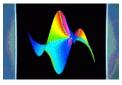
Minicourse 2: Asymptotic Techniques for AofA

Bruno Salvy Bruno.Salvy@inria.fr

Algorithms Project, Inria



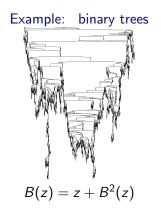
AofA'08, Maresias, Brazil Sunday 8:30–10:30 (!)

I Introduction

Overview of the 3 Minicourses

Combinatorial Structure ↓ Combinatorics (MC1)↓

Generating Functions $F(z) = \sum_{n \ge 0} f_n z^n$

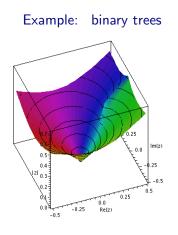


Overview of the 3 Minicourses

Combinatorial Structure ↓ Combinatorics (MC1)↓

Generating Functions $F(z) = \sum_{n \ge 0} f_n z^n$

 $\downarrow \text{ Complex Analysis (MC2)} \downarrow \\ \text{Asymptotics} \\ f_n \sim \dots, n \to \infty.$



$$B_n \sim \frac{4^{n-1}n^{-3/2}}{\sqrt{\pi}}$$

Overview of the 3 Minicourses

Combinatorial Structure + parameter ↓ Combinatorics (MC1)↓

Generating Functions

$$F(z,u) = \sum_{n>0} f_{n,k} u^k z^n$$

Example: path length in binary trees

$$B(z, u) = \sum_{t \in T} u^{\mathsf{pl}(t)} z^{|t|}$$
$$= z + B^2(zu, u)$$
$$P(z) := \frac{\partial}{\partial u} B(z, u) \Big|_{u=1}$$

3 / 36

Overview of the 3 Minicourses

Combinatorial Structure + parameter ↓ Combinatorics (MC1)↓

Generating Functions $F(z) = \sum_{n \ge 0} f_n z^n$

↓ Complex Analysis (MC2)↓

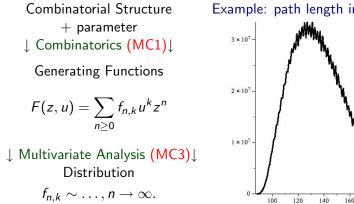
Asymptotics $f_n \sim \ldots, n \to \infty$.

Example: path length in binary trees

$$B_{n} = \frac{4^{n-1}n^{-3/2}}{\sqrt{\pi}} \left(1 + \frac{3}{8n} + \cdots\right),$$
$$P_{n} = 4^{n-1} \left(1 - \frac{1}{\sqrt{\pi n}} + \cdots\right),$$
$$\frac{P_{n}}{nB_{n}} = \sqrt{\pi n} - 1 + \cdots.$$

Also, variance and higher moments

Overview of the 3 Minicourses



Example: path length in binary trees

180 200

Examples for this Course

• Conway's sequence: 1, 11, 21, 1211, 111221, 312211,... $\ell_n \simeq 2.042160077 \rho^n, \qquad \rho \simeq 1.3035772690343$

 ρ root of a polynomial of degree 71.

• Catalan numbers (binary trees): 1, 1, 2, 5, 14, 42, 132,...

$$B_n \sim \frac{1}{\sqrt{\pi}} \frac{4^n}{n^{3/2}}$$

Cayley trees (T=Prod(Z,Set(T))): 1, 2, 9, 64, 625, 7776,...

$$\frac{T_n}{n!} \sim \frac{e^n}{\sqrt{2\pi}n^{3/2}}$$

• Bell numbers (set partitions): 1, 1, 2, 5, 15, 52, 203, 877,...

