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Introduction
Overview of the 3 Minicourses

Combinatorial Structure Example: pi'ch_igqgth in binary trees
+ parameter F;;,}f
| Combinatorics (MC1)|

Generating Functions

F(z,u) = Z foxu<z"

n>0
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Introduction
Overview of the 3 Minicourses

Combinatorial Structure Example: path length in binary trees
+ parameter
| Combinatorics (MC1)|

4n—1p=3/2 1,-3/2
Generating Functions B, = < > )
z)= fnz" 1
HZ; n Pn:4n—1(17 “)7
| Complex Analysis (MC2)] P,, ~—S
Asymptotics nB,
for~...,n— o00.

Also, variance and higher moments
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Introduction
Overview of the 3 Minicourses

Combinatorial Structure Example: path length in binary trees
+ parameter
| Combinatorics (MC1)] #x10
Generating Functions
2x107 o
Flz.w) = Y foute"
n>0
1%107 -
| Multivariate Analysis (MC3)|
Distribution
fok ~...,n— 00. i

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA



Introduction
Examples for this Course

e Conway's sequence: 1, 11, 21, 1211, 111221, 312211,. ..
(n ~ 2.042160077p", p ~ 1.3035772690343
p root of a polynomial of degree 71.
o Catalan numbers (binary trees): 1, 1, 2, 5, 14, 42, 132,. ..
1 4"

/7 n3/2

o Cayley trees (T=Prod(Z,Set(T))): 1, 2, 9, 64, 625, 7776,. ..
T, e"
n! V2w n3/2

@ Bell numbers (set partitions): 1, 1, 2, 5, 15, 52, 203, 877,. ..

B, ~

B
log — ~ —nloglog n
n!

Starting point: generating function

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA



Introduction

A Gallery of Combinatorial Pictures

1
Fibonacci Numbers: (—) =1+4+2z+2224+3283+524+...
—z—z
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Introduction

A Gallery of Combinatorial Pictures

1-+1-4z

Binary Trees: =z+4+ 22423 +52* 4+ 142° 4 -

Imiz1

.25

- -0.5
0.5

0.0
-0.25 Relz)
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Introduction
A Gallery of Combinatorial Pictures

Cayley Trees: T(z) = zexp(T(z)) = z+ 25 + 95 + 645 + -

. o 0.0
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Introduction
A Gallery of Combinatorial Pictures

Set Partitions: exp(exp(z) —1) =141 + 23—2! + 52—? 15%1 +---
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Complex Analysis

II Mini-minicourse in complex analysis
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Complex Analysis
Basic Definitions and Properties

f: D C C — Cis analytic at xg if it is the sum of a power series in
a disc around xg.

e f,g analytic at xg, then so are f + g, f x g and .

@ g analytic at xp, f analytic at g(xp), then f o g analytic at xo.

Same def. and prop. in several variables.
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Complex Analysis
Examples

f analytic at 07  why
polynomial Yes
exp(x) Yes 1+x+x2/20+ -
= Yes T+x+x2+--- (x| <1)
log -1 Yes x+x2/2+x3/3--- (x| < 1)
1oylodx Yes 14+ 25 COxh + - (x| < 1/4);
% No infinite at 0
log x No derivative not analytic at 0
VX No derivative infinite at 0
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Complex Analysis
Combinatorial Generating Functions |

Proposition (Labeled)
The labeled structures obtained by iterative use of
SEQ, Cyc, SET, +, X starting with 1, Z

have exponential generating series that are analytic at O

Recall Translation Table

A+ B A(z)+ B(2)
A x B A(z) x B(2)
SEQ(Q) %C(Z)

Cyc(C) log %C(z)
SET(C)  exp(C(z))

Proof by induction.
+, X, and composition with 1=
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Complex Analysis
Combinatorial Generating Functions ||

Proposition (Unlabeled)

The unlabeled structures obtained by iterative use of
SEQ, Cyc, PSET, MSET, +, X starting with 1, Z
have ordinary generating series that are analytic at 0.

Proof by induction.

