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Overview of the 3 Minicourses

Combinatorial Structure
↓ Combinatorics (MC1)↓

Generating Functions

F (z) =
∑
n≥0

fnz
n

Example: binary trees

B(z) = z + B2(z)

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Overview of the 3 Minicourses

Combinatorial Structure
↓ Combinatorics (MC1)↓

Generating Functions

F (z) =
∑
n≥0

fnz
n

↓ Complex Analysis (MC2)↓
Asymptotics

fn ∼ . . . , n →∞.

Example: binary trees

Bn ∼
4n−1n−3/2

√
π
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Overview of the 3 Minicourses

Combinatorial Structure
+ parameter

↓ Combinatorics (MC1)↓

Generating Functions

F (z , u) =
∑
n≥0

fn,kukzn

Example: path length in binary trees

B(z , u) =
∑
t∈T

upl(t)z |t|

= z + B2(zu, u)

P(z) :=
∂

∂u
B(z , u)

∣∣∣∣
u=1

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Overview of the 3 Minicourses

Combinatorial Structure
+ parameter

↓ Combinatorics (MC1)↓

Generating Functions

F (z) =
∑
n≥0

fnz
n

↓ Complex Analysis (MC2)↓
Asymptotics

fn ∼ . . . , n →∞.

Example: path length in binary trees

Bn =
4n−1n−3/2

√
π

(
1 +

3

8n
+ · · ·

)
,

Pn = 4n−1(1− 1√
πn

+ · · · ),

Pn

nBn
=
√

πn − 1 + · · · .

Also, variance and higher moments
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Overview of the 3 Minicourses

Combinatorial Structure
+ parameter

↓ Combinatorics (MC1)↓

Generating Functions

F (z , u) =
∑
n≥0

fn,kukzn

↓ Multivariate Analysis (MC3)↓
Distribution

fn,k ∼ . . . , n →∞.

Example: path length in binary trees

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Examples for this Course

Conway’s sequence: 1, 11, 21, 1211, 111221, 312211,. . .

`n ' 2.042160077ρn, ρ ' 1.3035772690343

ρ root of a polynomial of degree 71.

Catalan numbers (binary trees): 1, 1, 2, 5, 14, 42, 132,. . .

Bn ∼
1√
π

4n

n3/2

Cayley trees (T=Prod(Z,Set(T))): 1, 2, 9, 64, 625, 7776,. . .

Tn

n!
∼ en

√
2πn3/2

Bell numbers (set partitions): 1, 1, 2, 5, 15, 52, 203, 877,. . .

log
Bn

n!
∼ −n log log n

Starting point: generating function
Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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A Gallery of Combinatorial Pictures

Fibonacci Numbers:
1

1− z − z2
= 1 + z + 2z2 + 3z3 + 5z4 + · · ·

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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A Gallery of Combinatorial Pictures

Binary Trees:
1−

√
1− 4z

2
= z + z2 + 2z3 + 5z4 + 14z5 + · · ·

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA



5 / 36

Introduction Complex Analysis Dominant Singularity Singularity Analysis Saddle-Point Method Conclusion

A Gallery of Combinatorial Pictures

Cayley Trees: T (z) = z exp(T (z)) = z + 2 z
2! + 9 z

3! + 64 z
4! + · · ·

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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A Gallery of Combinatorial Pictures

Set Partitions: exp(exp(z)− 1) = 1 + 1 z
1! + 2 z2

2! + 5 z3

3! + 15 z4

4! + · · ·

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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II Mini-minicourse in complex analysis

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Basic Definitions and Properties

Definition

f : D ⊂ C → C is analytic at x0 if it is the sum of a power series in
a disc around x0.

Proposition

f , g analytic at x0, then so are f + g , f × g and f ′.

g analytic at x0, f analytic at g(x0), then f ◦ g analytic at x0.

Same def. and prop. in several variables.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Examples

f analytic at 0? why

polynomial Yes
exp(x) Yes 1 + x + x2/2! + · · ·

1
1−x Yes 1 + x + x2 + · · · (|x | < 1)

log 1
1−x Yes x + x2/2 + x3/3 · · · (|x | < 1)

1−
√

1−4x
2x Yes 1 + · · ·+ 1

k+1

(2k
k

)
xk + · · · (|x | < 1/4);

1
x No infinite at 0

log x No derivative not analytic at 0√
x No derivative infinite at 0

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Combinatorial Generating Functions I

Proposition (Labeled)

The labeled structures obtained by iterative use of
Seq, Cyc, Set, +, × starting with 1,Z

have exponential generating series that are analytic at 0.