$$\log \frac{B_n}{n!} \sim -n \log \log n$$

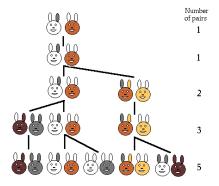
Starting point: generating function

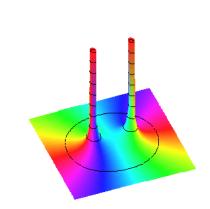
4 / 36

A Gallery of Combinatorial Pictures

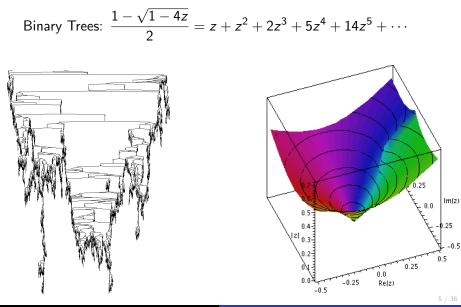
Fibonacci Numbers:
$$\frac{1}{1-z-z^2} = 1 + z + 2z^2 + 3z^3 + 5z^4 + \cdots$$

Bruno Salvy



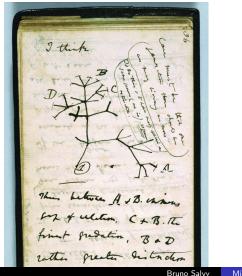


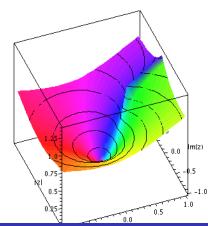
A Gallery of Combinatorial Pictures



A Gallery of Combinatorial Pictures

Cayley Trees: $T(z) = z \exp(T(z)) = z + 2\frac{z}{2!} + 9\frac{z}{3!} + 64\frac{z}{4!} + \cdots$

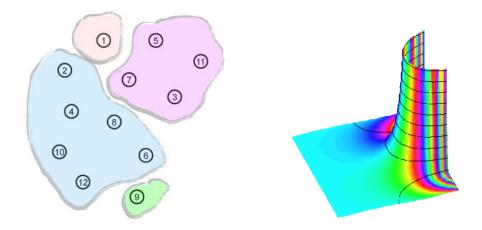




Minicourse 2: Asymptotic Techniques for AofA

A Gallery of Combinatorial Pictures

Set Partitions: $\exp(\exp(z) - 1) = 1 + 1\frac{z}{1!} + 2\frac{z^2}{2!} + 5\frac{z^3}{3!} + 15\frac{z^4}{4!} + \cdots$



II Mini-minicourse in complex analysis

Basic Definitions and Properties

Definition

 $f: D \subset \mathbb{C} \to \mathbb{C}$ is analytic at x_0 if it is the sum of a power series in a disc around x_0 .

Proposition

- f, g analytic at x_0 , then so are f + g, $f \times g$ and f'.
- g analytic at x_0 , f analytic at $g(x_0)$, then $f \circ g$ analytic at x_0 .

Same def. and prop. in several variables.

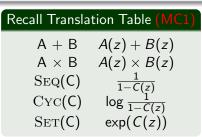
Examples

f	analytic at 0?	why
polynomial	Yes	
exp(x)	Yes	$1 + x + x^2/2! + \cdots$
$\exp(x)$ $\frac{1}{1-x}$	Yes	$1 + x + x^2 + \cdots$ ($ x < 1$)
$\log \frac{1}{1-x}$	Yes	$x + x^2/2 + x^3/3 \cdots$ (x < 1)
$\frac{1-\sqrt{1-4x}}{\frac{2x}{\underline{1}}}$	Yes	$1 + \cdots + \frac{1}{k+1} \binom{2k}{k} x^k + \cdots (x < 1/4);$
$\frac{1}{x}$	No	infinite at 0
$\log x$	No	derivative not analytic at 0
\sqrt{x}	No	derivative infinite at 0

Combinatorial Generating Functions I

Proposition (Labeled)

The labeled structures obtained by iterative use of SEQ, CYC, SET, +, \times starting with 1, Z have exponential generating series that are analytic at 0.



Proof by induction.

+, ×, and composition with
$$\frac{1}{1-x}$$
, $\log \frac{1}{1-x}$, $\exp(x)$.

Combinatorial Generating Functions II

Proposition (Unlabeled)

The unlabeled structures obtained by iterative use of SEQ, CYC, PSET, MSET, +, \times starting with 1, Z have ordinary generating series that are analytic at 0.

Proof by induction.