Recall Translation Table

A+B A(z) + B(z) easy

A x B A(z) x B(z) easy
SEQ(C) l—é(z) easy
PSET(C) exp(C(z) — 1C(2?) + %C(z3) —ono)) T
MSET(C) exp(C(z) + 5C(22) + @) +-) 7
CYC(C) Zkzl @ |Og l—g(zk) ?
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Complex Analysis
Combinatorial Generating Functions ||

Proposition (Unlabeled)

The unlabeled structures obtained by iterative use of
SEQ, Cyc, PSET, MSET, +, X starting with 1, Z
have ordinary generating series that are analytic at 0.

Proof by induction.
e MSET(C): by induction, there exists K > 0, p € (0,1), s.t.
|C(2)| < K|z| for |z| < p. Then
C(2) +3C(2%) +3C(2°) +--- < Klog 277, |2z <p.
Uniform convergence = limit analytic (Weierstrass).

e PseT, CycC: similar.

O
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Complex Analysis
Analytic Continuation & Singularities

Definition

Analytic on a region (= connected, open, # ()): at each point.

Proposition

R C S regions. f analytic in R. There is at most one analytic
function in S equal to f on R (the analytic continuation of f to S).

@ Singularity: a point that cannot be reached
by analytic continuation;

@ Polar singularity a: isolated singularity and
(z — a)™f analytic for some m € N;

e residue at a pole: coefficient of (z — a)7%;

@ f meromorphic in R: only polar singularities.
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Complex Analysis
Combinatorial Examples

Structure GF Sings Mero. in C
Set exp(z) none Yes
Set Partitions exp(e” — 1) none Yes
Sequence 1 Yes
152
. . z
Bin Seq. no adj.0 — b, —1/¢ Yes
1-— z—z
Derangements 1e 1 Yes
—z
1-v1-4
Rooted plane trees 272 1/4 No
z
1
Integer partitions H T roots of 1 No
k>1
p(r 1
Irred. pols over [y Z S Ing——— qz’ roots of 7 No
r>1
Exercise: Bernoulli nbs expé%l ? ?
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Complex Analysis

Integration of Analytic Functions

f analytic in a region R, 1 and ', two closed curves that are
homotopic wrt R (= can be deformed continuously one into the

other) then
/ / .
51 I
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Complex Analysis

Residue Theorem: from Global to Local

Corollary

f meromorphic in a region R, ' a closed path
in C encircling the poles a4, ..., an of f once
in the positive sense. Then

/f = 27riz: Res(f; o). =

r J

Proof. ®
e gi = Pj(z)/(z — «j)™ polar part at o;j;

e h:=f—(g1+ -+ gm) analytic in R;
e I homotopic to a point in R = [- h=0;

e I homotopic to a circle centered at ¢ in R\ {a;};

2 ) ori _ 4
° /(z — o))" dz = i/ plgi(m+1)0 g — ) ST M L
! 0 0  otherwise.
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Complex Analysis
Cauchy’s Coefficient Formula

Corollary

If f =ag+ aiz+ ... is analytic in R > 0 then

1 [ f(2)
e 27i an+1

for every closed I' in R encircling 0 once in the positive sense.

Proof.

f(z)/z"*! meromorphic in R, pole at 0, residue a,. O
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Complex Analysis

Coefficients of Rational Functions by Complex Integration

R—n-1

<

v|g(2)|—R2_R_1

ot 9
+ =3
1+2¢ 14+2¢

When |z| = R = 271R|g(z)] = 0, R — oc.
—n—1

Conclusion: F, =




Dominant Singularity

IIl Dominant Singularity
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Dominant Singularity

Cauchy’s Formula

[2"]f(2) = i j{ ;Siz dz

27mi

As n increases, the smallest singularities dominate.
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Dominant Singularity
Exponential Growth

Definition

Dominant singularity: singularity of minimal modulus.

f=ap+aiz+--- analytic at 0;
R modulus of its dominant singularities, then

ap = R™"0(n), limsup [0(n)[*/" = 1.

n—0o0

Proof (Idea).
@ integrate on circle of radius R — ¢ = |a,| < C(R—¢€)™ "
@ if (R+¢€)™" < Ka,, then convergence on a larger disc.

