identity for Hermite Polynomials

> L:=[seq(orthopoly[H](n,x),n=0..5)];

L := [1, 2x, 4x2 − 2, 8x3 − 12x, 16x4 − 48x2 + 12, 32x5 − 160x3 + 120x]

> gfun[listtodiffeq](L,u(z));

[{u(0) = 1,
d

dz
u(z) + (2z − 2x)u(z)}, egf]

> deq:=%[1]:hadamardproduct(deq,subs(x=y,deq),u(z)):

> Laplace(%,u(z),’diffeq’);

{u(0) = 1, (16z4−8z2+1)
d

dz
u(z)+(16z3−16z2xy+8zy2−4z+8zx2−4xy)u(z)}

> dsolve(%,u(z));

u(z) =
exp

(
4z(xy−z(x2+y2))

1−4z2

)
√

1− 4z2



Algebraic Series

Thm. 1 [Tannery1874] Algebraic power series are D-finite.

Proof (idea). Bézout identity!

Thm. 2 If f is D-finite and g is algebraic, f ◦ g is D-finite.

Proof Same.



Motzkin Numbers (Unary-Binary Trees)

M(z)−
(
1 + zM(z) + zM(z)2

)
=: P (M) = 0.

Bézout: AP + BPM = 1 ⇒ M ′ = −BPz mod P =: cM + d1.

Vector space of dimension 2

> gfun[algeqtodiffeq](M=1+z*M+z*M^2,M(z));

−1− z + (−3 z + 1) M (z) +
(
z − 6z2 + z3

) d

dz
M (z)

> gfun[diffeqtorec](%,M(z),u(n));

{nu(n) + (−9− 6n)u(1 + n) + (3 + n)u(n + 2), u(0) = 1, u(1) = 2}

→ fast computation.
Works for arbitrary degree.



Forests of Catalan Trees

Y (z) = exp
(

1−
√

1− 4z

2

)
.

Same computation →

{(n + 2)(n + 1)u(n + 2) = u(n) + 2(n + 1)(2n + 1)u(n + 1),

u (0) = 1, u (1) = 1}



An Example in Asymptotics

Ai(z) =
√

ze−ξ

π

∫ ∞

−∞
e−ξ[(u−1)(4u2+4u+1)] dv, ξ =

2
3
z
√

z, u =

√
1 +

1
3
v2.

change variable t2 = (u− 1)(4u2 + 4u + 1):

Ai(z) =
√

ze−ξ

π

∫ ∞

−∞
e−ξt2f(t) dt, f(t) =

dv

dt
,

∼ 1
2
π−1/2z−1/4e−ξ

∞∑
n=0

(−1)nξ−n 2n

32n(2n)!
Γ(3n + 1/2)

Γ(1/2)
.

Computation: (i) algebraic change of variable; (ii) recurrence
satisfied by coefficients; (iii) termwise integration.



No More Closure Properties

Thm. 1 [Harris & Sibuya 85] Both f and 1/f are D-finite if and only
if f ′/f is algebraic.

Thm. 2 [Singer 86] Both f and exp
∫

f are D-finite if and only if f is
algebraic.

Thm. 3 [Singer 86] Let g be algebraic of genus ≥ 1. Both f and g ◦ f

are D-finite if and only if f is algebraic.



II. Interlude: Algorithms



Petkovšek’s Algorithm Hyper

Input
a0(n)un+k + · · ·+ ak(n)un = b(n), (R)

ai polynomials, b = 0 or hypergeometric or linear combination of
hypergeometric sequences.

Output All solutions that are linear combinations of hypergeometric
sequences, or a proof that none exists.

Example Motzkin numbers are not hypergeometric.



Derangements

e−z

1− z
→ LDE → un = (n− 1)un−1 + (n− 1)un−2

1. Hyper → n!

2. Reduction of order: un =: n!
n−1∑

vk, (n + 2)vn+1 + vn = 0.

3. Conclusion: un = n!
n∑

k=0

(−1)k

k!
, and it is not hypergeometric.

Thm. [Petkovšek92] If (R) has a solution of the form

h0(n)
n−1∑

k1=s1

h1(k1)
k1−1∑
k2=s2

h2(k2) · · ·
km−1−1∑
km=sm

hm(km),

then it is found by applying Hyper and reduction of order.



Other Algorithms

Symbolic solutions: [Kovacic, Singer, Bronstein, Ulmer, Weil] Partly
implemented in most CAs.

Fast numerical evaluation: [ChCh90,vdH98] We have a prototype.

Local and asymptotic expansions: [Tournier87, van Hoeij97]
Implemented in most CAs. (Maple DEtools[formal_sol])

Guessing by Padé-Hermite approximants. Implemented in gfun.

Multiple integrals and sums: [Zeilberger90-91,ChSa98,Chyzak94-00]
Implemented in Mgfun.



Binary Splitting

[Chudnovsky-Chudnovsky87] Hypergeometric series

1
π

=
1

53360
√

640320

∑
n≥0

(−1)n(6n)!(13591409 + 545140134n)
(n!3(3n)!(8 · 100100025 · 327843840)n)

.

Key idea Sort computation sequence so as to take advantage of fast
multiplication algorithms (operands of same sizes).



III. Analytic Behaviour

Most properties will be stated for analytic
rather than polynomial coefficients.



Motivation: Singularity Analysis of Coefficients

Singularity of smallest modulus → exponential growth

Local behaviour → sub-exponential terms

Thm. [FlOd84] Under mild conditions (granted for isolated
singularities)

f(z) = g(z) + O(h(z)), z → ρ ⇒ [zn]f(z) = [zn]g(z) + O([zn]h(z)), n →∞

A simple asymptotic scale translates

[zn](1− z

ρ
)α logβ 1

1− z/ρ
∼ ρ−n n−α−1

Γ(−α)
logβ n, α 6∈ N.