Recall Translation Table (MC1)			
A + B	A(z) + B(z)	easy	
$A \times B$	A(z) imes B(z)	easy	
Seq(C)	$\frac{1}{1-C(z)}$	easy	
PSet(C)	$\exp(C(z) - \frac{1}{2}C(z^2) + \frac{1}{3}C(z^3) - \cdots)$?	
MSET(C)	$\exp(C(z) + \frac{1}{2}C(z^2) + \frac{1}{3}C(z^3) + \cdots)$?	
CYC(C)	$\sum_{k\geq 1} \frac{\phi(k)}{k} \log \frac{1}{1-C(z^k)}$?	

Combinatorial Generating Functions II

Proposition (Unlabeled)

The unlabeled structures obtained by iterative use of SEQ, CYC, PSET, MSET, +, \times starting with 1, Z have ordinary generating series that are analytic at 0.

Proof by induction.

• MSET(C): by induction, there exists K > 0, $\rho \in (0, 1)$, s.t. |C(z)| < K|z| for $|z| < \rho$. Then $C(z) + \frac{1}{2}C(z^2) + \frac{1}{3}C(z^3) + \cdots < K \log \frac{1}{1-|z|}$, $|z| < \rho$. Uniform convergence \Rightarrow limit analytic (Weierstrass).

• PSET, CYC: similar.

10 / 36

Analytic Continuation & Singularities

Definition

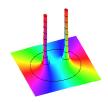
Analytic on a region (= connected, open, $\neq \emptyset$): at each point.

Proposition

 $R \subset S$ regions. f analytic in R. There is at most one analytic function in S equal to f on R (the analytic continuation of f to S).

Definition

- Singularity: a point that cannot be reached by analytic continuation;
- Polar singularity α : isolated singularity and $(z \alpha)^m f$ analytic for some $m \in \mathbb{N}$;
- residue at a pole: coefficient of $(z \alpha)^{-1}$;
- f meromorphic in R: only polar singularities.



Combinatorial Examples

Structure	GF	Sings	Mero. in $\mathbb C$
Set	$\exp(z)$	none	Yes
Set Partitions	$\exp(e^z-1)$	none	Yes
Sequence	$\frac{1}{1-z}$	1	Yes
Bin Seq. no adj.0	$\frac{\substack{1-z\\1+z}}{1-z-z^2}$	$\phi, -1/\phi$	Yes
Derangements	$\frac{e^{-z}}{1-z}$	1	Yes
Rooted plane trees	$\frac{1-\sqrt{1-4z}}{2z}$	1/4	No
Integer partitions	$\prod_{k>1} \frac{-1}{1-z^k}$	roots of 1	No
Irred. pols over \mathbb{F}_q	$\sum_{r\geq 1} \frac{\frac{\mu(r)}{\mu(r)}}{r} \ln \frac{1}{1-qz^r}$	roots of $\frac{1}{q}$	No
Exercise: Bernoulli nbs	$\frac{z}{\exp(z)-1}$?	?
			12 / 36

Integration of Analytic Functions

Theorem

f analytic in a region R, Γ_1 and Γ_2 two closed curves that are homotopic wrt R (= can be deformed continuously one into the other) then

$$\int_{\Gamma_1} f = \int_{\Gamma_2} f.$$

Residue Theorem: from Global to Local

Corollary

f meromorphic in a region R, Γ a closed path in \mathbb{C} encircling the poles $\alpha_1, \ldots, \alpha_m$ of f once in the positive sense. Then

$$\int_{\Gamma} f = 2\pi i \sum_{j} \operatorname{Res}(f; \alpha_j).$$

Proof.

