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Univariate D-finite Series: Summary

1. Linear differential equations ↔ Linear recurrence equations

2. Finite dimensional vector space → closure properties

3. Hypergeometric closed forms

4. Asymptotics

Multivariate:

2. generalizes

5. creative telescoping
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Automatically Generated Encyclopedia of
Special Functions 

This site deals with special functions. Special functions include the functions cos, sin, exp, log, Bessel, Airy, ... These
functions were first studied by great mathematicians (such as Gauss, Euler and Riemann) and have been referenced in
many books (such as the Handbook of Mathematical Functions, by M.Abramowitz and I.A.Stegun). Usually, formulae on
special functions are computed by hand.
The progress made in symbolic computation over the last 20 years makes possible to automate completely the derivation
of many of the results and formulae on special functions. This opens the way to developing an Automatically Generated
Encyclopedia of Special Functions.
This site has been automatically generated: the whole content of each document of this site has been computed from a
very small input. Formulae and graphs have been produced by a computer algebra system (Maple). The display of the
formulae is generated by amslatex. The HTML is created by LaTeX2HTML; other formats are generated by standard tools
available on Linux/UNIX operating systems (such as pdflatex, dvips, ...).
We are pleased to present the first version of the Automatically Generated Encyclopedia of Special Functions. A lot of
work (on both the mathematical content and the presentation) has still to be done. Ludovic Meunier and Bruno Salvy are
developing amd working on this site on, say, a daily basis. We would appreciate your comments, suggestions and bug
reports; please send to Ludovic Meunier.

http://algo.inria.fr/esf


Multivariate Objects & Questions
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I. Univariate Ore Polynomials



Operators & Commutation Rules

Notation: · ↔ application

Operator Leibniz Rule Commutation

Differential Dx · (fg(x)) = f ′(x)g(x) + f(x)Dx · g(x) Dxf = f ′ + fDx

Shift Sn · (fngn) = fn+1Sn · fn Snf = fn+1Sn

Difference ∆n · (fngn) = fn+1(Id+∆n) · gn ∆nf = fn+1 + fn+1∆n

q-shift Qx · (fg(x)) = f(qx)Qx · g(x) Qxf = f(qx)Qx

Mahler Mk · (fg(x)) = f(xk)Mk · g(x) Mkf = f(xk)Mk

Common pattern: ∂f = δ(f) Id+σ(f)∂

Natural condition: ∂(fg) = (∂f)g

δ(fg) Id+σ(fg)∂ = (δ(f) Id+σ(f)∂)g = (δ(f)g + σ(f)δ(g)) Id+σ(f)σ(g)∂.



Skew Polynomial Rings

Def. Skew polynomial ring A[∂;σ, δ]: set of polynomials in ∂ with
coefficients in the (non-commutative) integral domain A, with
commutation rule ∂f = δ(f) + σ(f)∂, where σ is a ring
endomorphism of A and δ is a σ-derivation.

Def. f is D-finite if there exists P ∈ A[∂;σ, δ] such that P · f = 0.

Thm.[Ore33] Euclidean division and extended Euclidean algorithm
yield greatest common right divisor (GCRD), least common left
multiple (LCLM), Bézout identity.



Example: Contiguity of Hypergeometric Series

F (a, b; c; z) = 2F1

(
a, b

c

∣∣∣∣ z) =
∞∑

n=0

(a)n(b)n

(c)nn!︸ ︷︷ ︸
ua,n

zn, (x)n := x(x+1) · · · (x+n−1).

ua,n+1

ua,n
=

(a+ n)(b+ n)
(c+ n)(n+ 1)

→ z(1− z)F ′′ + (c− (a+ b+ a)z)F ′ − abF = 0,

ua+1,n

ua,n
=
n

a
+ 1 → SaF := F (a+ 1, b; c; z) =

z

a
F ′ + F .

dim=2 ⇒ S2
aF, SaF, F linearly dependent [Gauss].

Also:

– S−1
a in terms of Id, Dz via Bézout;

– relation between any three polynomials in Sa, Sb, Sc;

– generalizes to any pFq.



Closure Properties

Prop. Closure under +.

Proof. LCLM.

Prop. Closure under ×: if there exists polynomials A and B such
that σ = A(∂) and δ = B(∂), with ((A− 1) · w)B = (B · w)(A− 1),
for all w ∈ A.

Proof. Linear algebra.



II. Multivariate D-Finiteness



Ore Algebras & Their Ideals

Prop. A[∂;σ, δ] is an integral domain.

Def. K a field, O = K[∂1;σ1, δ1] · · · [∂n;σn, δn], such that ∂i∂j = ∂j∂i,
for all i, j is a Ore algebra.