Method: (i.) Find dominant singularity; (ii.) Expand locally;
(iii.) Translate.

Connection problem



Location of Singularities

Ly := a0(z)y(n)(z) + · · ·+ an(z)y(z) = 0 ⇔

(E) Y ′(z) = A(z)Y (z), Y =

( y

...
y(n−1)

)
, A =

(
1 0
0 1

− an
a0

··· − a1
a0

)
.

Thm. [Cauchy] If A(z) is analytic in a simply connected
domain R ⊂ C, then for any a ∈ R and α ∈ Cn, (E) has a unique
solution analytic in R such that Y (a) = α.

Cor. y solution of Ly = 0, ρ singularity of y implies a0(ρ) = 0.

Cor. If a0 is a polynomial, the singularities are isolated
(→ singularity analysis).

Def. Singularity at ∞: y(1/z) singular at 0.



Indicial Polynomial

Motivation: a polynomial whose roots are the possible (algebraic)
valuations of formal power series solutions (z − ρ)σ

∑
n≥0

c(σ)
n (z − ρ)n.

Ly := ak(z)y(k)(z) + · · ·+ a0(z)y(z) = 0. (E)

Def. a−1
k (z)(z − ρ)k−σL(z − ρ)σ = f(σ) + · · · ∈ Q[σ][[z − ρ]].

Prop. If the coefficients ai’s are polynomials, {c(0)
n }n≥0 satisfies

bp(n)c(0)
n+p + · · ·+ b0(n)c(0)

n = 0,

where f(σ) = bp(σ − p) up to a constant multiple.

Matricial viewpoint: If Y ′(z) = B(z)
z−ρ Y (z), the indicial polynomial is

the characteristic polynomial of B(ρ).



Regular and Irregular Singular Points

Def. A singular point ρ of (E) is called regular when the indicial
polynomial f(σ) at ρ has degree k, it is called irregular otherwise.

At a singular point ρ, (E) admits a basis of formal solutions
(i = 1, . . . , k):

ρ regular : Ψi(z) = (z − ρ)σi

di∑
j=0

logj(z − ρ) Φi,j(z − ρ),︸ ︷︷ ︸
convergent p. s.

f(σi) = 0.

ρ irregular : yi(t) = exp
(

Pi(1/t)︸ ︷︷ ︸
polynomial

)
Ψi(t)︸ ︷︷ ︸

as above

, tµi︸︷︷︸
µi∈N∗

= (z − ρ).

Power series generally divergent in the irregular case.

Algorithms for everything. Maple DEtools[formal_sol].



Quicksort with Median-of-3

Cn = n + 1︸ ︷︷ ︸
# comparisons

+2
n∑

k=1

(k − 1)(n− k)(
n
3

) Ck−1.

Differential equation:
1
24

(1− z)2C(3)(z)− 1
2
C ′(z) =

1
(1− z)3

.

Indicial Polynomial:
σ(σ − 1)(σ − 2)

24
− σ

2
, roots −2, 0, 5.

Homogeneous part: C1 ∼ (1− z)−2, C2 ∼ 1, C3 ∼ (1− z)5, z → 1.

Inhomogeneous part: C = −12
7

ln(1− z)
(1− z)2

+ O((1− z)−2).

Singularity analysis: Cn =
12
7

n log n + O(n).



Pathlength in Quadtrees

Filling rate of the pages?

Model: points distributed uniformly at random in (0, 1)d.
Translation in generating series:(

z(1− z)
d

dz

)d

(f(z)− 1
(1− z)2

)− 2df(z) = 0.

Local behaviour at z = 1:

f =
2
d

1
(1− z)2

log
1

1− z
+

c

(1− z)2
+ · · ·

Translation: fn =
2
d
n log n + µdn + O(log n + n−1+2 cos(2π/d)).

[FlGoPuRo91,FlLaLaSa95]



ζ(3) is irrational [Apéry78]

an :=
∑

k

(
n

k

)2(
n + k

k

)2

, bn := an

n∑
k=1

1
k3

+
n∑

k=1

k∑
m=1

(−1)m+1
(
n
k

)2(n+k
k

)2
2m3

(
n
m

)(
n+m

m

) .

1. m3

(
n

m

)(
n + m

m

)
≥ n2 ⇒ lim

n→∞

bn

an
= ζ(3).

2. an ∈ N?, d3
nbn ∈ Z, where dn := lcm(1, . . . , n):()2()2

2m3
()() =

(
n
k

)(
n+k

k

)(
n−m
n−k

)(
n+k
k−m

)
2m3

(
k
m

)2 and m

(
k

m

)∣∣∣∣ dk.

3. Both an and bn satisfy [creative telescoping]

(n + 1)3un+1 = (34n3 + 51n2 + 27n + 5)un − n3un−1, n ≥ 1.



4. [Singularity analysis] anζ(3)− bn ∼ C
αn
±

n3/2
, α± = 17± 12

√
2 and

lim = 0 ⇒ α−

5. 0 < ζ(3)− bn

an
=

∑
k≥n+1

bk

ak
− bk−1

ak−1
: bkak−1 − bk−1ak =

6
k3

[closure]

6. Conclusion: 0 < and3
n︸ ︷︷ ︸

∈N

ζ(3)− d3
nbn︸︷︷︸
∈N

' Cαn
−e3n → 0.
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