- $g_j := P_j(z)/(z \alpha_j)^{m_j}$ polar part at α_j ;
- $h := f (g_1 + \cdots + g_m)$ analytic in R;
- Γ homotopic to a point in $R \Rightarrow \int_{\Gamma} h = 0$;
- Γ homotopic to a circle centered at α_j in $R \setminus {\alpha_j}$; • $\int_{\Gamma} (z - \alpha_j)^m dz = i \int_0^{2\pi} r^{m+1} e^{i(m+1)\theta} d\theta = \begin{cases} 2\pi i & m = -1, \\ 0 & \text{otherwise.} \end{cases}$

Cauchy's Coefficient Formula

Corollary

If $f = a_0 + a_1 z + \dots$ is analytic in $R \ni 0$ then

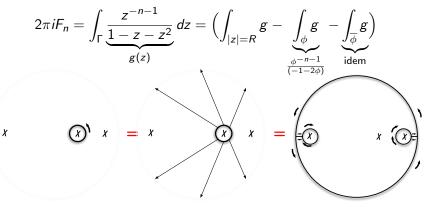
$$a_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z^{n+1}} \, dz$$

for every closed Γ in R encircling 0 once in the positive sense.

Proof.

 $f(z)/z^{n+1}$ meromorphic in R, pole at 0, residue a_n .

Coefficients of Rational Functions by Complex Integration

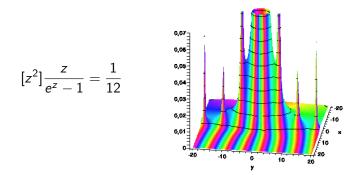


When |z| = R, $|g(z)| \le \frac{R^{-n-1}}{R^2 - R - 1} \Rightarrow 2\pi R |g(z)| \to 0$, $R \to \infty$. Conclusion: $F_n = \frac{\phi^{-n-1}}{1 + 2\phi} + \frac{\overline{\phi}^{-n-1}}{1 + 2\overline{\phi}}$.

III Dominant Singularity

Cauchy's Formula

$$[z^n]f(z) = \frac{1}{2\pi i} \oint \frac{f(z)}{z^{n+1}} \, dz$$



As *n* increases, the smallest singularities dominate.

18 / 36

Exponential Growth

Definition

Dominant singularity: singularity of minimal modulus.

Theorem

 $f = a_0 + a_1 z + \cdots$ analytic at 0; R modulus of its dominant singularities, then

$$a_n = R^{-n}\theta(n),$$
 $\limsup_{n\to\infty} |\theta(n)|^{1/n} = 1.$

Proof (Idea).

- integrate on circle of radius $R \epsilon \Rightarrow |a_n| \le C(R \epsilon)^{-n}$;
- ② if $(R + \epsilon)^{-n} ≤ Ka_n$, then convergence on a larger disc.

General Principle for Asymptotics of Coefficients

$$[z^n]f(z) = \frac{1}{2\pi i} \oint \frac{f(z)}{z^{n+1}} \, dz$$

Singularity of smallest modulus \rightarrow exponential growth Local behaviour \rightarrow sub-exponential terms

Algorithm

- Locate dominant singularities
- ② Compute local expansions
- In Transfer

Rational Functions

Dominant singularities: roots of denominator of smallest modulus.

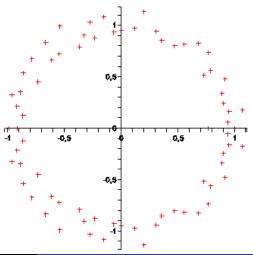
- Conway's sequence:
- 1, 11, 21, 1211, 111221,...
- Generating function:

 $f(z) = \frac{P(z)}{Q(z)}$ with deg Q = 72.

 $\delta(f)\simeq 0.7671198507$,

 $\rho\simeq 1.3035772690343\text{,}$

 $\ell_n \simeq 2.042160077 \rho^n$



Rational Functions

Dominant singularities: roots of denominator of smallest modulus.

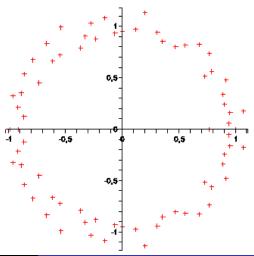
- Conway's sequence:
- 1, 11, 21, 1211, 111221,...
- Generating function:

 $f(z) = \frac{P(z)}{Q(z)}$ with deg Q = 72.