Recall Translation Table (MC1)

A + B A(z) + B(z)
A × B A(z)× B(z)
Seq(C) 1

1−C(z)

Cyc(C) log 1
1−C(z)

Set(C) exp(C (z))

Proof by induction.

+,×, and composition with 1
1−x , log 1

1−x , exp(x).

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Combinatorial Generating Functions II

Proposition (Unlabeled)

The unlabeled structures obtained by iterative use of
Seq, Cyc, PSet, MSet, +, × starting with 1,Z

have ordinary generating series that are analytic at 0.

Proof by induction.

Recall Translation Table (MC1)

A + B A(z) + B(z) easy
A × B A(z)× B(z) easy
Seq(C) 1

1−C(z) easy

PSet(C) exp(C (z)− 1
2C (z2) + 1

3C (z3)− · · · ) ?
MSet(C) exp(C (z) + 1

2C (z2) + 1
3C (z3) + · · · ) ?

Cyc(C)
∑

k≥1
φ(k)

k log 1
1−C(zk )

?

MSet(C): by induction, there exists K > 0, ρ ∈ (0, 1), s.t.
|C (z)| < K |z | for |z | < ρ. Then
C (z) + 1

2C (z2) + 1
3C (z3) + · · · < K log 1

1−|z| , |z | < ρ.

Uniform convergence ⇒ limit analytic (Weierstrass).

Pset, Cyc: similar.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Analytic Continuation & Singularities

Definition

Analytic on a region (= connected, open, 6= ∅): at each point.

Proposition

R ⊂ S regions. f analytic in R. There is at most one analytic
function in S equal to f on R (the analytic continuation of f to S).

Definition

Singularity: a point that cannot be reached
by analytic continuation;

Polar singularity α: isolated singularity and
(z − α)mf analytic for some m ∈ N;

residue at a pole: coefficient of (z − α)−1;

f meromorphic in R: only polar singularities.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Combinatorial Examples

Structure GF Sings Mero. in C

Set exp(z) none Yes
Set Partitions exp(ez − 1) none Yes

Sequence
1

1− z
1 Yes

Bin Seq. no adj.0
1 + z

1− z − z2
φ,−1/φ Yes

Derangements
e−z

1− z
1 Yes

Rooted plane trees
1−

√
1− 4z

2z
1/4 No

Integer partitions
∏
k≥1

1

1− zk
roots of 1 No

Irred. pols over Fq

∑
r≥1

µ(r)

r
ln

1

1− qz r
roots of 1

q No

Exercise: Bernoulli nbs z
exp(z)−1 ? ?

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Integration of Analytic Functions

Theorem

f analytic in a region R, Γ1 and Γ2 two closed curves that are
homotopic wrt R (= can be deformed continuously one into the
other) then ∫

Γ1

f =

∫
Γ2

f .

YES

NO

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Residue Theorem: from Global to Local

Corollary

f meromorphic in a region R, Γ a closed path
in C encircling the poles α1, . . . , αm of f once
in the positive sense. Then∫

Γ
f = 2πi

∑
j

Res(f ;αj).

Proof.
gj := Pj(z)/(z − αj)

mj polar part at αj ;

h := f − (g1 + · · ·+ gm) analytic in R;

Γ homotopic to a point in R ⇒
∫
Γ h = 0;

=

Γ homotopic to a circle centered at αj in R \ {αj};∫
Γ
(z − αj)

m dz = i

∫ 2π

0
rm+1e i(m+1)θ dθ =

{
2πi m = −1,

0 otherwise.
Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Cauchy’s Coefficient Formula

Corollary

If f = a0 + a1z + . . . is analytic in R 3 0 then

an =
1

2πi

∫
Γ

f (z)

zn+1
dz

for every closed Γ in R encircling 0 once in the positive sense.

Proof.

f (z)/zn+1 meromorphic in R, pole at 0, residue an.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Coefficients of Rational Functions by Complex Integration

2πiFn =

∫
Γ

z−n−1

1− z − z2︸ ︷︷ ︸
g(z)

dz =
(∫

|z|=R
g −

∫
φ

g︸︷︷︸
φ−n−1

(−1−2φ)

−
∫

φ
g︸︷︷︸

idem

)

= =

When |z | = R, |g(z)| ≤ R−n−1

R2 − R − 1
⇒ 2πR |g(z)| → 0, R →∞.

