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Examples:

8
><

>:

A = B
B = C
C = Z

8
><

>:

A = B
B = Z + C
C = ZC

Between Analytic Combinatorics and Species Theory 19/28

Intro Species of structures Well-founded combinatorial systems Newton iteration

Examples H(0, 0) = 0

Joyal’s conditions:

Y = Seq(Z) 3 Y = Seq(Z Seq(Z)) 3 Y = Seq(Seq(Z)) 7
H0(0) = 0 H0(0) = 0 H0(0) not defined!

Y = Z Y 3 Y = Z + Z Y 3 Y = Z + Y 7
H0(0, 0) = 0 H0(0, 0) = 0 H0(0, 0) = 1

With our conditions:

Y = Z Y 7 because Y = 0.

How to detect 0 coordinates:

Look for 0 in Hm(Z, 0).

Examples:

8
><

>:

A = B
B = C
C = Z

8
><

>:

A = B
B = Z + C
C = ZC

Between Analytic Combinatorics and Species Theory 19/28

Intro Species of structures Well-founded combinatorial systems Newton iteration

Examples H(0, 0) = 0

Joyal’s conditions:

Y = Seq(Z) 3 Y = Seq(Z Seq(Z)) 3 Y = Seq(Seq(Z)) 7
H0(0) = 0 H0(0) = 0 H0(0) not defined!

Y = Z Y 3 Y = Z + Z Y 3 Y = Z + Y 7
H0(0, 0) = 0 H0(0, 0) = 0 H0(0, 0) = 1

With our conditions:

Y = Z Y 7 because Y = 0.

How to detect 0 coordinates:

Look for 0 in Hm(Z, 0).

Examples:

8
><

>:

A = B
B = C
C = Z

8
><

>:

A = B
B = Z + C
C = ZC

Between Analytic Combinatorics and Species Theory 19/28

Intro Species of structures Well-founded combinatorial systems Newton iteration

Examples H(0, 0) = 0

Joyal’s conditions:

Y = Seq(Z) 3 Y = Seq(Z Seq(Z)) 3 Y = Seq(Seq(Z)) 7
H0(0) = 0 H0(0) = 0 H0(0) not defined!

Y = Z Y 3 Y = Z + Z Y 3 Y = Z + Y 7
H0(0, 0) = 0 H0(0, 0) = 0 H0(0, 0) = 1

With our conditions:

Y = Z Y 7 because Y = 0.

How to detect 0 coordinates:

Look for 0 in Hm(Z, 0).

Examples:

8
><

>:

A = B
B = C
C = Z

8
><

>:

A = B
B = Z + C
C = ZC

Between Analytic Combinatorics and Species Theory 19/28

Intro Species of structures Well-founded combinatorial systems Newton iteration

Examples H(0, 0) = 0

Joyal’s conditions:

Y = Seq(Z) 3 Y = Seq(Z Seq(Z)) 3 Y = Seq(Seq(Z)) 7
H0(0) = 0 H0(0) = 0 H0(0) not defined!

Y = Z Y 3 Y = Z + Z Y 3 Y = Z + Y 7
H0(0, 0) = 0 H0(0, 0) = 0 H0(0, 0) = 1

With our conditions:

Y = Z Y 7 because Y = 0.

How to detect 0 coordinates:

Look for 0 in Hm(Z, 0).

Examples:

8
><

>:

A = B
B = C
C = Z

8
><

>:

A = B
B = Z + C
C = ZC

Between Analytic Combinatorics and Species Theory 19/28

Intro Species of structures Well-founded combinatorial systems Newton iteration

Examples H(0, 0) = 0

(
Y1 = Z Y2

Y2 = Z Y1 Seq(Y2)
3

✓
0 0

Z Seq(Y2) Z Y1 Seq(Y2)2

◆����
0,0

=

✓
0 0
0 0

◆

(
Y1 = Z + Y2

Y2 = Z Y1 Seq(Y2)
3

✓
0 1
0 0

◆

(
Y1 = Z + Y2

Y2 = Z + Y1 Seq(Y2)
7

✓
0 1

Seq(Y2) Y1 Seq(Y2)2

◆����
0,0

=

✓
0 1
1 0

◆

(
Y1 = Z + Y2

2

Y2 = Y1
3

✓
0 0
1 0

◆

Between Analytic Combinatorics and Species Theory 20/28

Intro Species of structures Well-founded combinatorial systems Newton iteration

Examples H(0, 0) = 0

(
Y1 = Z Y2

Y2 = Z Y1 Seq(Y2)
3

✓
0 0

Z Seq(Y2) Z Y1 Seq(Y2)2

◆����
0,0

=

✓
0 0
0 0

◆

(
Y1 = Z + Y2

Y2 = Z Y1 Seq(Y2)
3

✓
0 1
0 0

◆

(
Y1 = Z + Y2

Y2 = Z + Y1 Seq(Y2)
7

✓
0 1

Seq(Y2) Y1 Seq(Y2)2

◆����
0,0

=

✓
0 1
1 0

◆

(
Y1 = Z + Y2

2

Y2 = Y1
3

✓
0 0
1 0

◆

Between Analytic Combinatorics and Species Theory 20/28

Intro Species of structures Well-founded combinatorial systems Newton iteration

Examples H(0, 0) 6= 0

Definition

F(Z1,Z2) is polynomial in the sorts Z1 when, for all n � 0, the
species F=(.,n) =

P
k�0 F=(k,n) is polynomial.