 $\delta(f)\simeq$ 0.7671198507,

 $ho\simeq 1.3035772690343$,

 $\ell_n \simeq \underbrace{2.042160077}_{\rho \operatorname{Res}(f,\delta(f))} \rho^n$



Iterative Generating Functions

Algorithm Dominant Singularity		
Function F	Dom. Sing. $\delta(F)$	
exp(f)	$\delta(f)$	
1/(1-f)	$\min(\delta(f), \{z \mid f(z) = 1\})$	
$\log(1/(1-f))$	idem	
fg, $f + g$	$\min(\delta(f), \delta(g))$	
$f(z) + \frac{1}{2}f(z^2) + \frac{1}{3}f(z^3) + \cdots$	$\min(\delta(f), 1).$	

Iterative Generating Functions

Algorithm Dominant Singularity	
Function <i>F</i>	Dom. Sing. $\delta(F)$
exp(f)	$\delta(f)$
1/(1-f)	$\min(\delta(f), \{z \mid f(z) = 1\})$
$\log(1/(1-f))$	idem
fg, $f + g$	$\min(\delta(f), \delta(g))$
$f(z) + \frac{1}{2}f(z^2) + \frac{1}{3}f(z^3) + \cdots$	$\min(\delta(f), 1).$

Note: f has coeffs $\geq 0 \Rightarrow \min(\delta(f), \{z \mid f(z) = 1\}) \in \mathbb{R}^+$.

Iterative Generating Functions

Algorithm Dominant Singularity		
Function <i>F</i>	Dom. Sing. $\delta(F)$	
exp(f)	$\delta(f)$	
1/(1-f)	$\min(\delta(f), \{z \mid f(z) = 1\})$	
$\log(1/(1-f))$	idem	
fg, $f + g$	$\min(\delta(f), \delta(g))$	
$f(z) + \frac{1}{2}f(z^2) + \frac{1}{3}f(z^3) + \cdots$	$\min(\delta(f), 1).$	

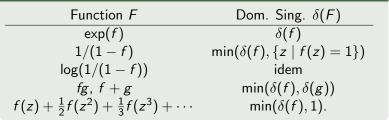
Note: f has coeffs $\geq 0 \Rightarrow \min(\delta(f), \{z \mid f(z) = 1\}) \in \mathbb{R}^+$.

Pringsheim's Theorem

f analytic with nonnegative Taylor coefficients has its radius of convergence for dominant singularity.

Iterative Generating Functions

Algorithm Dominant Singularity



Exercise

Dominant singularity of
$$\frac{1}{2}\left(1-\sqrt{1-4\log\left(\frac{1}{1-\log\frac{1}{1-z}}\right)}\right)$$
.
(Binary trees of cycles of cycles)

22 / 36

Implicit Functions

Proposition (Implicit Function Theorem)

The equation

$$\mathbf{y} = \mathbf{f}(z, \mathbf{y})$$

admits a solution $\mathbf{y} = \mathbf{g}(z)$ that is analytic at z_0 when

• $\mathbf{f}(z, \mathbf{y})$ is analytic in 1 + n variables at $(z_0, \mathbf{y_0}) := (z_0, \mathbf{g}(z_0))$,

•
$$\mathbf{f}(z_0, \mathbf{y_0}) = \mathbf{y_0}$$
 and det $|I - \partial \mathbf{f} / \partial \mathbf{y}| \neq 0$ at $(z_0, \mathbf{y_0})$.

Example (Cayley Trees: $T = z \exp(T)$)

- Generating function analytic at 0;
- potential singularity when $1 z \exp(T) = 0$, whence T = 1, whence $z = e^{-1}$.

More generally, solutions of combinatorial systems are analytic.

Implicit Functions

Proposition (Implicit Function Theorem)

The equation

$$\mathbf{y} = \mathbf{f}(z, \mathbf{y})$$

admits a solution $\mathbf{y} = \mathbf{g}(z)$ that is analytic at z_0 when

- $\mathbf{f}(z, \mathbf{y})$ is analytic in 1 + n variables at $(z_0, \mathbf{y_0}) := (z_0, \mathbf{g}(z_0))$,
- $\mathbf{f}(z_0, \mathbf{y_0}) = \mathbf{y_0}$ and det $|I \partial \mathbf{f} / \partial \mathbf{y}| \neq 0$ at $(z_0, \mathbf{y_0})$.