Conclusion: Fn =
φ−n−1

1 + 2φ
+

φ
−n−1

1 + 2φ
.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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III Dominant Singularity

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Cauchy’s Formula

[zn]f (z) =
1

2πi

∮
f (z)

zn+1
dz

[z2]
z

ez − 1
=

1

12

As n increases, the smallest singularities dominate.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Exponential Growth

Definition

Dominant singularity: singularity of minimal modulus.

Theorem

f = a0 + a1z + · · · analytic at 0;
R modulus of its dominant singularities, then

an = R−nθ(n), lim sup
n→∞

|θ(n)|1/n = 1.

Proof (Idea).

1 integrate on circle of radius R − ε ⇒ |an| ≤ C (R − ε)−n;

2 if (R + ε)−n ≤ Kan, then convergence on a larger disc.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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General Principle for Asymptotics of Coefficients

[zn]f (z) =
1

2πi

∮
f (z)

zn+1
dz

Singularity of smallest modulus → exponential growth

Local behaviour → sub-exponential terms

Algorithm

1 Locate dominant singularities

2 Compute local expansions

3 Transfer

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Rational Functions

Dominant singularities: roots of denominator of smallest modulus.

Conway’s sequence:

1, 11, 21, 1211, 111221,. . .

Generating function:

f (z) = P(z)
Q(z)

with deg Q = 72.

δ(f ) ' 0.7671198507,

ρ ' 1.3035772690343,

`n ' 2.042160077ρn

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Rational Functions

Dominant singularities: roots of denominator of smallest modulus.

Conway’s sequence:

1, 11, 21, 1211, 111221,. . .

Generating function:

f (z) = P(z)
Q(z)

with deg Q = 72.

δ(f ) ' 0.7671198507,

ρ ' 1.3035772690343,

`n ' 2.042160077︸ ︷︷ ︸
ρ Res(f ,δ(f ))

ρn

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Iterative Generating Functions

Algorithm Dominant Singularity

Function F Dom. Sing. δ(F )

exp(f ) δ(f )
1/(1− f ) min(δ(f ), {z | f (z) = 1})

log(1/(1− f )) idem
fg , f + g min(δ(f ), δ(g))

f (z) + 1
2 f (z2) + 1

3 f (z3) + · · · min(δ(f ), 1).

Pringsheim’s Theorem

f analytic with nonnegative Taylor coefficients has its radius of
convergence for dominant singularity.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Iterative Generating Functions

Algorithm Dominant Singularity

Function F Dom. Sing. δ(F )

exp(f ) δ(f )
1/(1− f ) min(δ(f ), {z | f (z) = 1})

log(1/(1− f )) idem
fg , f + g min(δ(f ), δ(g))

f (z) + 1
2 f (z2) + 1

3 f (z3) + · · · min(δ(f ), 1).

Exercise

Dominant singularity of
1

2

1−

√√√√1− 4 log

(
1

1− log 1
1−z

) .

(Binary trees of cycles of cycles)

Pringsheim’s Theorem

f analytic with nonnegative Taylor coefficients has its radius of
convergence for dominant singularity.
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Implicit Functions

Proposition (Implicit Function Theorem)

The equation
y = f(z , y)

admits a solution y = g(z) that is analytic at z0 when

f(z , y) is analytic in 1 + n variables at (z0, y0) := (z0, g(z0)),

f(z0, y0) = y0 and det |I − ∂f/∂y| 6= 0 at (z0, y0).

Example (Cayley Trees: T = z exp(T ))

1 Generating function analytic at 0;

2 potential singularity when 1− z exp(T ) = 0,
whence T = 1, whence z = e−1.

Exercises

1 Binary trees;

2 T (z) ∼
z→e−1

?.

More generally, solutions of combinatorial systems are analytic.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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IV Singularity Analysis

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA



25 / 36

Introduction Complex Analysis Dominant Singularity Singularity Analysis Saddle-Point Method Conclusion

General Principle for Asymptotics of Coefficients

[zn]f (z) =
1

2πi

∮
f (z)

zn+1
dz

Singularity of smallest modulus → exponential growth

Local behaviour → sub-exponential terms

Algorithm

1 Locate dominant singularities

2 Compute local expansions

3 Transfer
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The Gamma Function

Def. Euler’s integral: Γ(z) :=

∫ +∞

0
tz−1e−t dt;

Recurrence: Γ(z + 1) = zΓ(z) (integration by parts);

Reflection formula: Γ(z)Γ(1− z) =
π

sin(πz)
;

Hankel’s loop formula:
1

Γ(z)
=

1

2πi

∫ +∞

(0)
(−t)−ze−t dt.