O
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Dominant Singularity

General Principle for Asymptotics of Coefficients

1) = 5 § @) g

Singularity of smallest modulus — exponential growth

Local behaviour — sub-exponential terms

Algorithm

© Locate dominant singularities
@ Compute local expansions
© Transfer
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Dominant Singularity
Rational Functions

Dominant singularities: roots of denominator of smallest modulus.

Conway'’s sequence:
1, 11, 21, 1211, 111221,. ..

Generating function:

f(2) = o
with deg Q = 72.

§(f) ~ 0.7671198507,
p ~ 1.3035772690343,
0, ~ 2.042160077 "

] +
+ +1
+ i
+ o
+ +
+ I 4 ++ +
+
I i
] +
+
N 0,5 + 4
+ T J +
¥
1—1_ 4 .
- +
M T T T T T T T ™ T T T T T T T I+I n
4, 4.5 1 05 1
i o+
+ +
+ 4+ b +
+
0,5 +
+ ] te
+
+ N ] .
+ t - + + + +
+ t -
+ R
+ -7
¥
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Dominant Singularity
Rational Functions

Dominant singularities: roots of denominator of smallest modulus.

Conway'’s sequence:
1, 11, 21, 1211, 111221,. ..

Generating function:

f(2) = o
with deg Q = 72.

§(f) ~ 0.7671198507,
p ~ 1.3035772690343,

0, ~ 2.042160077 p"
——
pRes(f.3(F))

] +
+ +1
+ i
+ o
+ +
+ I 4 ++ +
+
I i
] +
+
N 0,5 + 4
+ T J +
¥
1—1_ 4 .
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Dominant Singularity
Iterative Generating Functions

Algorithm Dominant Singularity

Function F Dom. Sing. 6(F)
exp(f) o(f)
1/(1—-1f) min(d(f),{z | f(z) = 1})
log(1/(1 — 1)) idem
fg,. f+g min(d(f),d(g))
f(z) +3f(2%) + 3f(2®) + - - min(6(f),1).
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Dominant Singularity
Iterative Generating Functions

Algorithm Dominant Singularity

Function F Dom. Sing. 6(F)
exp(f) o(f)
1/(1—f) min(6(f),{z | f(z) =1})
log(1/(1 — 1)) idem
fg,. f+g min(0(f),d(g))
f(z)+3f(2%) + 3f(28) + - - min(8(f),1).

Note: f has coeffs > 0 = min(4(f),{z | f(z) = 1}) e RT.
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Dominant Singularity
Iterative Generating Functions

Algorithm Dominant Singularity

Function F Dom. Sing. §(F)
exp(f) 4(f)
1/(1—f) min(6(f),{z | f(z) =1})
log(1/(1 —f)) idem
fg, f+g min(0(f),d(g))
f(z)+3f(2%) + 3f(28) + - - min(5(f), 1).

Note: f has coeffs > 0 = min(4(f),{z | f(z) = 1}) e RT.

Pringsheim’s Theorem

f analytic with nonnegative Taylor coefficients has its radius of
convergence for dominant singularity.
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Dominant Singularity

Iterative Generating Functions

Algorithm Dominant Singularity

Function F Dom. Sing. 6(F)
exp(f) 6(f)
1/(1-f) min(0(f),{z | f(z) =1})
log(1/(1 —f)) idem
fg, f+g min(0(f),d(g))
f(z) + 3f(22) + 3F(23) + - min(5(f), 1).

1
Dominant singularity of 5 1-— J 1—4log <

(Binary trees of cycles of cycles)

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA



Dominant Singularity
Implicit Functions

Proposition (Implicit Function Theorem)

The equation
y =f(z,y)
admits a solution y = g(z) that is analytic at zp when
e f(z,y) is analytic in 1 + n variables at (z,y0) := (20, 8(20)).
o f(z0,y0) = yo and det|/ — Of /Oy| # 0 at (2o, yo).

Example (Cayley Trees: T = zexp(T))

@ Generating function analytic at 0;

@ potential singularity when 1 — zexp(T) =0,

whence T = 1, whence z = e 1.