(The species is polynomial when the size is fixed in the other sorts.)

Examples:

Seq(Z1 + Z2): not polynomial in Z1 or Z2

Seq(Z1 · Z2): polynomial in Z1 and Z2 (but not in Z)

Z1Seq(Z2): polynomial in Z1 and not in Z2.

Well-founded Systems?
(

Y1 = Z + Y1Y2

Y2 = 1

(
Y1 = Z + Y2Y2

1

Y2 = 1
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I. 2. ADMISSIBLE CONSTRUCTIONS AND SPECIFICATIONS 33

combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !

Definition I.7. A specification for an r–tuple #A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)






A(1) = !1(A(1), . . . ,A(r))
A(2) = !2(A(1), . . . ,A(r))

· · ·
A(r) = !r (A(1), . . . ,A(r))

where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)

only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #!

[ #A[ j]
]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms

?
?

?

?

?

Intro Species of structures Well-founded combinatorial systems Newton iteration

And starting from the specification?

Y = Z + Y(Z2)
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Well-founded Systems?
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(
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). !

Definition I.7. A specification for an r–tuple #A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)






A(1) = !1(A(1), . . . ,A(r))
A(2) = !2(A(1), . . . ,A(r))

· · ·
A(r) = !r (A(1), . . . ,A(r))

where each !i denotes a term built from the A using the constructions of disjoint

union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial

classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)

only involvesA(r), and so on; in that case, by back substitutions, it is apparent that for

an iterative specification, A(1) can be equivalently described by a single term involv-

ing only the initial classes and the basic constructors. Otherwise, the system is said to

be recursive. In the latter case, the semantics of recursion is identical to the one intro-

duced in the case of trees: start with the “empty” vector of classes, #A[0] := (∅, . . . ,∅),
iterate #A[ j+1] = #!

[ #A[ j]
]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a

specification of the form (29), we can associate its dependency (di)graph " to it as
follows. The set of vertices of " is the set of indices {1, . . . , r}; for each equation
A(i) = #i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the

right-hand side of the equation, place a directed edge (i → j) in ". It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will

serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each

constructible class has by virtue of Theorem I.1 an ordinary generating function for

which functional equations can be produced systematically. (In fact, it is even possible

to use computer algebra systems in order to compute it automatically! See the article

by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms

?
?

?

?

?

Intro Species of structures Well-founded combinatorial systems Newton iteration

And starting from the specification?

Y = Z + Y(Z2)
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Examples H(0, 0) = 0
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Y1 = Z Y2

Y2 = Z Y1 Seq(Y2)
3

✓
0 0

Z Seq(Y2) Z Y1 Seq(Y2)2

◆����
0,0

=

✓
0 0
0 0

◆

(
Y1 = Z + Y2

Y2 = Z Y1 Seq(Y2)
3

✓
0 1
0 0

◆

(
Y1 = Z + Y2

Y2 = Z + Y1 Seq(Y2)
7

✓
0 1

Seq(Y2) Y1 Seq(Y2)2

◆����
0,0

=

✓
0 1
1 0

◆

(
Y1 = Z + Y2

2

Y2 = Y1
3

✓
0 0
1 0

◆
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Proof of Joyal’s IST
Def. 𝓐=k𝓑 if they coincide up to size k (contact).

Key Lemma.
If 𝓨[n+1]=k𝓨[n], then 𝓨[n+p+1]=k+1𝓨[n+p] (p=dim).
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Polynomial Species

Def. 𝓨 polynomial when its gf is.

Prop. 𝓨=𝓗(𝒵,𝓨) well-founded at 0.
Polynomial solution 
	
 	
 ⟺ 𝓗 polynomial and ∂𝓗/∂𝓨 nilpotent.

The dependency graph itself has no cycle

𝒜=𝒵+𝒵ᐧℬᐧℬ;

ℬ=𝒵+𝒵.𝒵.
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➥ computations reduced to simple manipulations of dependency graphs
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Z
Seq(A)A0

Set(A) = 1 +

Z
Set(A)A0

Y(Z) = H(Z,Y(Z)) +
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0
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0
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well-founded when:
1. the part without ∫ is well-founded;
2. an extra (technical) condition when H(0,0) 6= 0.

Prop.
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The end