Idea for the last one:∫ +∞
0 (e−πi )−z t−ze−t dt −

∫ +∞
0 (eπi )−z t−ze−t dt.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Basic Transfer Toolkit

Singularity Analysis Theorem [Flajolet-Odlyzko]

1 If f is analytic in ∆(φ,R), and

f (z) =
z→1

O

(
(1− z)−α logβ 1

1− z

)
,

then [zn]f (z) =
n→∞

O(nα−1 logβ n).

2 [zn](1− z)−α =
n→∞

nα−1

Γ(α)

1 +
∑
k≥1

ek(α)

nk

,

α ∈ C \ Z−, ek(α) polynomial;

3 similar result with a logβ(1/(1− z)).

O

R

1

∆(φ,R)

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Example: Binary Trees

B(z) =
1−

√
1− 4z

2z

1 Dominant singularity: 1/4;

2 Local expansion:
B = 2− 2

√
1− 4z + 2(1− 4z) + O((1− 4z)3/2);

3 O((1− 4z)3/2)) → O(4nn−5/2);

4 −2
√

1− 4z → 4n
√

πn3/2 + ? 4n

n5/2 + · · · .

Conclusion: Bn =
4n

√
πn3/2

+ O(4nn−5/2). Exercise

Cayley trees.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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Proof of the Singularity Analysis Theorem I

Part I. Scale

2 [zn](1− z)−α =
n→∞

nα−1

Γ(α)

1 +
∑
k≥1

ek(α)

nk

,

α ∈ C \ Z−, ek(α) polynomial;

1 On the almost full circle, f (z)/zn+1 small: O(R−n);
2 Extending the rest to a full Hankel contour changes the

integral by O(R−n);
3 On this part, change variable: z := 1 + t/n

[zn](1−z)−α =
1

2πi

∫ +∞

(0)

(
− t

n

)−α−1 (
1 +

t

n

)−n−1

dt+O(R−n).

4

(
1 +

t

n

)−n−1

= e−(n+1) log(1+ t
n
) = e−t

(
1 +

t2 − 2t

2n
+ · · ·

)
;

5 Integrate termwise (+ uniform convergence).

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA
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1

2πi

∫ +∞

(0)

(
− t

n

)−α−1 (
1 +

t

n

)−n−1

dt+O(R−n).

4

(
1 +

t

n

)−n−1

= e−(n+1) log(1+ t
n
) = e−t

(
1 +

t2 − 2t

2n
+ · · ·

)
;

5 Integrate termwise (+ uniform convergence).
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Proof of the Singularity Analysis Theorem II

Part II. O()

1 If f is analytic in ∆(φ,R), and

f (z) =
z→1

O

(
(1− z)−α logβ 1

1− z

)
,

then [zn]f (z) =
n→∞

O(nα−1 logβ n).
inside ∆(φ,R)

Easier than previous part:

1 Outer circle: r−n;

2 Inner circle: use hypothesis and simple bounds;

3 Segments: the key is that (1 + t cos θ/n)−n converges to et ,
which is sufficient.
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V Saddle-Point Method
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Functions with Fast Singular Growth

(Functions with fast singular growth)

[zn]f (z) =
1

2πi

∮
f (z)

zn+1︸ ︷︷ ︸
=:exp(h(z))

dz

1 Saddle-point equation: h′(Rn) = 0 i.e. Rn
f ′(Rn)

f (Rn)
− 1 = n

2 Change of variables: h(z) = h(ρ)− u2

3 Termwise integration:

fn ≈
f (Rn)

Rn+1
n

√
2πh′′(Rn)

Exercise

Stirling’s formula (f = exp).

4 Sufficient conditions: Hayman (1st order), Harris &
Schoenfeld, Odlyzko & Richmond, Wyman.
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Hayman admissibility

A set of analytic conditions and easy-to-use sufficient conditions.

Theorem

Hyp. f , g admissible, P polynomial

1 exp(f ), fg and f + P admissible.

2 lc(P) > 0 ⇒ fP and P(f ) admissible.

3 if eP has ultimately positive coefficients, it is admissible.

Example

sets (exp(z)),

involutions (exp(z + z2/2)),

set partitions (exp(exp(z)− 1)).
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VI Conclusion
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Summary

Many generating functions are analytic;

Asymptotic information on their coefficients can be extracted
from their singularities;

Starting from bivariate generating functions gives asymptotic
averages or variances of parameters;

A lot of this can be automated.
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Want More Information?
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