More generally, solutions of combinatorial systems are analytic.
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Dominant Singularity
Implicit Functions

Proposition (Implicit Function Theorem)

The equation
y =f(z,y)
admits a solution y = g(z) that is analytic at zp when
e f(z,y) is analytic in 1 + n variables at (z,y0) := (20, 8(20)).
o f(z0,y0) = yo and det|/ — Of /Oy| # 0 at (2o, yo).

Example (Cayley Trees: T = zexp(T))

@ Generating function analytic at 0; @ Binary trees;
@ potential singularity when 1 — zexp(T) =0, Q@ T(z) ~

— -1
whence T = 1, whence z = e 1. E=6

More generally, solutions of combinatorial systems are analytic.
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Singularity Analysis

IV Singularity Analysis
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Singularity Analysis

General Principle for Asymptotics of Coefficients

1) = 5 § @) g

Singularity of smallest modulus — exponential growth

Local behaviour — sub-exponential terms

Algorithm

© Locate dominant singularities
@ Compute local expansions
© Transfer
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Singularity Analysis
The Gamma Function

+o00
Def. Euler's integral: I'(z) ::/ t? le t dt;
0

Recurrence: (z 4 1) = z[(z) (integration by parts);
s
sin(nz)’
e Hankel’s loop formula: 1 1/+°°( t) e tdt
P T@) T 2ri Jo) e a

o Reflection formula: ['(z)[(1—2z) =

(1— >
\

\

Idea for the last one:

0 (emmi) "zt zet dt — [P0 (™) "2t et dt.
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Singularity Analysis

Basic Transfer Toolkit

Singularity Analysis Theorem [Flajolet-Odlyzko]

Q If f is analytic in A(¢, R), and

z—1 z

then [2"]f(z) = O(n® tlog” n).

() =, 0 (-2 oe 7).

nozl

© 102" = gy |1 A, R)

ek

a€C\Z, e(a) ponnomlaI,
@ similar result with a log®(1/(1 — 2)).
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Singularity Analysis
Example: Binary Trees

© Dominant singularity: 1/4;

@ Local expansion:
B=2-2y1—4z+2(1-4z)+ O((1 - 42)%?);

Q@ O((1-—42)%?)) — 0(4"n~5/?),

(%) —2@%#—!—*”@—;2—1—“-.

4n
Conclusion: B, = —— + O(4"n"5/2).
Vn3/? Cayley trees.
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Singularity Analysis

Proof of the Singularity Analysis Theorem |

Part I. Scale

a—1

@ [Z'l(1-2) = 1 1+§;ek :

n—o0 r
k>1

a€C\Z, e(a) ponnomlaI,

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA



Singularity Analysis

Proof of the Singularity Analysis Theorem |

Part I. Scale

a—1

@ [Z'l(1-2) = 1 1+§;ek :

n—o0 r
k>1

a€C\Z, e(a) ponnomlaI,

© On the almost full circle, f(z)/z™** small: O(R™");
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Singularity Analysis
Proof of the Singularity Analysis Theorem |

Part I. Scale

nal

Q ["|(1-2)* = 1 +Z

n— o0 r
k>1

a€C\Z, e(a) polynomlal,

ek
x —

@ On the almost full circle, f(z)/z"*! small: O(R™");
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Singularity Analysis
Proof of the Singularity Analysis Theorem |

Part I. Scale

nal

Q ["|(1-2)* = 1 +Z

n— o0 r
k>1

a€C\Z, e(a) polynomlal,

ek
x —

@ On the almost full circle, f(z)/z"*! small: O(R™");
@ Extending the rest to a full Hankel contour changes the
integral by O(R™");
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Singularity Analysis
Proof of the Singularity Analysis Theorem |

Part I. Scale

a—1

ex(a)
1 —|—Z nk , X
k>1

e [l1-2) = T @)

a € C\Z™, e(a) polynomial;

@ On the almost full circle, f(z)/z"*! small: O(R™");
@ Extending the rest to a full Hankel contour changes the
integral by O(R™");
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Singularity Analysis
Proof of the Singularity Analysis Theorem |

Part I. Scale

n o n~1 ex(a
Q [z[(1-2)" = ) 14> k,,(k) , e
k>1

a € C\Z™, e(a) polynomial;

@ On the almost full circle, f(z)/z"*! small: O(R™");