Example (Cayley Trees: $T = z \exp(T)$)

- Generating function analytic at 0;
- potential singularity when $1 z \exp(T) = 0$, whence T = 1, whence $z = e^{-1}$.

Exercises

More generally, solutions of combinatorial systems are analytic.

IV Singularity Analysis

General Principle for Asymptotics of Coefficients

$$[z^n]f(z) = \frac{1}{2\pi i} \oint \frac{f(z)}{z^{n+1}} \, dz$$

Singularity of smallest modulus \rightarrow exponential growth Local behaviour \rightarrow sub-exponential terms

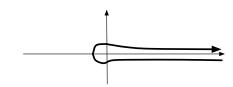
Algorithm

- Locate dominant singularities
- 2 Compute local expansions
- Transfer

The Gamma Function

• **Def.** Euler's integral:
$$\Gamma(z) := \int_{0}^{+\infty} t^{z-1} e^{-t} dt$$
;

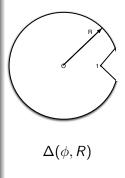
- **Recurrence:** $\Gamma(z+1) = z\Gamma(z)$ (integration by parts);
- **Reflection formula:** $\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$;
- Hankel's loop formula: $\frac{1}{\Gamma(z)} = \frac{1}{2\pi i} \int_{(0)}^{+\infty} (-t)^{-z} e^{-t} dt.$



Idea for the last one: $\int_{0}^{+\infty} (e^{-\pi i})^{-z} t^{-z} e^{-t} dt - \int_{0}^{+\infty} (e^{\pi i})^{-z} t^{-z} e^{-t} dt.$

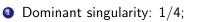
Basic Transfer Toolkit

Singularity Analysis Theorem [Flajolet-Odlyzko] **1** If f is analytic in $\Delta(\phi, R)$, and $f(z) = O\left((1-z)^{-\alpha} \log^{\beta} \frac{1}{1-z}\right),$ then $[z^n]f(z) = O(n^{\alpha-1}\log^{\beta} n).$ $[z^n](1-z)^{-\alpha} =_{n\to\infty} \frac{n^{\alpha-1}}{\Gamma(\alpha)} \left(1 + \sum_{k>1} \frac{e_k(\alpha)}{n^k}\right),$ $\alpha \in \mathbb{C} \setminus \mathbb{Z}^{-}$, $e_k(\alpha)$ polynomial; 3 similar result with a $\log^{\beta}(1/(1-z))$.



Example: Binary Trees

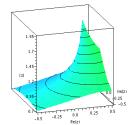
$$B(z)=\frac{1-\sqrt{1-4z}}{2z}$$



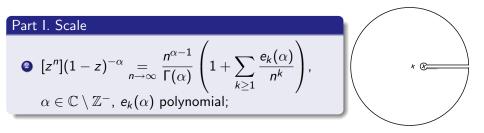
2 Local expansion:
$$B = 2 - 2\sqrt{1 - 4z} + 2(1 - 4z) + O((1 - 4z)^{3/2});$$
3 $O((1 - 4z)^{3/2})) \rightarrow O(4^n n^{-5/2});$
3 $-2\sqrt{1 - 4z} \rightarrow \frac{4^n}{\sqrt{\pi}n^{3/2}} + \star \frac{4^n}{n^{5/2}} + \cdots.$

Conclusion:
$$B_n = \frac{4^n}{\sqrt{\pi}n^{3/2}} + O(4^n n^{-5/2}).$$

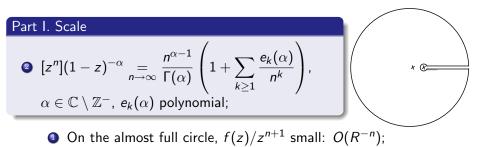
. n



Proof of the Singularity Analysis Theorem I



Proof of the Singularity Analysis Theorem I



Proof of the Singularity Analysis Theorem I

Part I. Scale
2
$$[z^n](1-z)^{-\alpha} =_{n \to \infty} \frac{n^{\alpha-1}}{\Gamma(\alpha)} \left(1 + \sum_{k \ge 1} \frac{e_k(\alpha)}{n^k}\right),$$