Def. Left ideal: I ⊂ O such that I + I = OI = I.

Def. A left ideal I ⊂ O is D-finite if the quotient O/I is a
finite-dimensional vector space over K.

Def. f is D-finite wrt O if its annihilating ideal in O.
Then O/Ann f ' O · f .

Algorithms based on noncommutative Gröbner bases [ChSa98]



Example: Jacobi Polynomials

O = Q(n, x, a, b)[Sn;Sn, 0][Dx; 1, Dx]

Annihilating ideal AnnP generated by

G1 = p11(n, a, b)S2
n + p12(n, x, a, b)Sn + p13(n, a, b)Id,

G2 = p21(n, x, a, b)SnDx + p22(n, x, a, b)Sn + p23(n, a, b)Id, (pij polynomials)

G3 = p31(x, a, b)D2
x + p32(x, a, b)Dx + p33(n, a, b)Id.

⇒ AnnP D-finite: dim O/AnnP = 3.

G4 = p41(n, x, a, b)Sa + p42(n)Sn + p43(n, a)Id,

G5 = p51(n, x, a, b)Sb + p52(n)Sn + p53(n, b)Id.

In O′ = O[Sa;Sa, 0][Sb;Sb; 0], dim O′/AnnP = 3 also.



Properties [ChSa98]

Prop. 1 Closure under +.

Prop. 2 Closure under ×: if σi = Ai(∂i) and δi = Bi(∂i), with
((Ai − 1) · w)Bi = (Bi · w)(Ai − 1), for all w ∈ K and all i.

Prop. 3 f D-finite wrt O, then P · f D-finite for any P ∈ O.

Prop. 4 f D-finite wrt O, then for any P ∈ O, f satisfies an equation∑k
i=0 aiP

i · f = 0, with k ≤ dim O/Ann f .

Prop. 5 f(x,y) D-finite wrt K(x,y)[∂x;σx, δx][∂y;σy, δy], then for
any a ∈ Km, the specialization f(x,a) is D-finite wrt
K(x)[∂x;σx, δx].



Proof O · f ⊕O · g of finite dimension.

Proof O · (P · f) ⊂ O · f which is finite-dimensional.

Proof Use Prop. 4 for each of the ∂x and specialize the coefficients.



III. Creative Telescoping



Principle

Fn =
∑

k

un,k =?

If one knows A(n, Sn) and B(n, k, Sn, Sk) such that

(A(n, Sn) + ∆kB(n, k, Sn, Sk)) · un,k = 0,

then the sum “telescopes”, leading to

A(n, Sn) · Fn = 0.

Example [Apéry] Fn =
n∑

k=0

(
n

k

)2(
n+ k

k

)2

satisfies

(n+2)3Fn+2−
(
(n+ 2)3 + (n+ 1)3 + 4(2n+ 3)3

)
Fn+1+(n+1)3Fn = 0.

“Neither Cohen nor I had been able to prove [this] in the intervening
two months.” [Van der Poorten]



Ideally

Aim: Find annihilators of

I(x1, . . . , xn−1) = ∂−1
n

∣∣
Ω
f(x1, . . . , xn)

knowing generators of Annf in
On = K(x1, . . . , xn)[∂1;σ1, δ1] · · · [∂n;σn, δn].

Crucial step: compute (On Annf +∂nOn) ∩On−1 (open problem).

Idea 1: find P ∈ Annf ∩K(x1, . . . , xn−1)[∂1;σ1, δ1] . . . [∂n;σn, δn],
then rewrite P = Q∂n +R and return R. Generalization of
Zeilberger’s “slow” algorithm by GB [ChSa98,Chyzak98].

Idea 2: proceed by increasing orders in On−1: generalization of
Zeilberger’s “fast” algorithm [Chyzak00].



Generating Series of the Jacobi Polynomials

O = Q(n, x, a, b, z)[Sn;Sn, 0][Dx; 1, Dx][Sa;Sa, 0][Sb;Sb, 0][Dz; 1, Dz]

1. AnnP (a,b)
n (x) generated by (G1, . . . , G5, Dz) (dim 3);

2. Ann zn generated by (Sn − z,Dx, Sa − 1, Sb − 1, zDz − n) (dim 1);

3. Closure by product (dim 3);

4. Creative telescoping:

q111 + q12Dz + q13Dx, q211 + q22Dz + q23Sb,

q311 + q32Dz + q33Sa, q411 + q42Dz + q43D
2
z (dim 2).