@ Extending the rest to a full Hankel contour changes the
integral by O(R™");
© On this part, change variable: z:=1+t/n

1 +oo t —a—1 t —n—1
n o - - —n
102" = o | (-5)  (1+5)  de+O(R™).
Recognize ?
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Singularity Analysis
Proof of the Singularity Analysis Theorem |

Part I. Scale

a—1

e [l1-2) = T @)

ex(a)
1 lo—
+2 k| .
k>1
a € C\Z™, e(a) polynomial;

@ On the almost full circle, f(z)/z"*! small: O(R™");
@ Extending the rest to a full Hankel contour changes the
integral by O(R™");
© On this part, change variable: z:=1+t/n
1 400 t\ a1 t\ —n-1
[2"(1-2) = (—=)  (r+#=)  drO(R™).
(0) n

27 n

—n—1 2
o (1 + E) — o (ntl)log(1+7) _ -t <1 + -2t 4. >;
n 2n
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Singularity Analysis
Proof of the Singularity Analysis Theorem |

Part I. Scale

n o n~1 ex(a
Q [z[(1-2)" = ) 14> k,,(k) , e
k>1

a € C\Z™, e(a) polynomial;

@ On the almost full circle, f(z)/z"*! small: O(R™");

@ Extending the rest to a full Hankel contour changes the
integral by O(R™");

© On this part, change variable: z:=1+t/n

[2")(1-2)" = o= (:O (—5) - (1+ 2)1 dt+O(R™").

27 n

e 2
(%) (]_ + E) ! — e*(n+1)|og(l+%) — e*t <1 4 t 2_n2t + ... >;
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Singularity Analysis
Proof of the Singularity Analysis Theorem Il

T
N

Part II. O()
@ If f is analytic in A(¢, R), and

f(z) = O ((1 — 2)"%log” 112> :

z—1 - 24

then ["]f(2) = O(n"tlog’n). | . A(¢, R)

Easier than previous part:
@ Outer circle: r—™;
@ Inner circle: use hypothesis and simple bounds;
© Segments: the key is that (14 tcosf/n)~" converges to e?,

which is sufficient.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA



Saddle-Point Method

V Saddle-Point Method
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Saddle-Point Method

Functions with Fast Singular Growth

(Functions with fast singular growth)

[z”]f(z):% 7{ Z(ﬂ dz
—~—

T
—texp(h(2))

@ Saddle-point equation: h'(R,) =0i.e. R,

@ Change of variables: h(z) = h(p) — uv?
© Termwise integration:

- f(Rn)

T R 27h'(R,)

© Sufficient conditions: Hayman (1st order), Harris &
Schoenfeld, Odlyzko & Richmond, Wyman.

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA

n




Saddle-Point Method

Functions with Fast Singular Growth

(Functions with fast singular growth)

[z”]f(z):% 7{ Z(ﬂ dz
—~—

™

o R
-

—texp(h(2))

@ Change of variables: h(z) = h(p) — uv?
© Termwise integration:

- f(Rn)

T R 27h'(R,)

© Sufficient conditions: Hayman (1st order), Harris &
Schoenfeld, Odlyzko & Richmond, Wyman.

n

Stirling's formula (f = exp).
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Saddle-Point Method
Hayman admissibility

A set of analytic conditions and easy-to-use sufficient conditions.

Hyp. f, g admissible, P polynomial
@ exp(f), fg and f + P admissible.
Q Ic(P) > 0 = fP and P(f) admissible.

Q if e’ has ultimately positive coefficients, it is admissible.

@ sets (exp(z)),
e involutions (exp(z + z2/2)),
@ set partitions (exp(exp(z) — 1)).

Bruno Salvy Minicourse 2: Asymptotic Techniques for AofA



Conclusion

VI Conclusion
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Conclusion
Summary

@ Many generating functions are analytic;

@ Asymptotic information on their coefficients can be extracted
from their singularities;

@ Starting from bivariate generating functions gives asymptotic
averages or variances of parameters;

@ A lot of this can be automated.
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Conclusion
Want More Information?

Analytic
Combinatorics

Coming in 2008,
now available

Philippe Flajolet
Robert Sedgewick on the web

Cambridge University Press
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