 $\alpha \in \mathbb{C} \setminus \mathbb{Z}^-, e_k(\alpha) \text{ polynomial;}$

• On the almost full circle, $f(z)/z^{n+1}$ small: $O(R^{-n})$;

Proof of the Singularity Analysis Theorem I

Part I. Scale **2** $[z^n](1-z)^{-\alpha} = \frac{n^{\alpha-1}}{\Gamma(\alpha)}$

$$\frac{n^{\alpha-1}}{\Gamma(\alpha)}\left(1+\sum_{k\geq 1}\frac{e_k(\alpha)}{n^k}\right),$$

 $\alpha \in \mathbb{C} \setminus \mathbb{Z}^-$, $e_k(\alpha)$ polynomial;

- On the almost full circle, $f(z)/z^{n+1}$ small: $O(R^{-n})$;
- Extending the rest to a full Hankel contour changes the integral by O(R⁻ⁿ);

x R

Proof of the Singularity Analysis Theorem I

Part I. Scale

$$[z^n](1-z)^{-\alpha} =_{n \to \infty} \frac{n^{\alpha-1}}{\Gamma(\alpha)} \left(1 + \sum_{k \ge 1} \frac{e_k(\alpha)}{n^k} \right),$$

 $\alpha \in \mathbb{C} \setminus \mathbb{Z}^-, e_k(\alpha) \text{ polynomial;}$

- On the almost full circle, $f(z)/z^{n+1}$ small: $O(R^{-n})$;
- Extending the rest to a full Hankel contour changes the integral by O(R⁻ⁿ);

XA

Proof of the Singularity Analysis Theorem I

Part I. Scale

$$[z^n](1-z)^{-\alpha} =_{n \to \infty} \frac{n^{\alpha-1}}{\Gamma(\alpha)} \left(1 + \sum_{k \ge 1} \frac{e_k(\alpha)}{n^k} \right),$$

 $\alpha \in \mathbb{C} \setminus \mathbb{Z}^-, e_k(\alpha) \text{ polynomial;}$

- On the almost full circle, $f(z)/z^{n+1}$ small: $O(R^{-n})$;
- Extending the rest to a full Hankel contour changes the integral by O(R⁻ⁿ);
- On this part, change variable: z := 1 + t/n

$$[z^{n}](1-z)^{-\alpha} = \frac{1}{2\pi i} \int_{(0)}^{+\infty} \left(-\frac{t}{n}\right)^{-\alpha-1} \left(1+\frac{t}{n}\right)^{-n-1} dt + O(R^{-n}).$$

Recognize 1/1?

29 / 36

XA

Proof of the Singularity Analysis Theorem I

Part I. Scale

$$\begin{array}{l} \textcircled{2} \quad [z^n](1-z)^{-\alpha} = \frac{n^{\alpha-1}}{\Gamma(\alpha)} \left(1 + \sum_{k \ge 1} \frac{e_k(\alpha)}{n^k}\right), \\ \alpha \in \mathbb{C} \setminus \mathbb{Z}^-, \ e_k(\alpha) \text{ polynomial;} \end{array}$$

- On the almost full circle, $f(z)/z^{n+1}$ small: $O(R^{-n})$;
- Extending the rest to a full Hankel contour changes the integral by O(R⁻ⁿ);
- On this part, change variable: z := 1 + t/n

$$[z^{n}](1-z)^{-\alpha} = \frac{1}{2\pi i} \int_{(0)}^{+\infty} \left(-\frac{t}{n}\right)^{-\alpha-1} \left(1+\frac{t}{n}\right)^{-n-1} dt + O(R^{-n}).$$

•
$$\left(1+\frac{t}{n}\right)^{-n-1} = e^{-(n+1)\log(1+\frac{t}{n})} = e^{-t}\left(1+\frac{t^2-2t}{2n}+\cdots\right);$$

29 / 36

XA

Proof of the Singularity Analysis Theorem I

Part I. Scale

$$[z^n](1-z)^{-\alpha} =_{n \to \infty} \frac{n^{\alpha-1}}{\Gamma(\alpha)} \left(1 + \sum_{k \ge 1} \frac{e_k(\alpha)}{n^k} \right),$$