5. (optional) Resolution:∑
n≥0

P (a,b)
n (x)zn =

2a+b

R(x, z) (1− z +R(x, z))a (1 + z +R(x, z))b
,

R(x, z) =
1√

1− 2xz + z2
.



Neumann’s Addition Theorem for Bessel Functions

J0(z)2 + 2
∞∑

k=1

Jk(z)2 = 1, Jk(z) :=
(z

2

)k ∑
k≥0

(−z2/4)n

n!(n+ k)!
.

1. Bessel Jk defined by

z2D2
z + zDz + (z2 − k2), Sk +Dz − k/z dim 2

2. Square (dim 3) by closure (lin. alg.)

z2D3
z +3zD2

z +(4z2−4k2 +1)Dz +4z, zSk−z+
(
k − 1

2

)
Dz +

z

2
D2

z .

3. Look for P + (Sk − 1)Q with P free of k and of order 1 in Dz:

P = Dz, Q =
k

z
+

1
2
Dz.

4. Conclusion

Dz

∞∑
k=−∞

J2
k + [QJ2

k ]∞k=−∞ = 0.



Applications of Creative Telescoping

Generating series: Multiplication by zn using closure by ×, then
definite summation.

Extraction of coefficients: ×z−n−1, then Cauchy integral.

Diagonals: If f(x, y) =
∑

n,k an,kx
nyk, its diagonal∑

n

an,nx
n =

1
2iπ

∮
f(x/s, s)

ds

s
. Generalizes to more variables.

Hadamard product: f(x)� g(x) is a diagonal of f(x)g(y).

Coefficients in Chebyshev or Neumann series:∫ 1

−1

f(t)Tn(t)√
1− t2

dt,

∫ 1

0

f(r)Jn(r)r dr.

But termination/success not guaranteed!



IV. Holonomy



Definition

Motivation: (On Annf +∂nOn) ∩On−1 could be {0}.

Example: un =
∞∑

k=−∞

1
n2 + k2 + 1

is not D-finite.

Def. Weyl algebra An = K〈x1, . . . , xn, ∂1, . . . , ∂n〉, with
∂ixi = xi∂i + 1 (i = 1, . . . , n) and commutation otherwise.

Def. Let I ⊂ An be a left ideal. The quotient An/I = An(1 + I) is
holonomic if

dimGk(1 + I) = cnk
n + · · ·+ c0, k ∈ N,

where Gk = {P ∈ An,degP ≤ k}, the degree being wrt x and ∂.



Closure Properties

Thm. [Takayama] If I ⊂ K(x1, . . . , xn)[Dx1 ; 1, Dx1 ] · · · [Dxn
; 1, Dxn

] is
D-finite, then An/(An ∩ I) is holonomic.

Thm. [Bernstein] An/I holonomic, then if `+m > n, the subalgebra
of An generated by xi1 , . . . , xi`

, ∂j1 , . . . , ∂jm has a nonzero
intersection with I.

Proof
(
`+m+ k − 1

k

)
= Θ(k`+m), k →∞.

Cor. Creative telescoping works for differentially finite series.

Thm. [Bernstein] An/I holonomic ⇒ An−1/ (An−1 ∩ (I + ∂nAn−1))
holonomic.

Cor. [Lipshitz] Closure by diagonal and Hadamard product.



Holonomy of Sequences

Def. Holonomic sequence: differentially finite generating series.

Thm. [Lipshitz] Closure under +, ×, convolution, section, . . .

Def. A sequence un1,...,nd
is hypergeometric if it satisfies a system of

d linear first-order recurrences. (D-finite and dim 1).

Thm. [Sato] Hypergeometric sequences can be written

R(n1, . . . , nd)︸ ︷︷ ︸
rational

d∏
i=1

ρi︸︷︷︸
∈K

ni ·
p∏

i=1

∈Zn1+···+Znd︷ ︸︸ ︷
ei(n1,...,nd) −1∏

k=0

ψi︸︷︷︸
∈K(X)

(
ei(n1, . . . , nd)− k

)
.

Thm. [AbPe01] A hypergeometric sequence is holonomic iff R = 1.
(Sufficient condition for creative telescoping).

New [Abramov 02] Necessary and sufficient condition for
hypergeometric sequences + algorithm (bivariate case).



Perspectives

Beyond multivariate D-finite symetric functions with D-finite
specializations [Gessel90]: k-regular graphs, Young tableaux of fixed
height, k × n Latin rectangles, permutations with longest increasing
subsequence of length k. Algorithms in [ChMiSa02].

Foundations Understand left + right. Understand problems of
non-minimality.

Efficiency Other elimination methods. Use univariate algorithms as
much as possible.

Applications ESF, code generation, extension to multivariate.
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