 $\alpha \in \mathbb{C} \setminus \mathbb{Z}^-, e_k(\alpha) \text{ polynomial;}$

- On the almost full circle, $f(z)/z^{n+1}$ small: $O(R^{-n})$;
- Extending the rest to a full Hankel contour changes the integral by O(R⁻ⁿ);
- On this part, change variable: z := 1 + t/n

Bruno Salvy

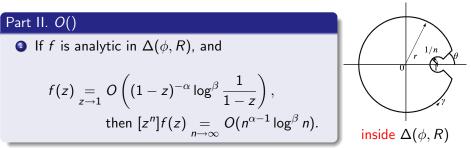
$$[z^{n}](1-z)^{-\alpha} = \frac{1}{2\pi i} \int_{(0)}^{+\infty} \left(-\frac{t}{n}\right)^{-\alpha-1} \left(1+\frac{t}{n}\right)^{-n-1} dt + O(R^{-n}).$$

$$(1+\frac{t}{n})^{-n-1} = e^{-(n+1)\log(1+\frac{t}{n})} = e^{-t} \left(1+\frac{t^2-2t}{2n}+\cdots\right);$$

Integrate termwise (+ uniform convergence).

XG

Proof of the Singularity Analysis Theorem II



Easier than previous part:

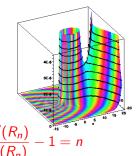
- Outer circle: r^{-n} ;
- Inner circle: use hypothesis and simple bounds;
- Segments: the key is that $(1 + t \cos \theta / n)^{-n}$ converges to e^t , which is sufficient.

V Saddle-Point Method

Functions with Fast Singular Growth

(Functions with fast singular growth)

$$[z^n]f(z) = \frac{1}{2\pi i} \oint \underbrace{\frac{f(z)}{z^{n+1}}}_{=:\exp(h(z))} dz$$

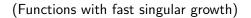


- **Saddle-point equation**: $h'(R_n) = 0$ i.e. $R_n \frac{f'(R_n)}{f(R_n)}$
- **2** Change of variables: $h(z) = h(\rho) u^2$
- **③** Termwise integration:

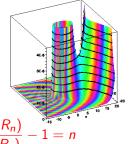
$$f_n \approx \frac{f(R_n)}{R_n^{n+1}\sqrt{2\pi h''(R_n)}}$$

Sufficient conditions: Hayman (1st order), Harris & Schoenfeld, Odlyzko & Richmond, Wyman.

Functions with Fast Singular Growth



$$[z^n]f(z) = \frac{1}{2\pi i} \oint \underbrace{\frac{f(z)}{z^{n+1}}}_{=:\exp(h(z))} dz$$



- **Saddle-point equation**: $h'(R_n) = 0$ i.e. $R_n \frac{f'(R_n)}{f(R_n)} 1 = n$
- **2** Change of variables: $h(z) = h(\rho) u^2$
- **③** Termwise integration:

 $f_n \approx \frac{f(R_n)}{R_n^{n+1}\sqrt{2\pi h''(R_n)}}$

Exercise

Stirling's formula ($f = \exp$).

Sufficient conditions: Hayman (1st order), Harris & Schoenfeld, Odlyzko & Richmond, Wyman.

Hayman admissibility

A set of analytic conditions and easy-to-use sufficient conditions.

Theorem

Hyp. f,g admissible, P polynomial

- $\exp(f)$, fg and f + P admissible.
- 2 $lc(P) > 0 \Rightarrow fP$ and P(f) admissible.
- if e^P has ultimately positive coefficients, it is admissible.

Example

- sets (exp(z)),
- involutions $(\exp(z + z^2/2))$,
- set partitions $(\exp(\exp(z) 1))$.

VI Conclusion

- Many generating functions are analytic;
- Asymptotic information on their coefficients can be extracted from their singularities;
- Starting from bivariate generating functions gives asymptotic averages or variances of parameters;
- A lot of this can be automated.

Want More Information?

