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I. Equations as a  
data-structure

erf := (y00 + 2xy

0 = 0, cond. ini.)



The objects of study
Def. A power series is called D-finite when it is the 
solution of a linear differential equation with polynomial 
coefficients.

Exs: sin, cos, exp, log, arcsin, arccos, arctan, 
arcsinh,hypergeometric series, Bessel functions,…

Def. A sequence is P-recursive when it is the solution of a 
linear recurrence with polynomial coefficients

Prop.                    D-finite ⟺    P-recursive.f =
1X

n=0

fnz
n fn





Example
Coefficient of X20000 in P(X)=(1+X)20000(1+X+X^2)10000 ?
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Example

Linear differential equation of order 1  
→ linear recurrence of order 2 
→ unroll (cleverly).

Coefficient of X20000 in P(X)=(1+X)20000(1+X+X^2)10000 ?

> P := (1+x)^(2*N)*(1+x+x^2)^N:!
> deq := gfun:-holexprtodiffeq(P,y(x)):!
> rec := gfun:-diffeqtorec(%,y(x),u(k)):  
> p := gfun:-rectoproc(subs(N=10000,rec),u(k)):  
> p(20000);



Example

Linear differential equation of order 1  
→ linear recurrence of order 2 
→ unroll (cleverly).

Coefficient of X20000 in P(X)=(1+X)20000(1+X+X^2)10000 ?

> P := (1+x)^(2*N)*(1+x+x^2)^N:!
> deq := gfun:-holexprtodiffeq(P,y(x)):!
> rec := gfun:-diffeqtorec(%,y(x),u(k)):  
> p := gfun:-rectoproc(subs(N=10000,rec),u(k)):  
> p(20000);

23982[...10590 digits...]33952

Total time: 0.5 sec



Dynamic Dictionary of 
Mathematical Functions

• User need 

• Recent algorithmic progress 

• Math on the web

http://ddmf.msr-inria.inria.fr/

Heavy work by F. Chyzak



II. Numerical evaluation 
at large precision

From large integers to precise numerical values
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Two integers of n digits can be multiplied with 
O(n log(n) loglog(n)) bit operations.



Fast multiplication
Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). 
Two integers of n digits can be multiplied with 
O(n log(n) loglog(n)) bit operations.

Applications (in the 70’s and the 80’s):



Fast multiplication
Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). 
Two integers of n digits can be multiplied with 
O(n log(n) loglog(n)) bit operations.

Applications (in the 70’s and the 80’s):

• inverses, square-roots,… by Newton iteration, same cost;



Fast multiplication
Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). 
Two integers of n digits can be multiplied with 
O(n log(n) loglog(n)) bit operations.

Applications (in the 70’s and the 80’s):
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Fast multiplication
Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). 
Two integers of n digits can be multiplied with 
O(n log(n) loglog(n)) bit operations.

Applications (in the 70’s and the 80’s):

• inverses, square-roots,… by Newton iteration, same cost;
• n! by divide-and-conquer: 
 
 
Cost: O(n log3n loglog n)

• any linear recurrence of order 1 (coeffs in Q(n));
• arbitrary order: same idea, same cost (matrix factorial).

n! = n⇥ · · ·⇥ dn/2e| {z }
size O(n log n)

⇥bn/2c ⇥ · · ·⇥ 1| {z }
size O(n log n)





Numerical evaluation of solutions of LDEs

Principle: 
 
 
f solution of a LDE with coeffs in Q(x) (our data-structure!)

f(x) =
NX

n=0
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n
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fast evaluation
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good bounds
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2. tight bounds on the tail (technical); 
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1. linear recurrence in N for the first sum (easy); 
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The technique used for fast evaluation of constants like 

1

⇡
=

12

C3/2

1X

n=0

(�1)n(6n)!(A+ nB)

(3n)!n!3C3n

with A=13591409, 
B=545140134, 

C=640320.



Numerical evaluation of solutions of LDEs

1. linear recurrence in N for the first sum (easy); 
2. tight bounds on the tail (technical); 
3. no numerical roundoff errors.

Principle: 
 
 
f solution of a LDE with coeffs in Q(x) (our data-structure!)

f(x) =
NX

n=0

anx
n

| {z }
fast evaluation

+
1X

n=N+1

anx
n

| {z }
good bounds

The technique used for fast evaluation of constants like 

1

⇡
=

12

C3/2

1X

n=0

(�1)n(6n)!(A+ nB)

(3n)!n!3C3n

with A=13591409, 
B=545140134, 

C=640320.

Code available: NumGfun [Mezzarobba 2010]



arctan(1+i)

f(x), f 0(x), . . . , f(d�1)(x)



Analytic continuation

arctan(1+i)

Compute                                     as new initial 
conditions and handle error propagation:

f(x), f 0(x), . . . , f(d�1)(x)



Analytic continuation

Ex: erf(π) with 15 digits:  
0 ������!

200 terms
3.1416 �����!

18 terms
3.1415927 �����!

6 terms
3.14159265358979

arctan(1+i)

Again: computation on integers. No roundoff errors.

Compute                                     as new initial 
conditions and handle error propagation:

f(x), f 0(x), . . . , f(d�1)(x)



III. Closure properties

k+1 vectors in dimension k → an identity



Confinement

LDE ⟺ the function and all its derivatives are confined 
in a finite dimensional vector space

⇒ the sum and product of solutions of LDEs satisfy LDEs

⇒ same property for P-recursive sequences



Proofs of identities
> series(sin(x)^2+cos(x)^2-1,x,4);

O(x4)

Why is this a proof?



Proofs of identities
> series(sin(x)^2+cos(x)^2-1,x,4);

O(x4)

Why is this a proof?

1. sin and cos satisfy a 2nd order LDE: y’’+y=0; 
2. their squares and their sum satisfy a 3rd order LDE; 
3. the constant -1 satisfies y’=0; 
4. thus sin2+cos2-1 satisfies a LDE of order at most 4; 
5. Cauchy’s theorem concludes.



Application to continued 
fraction expansions

ez = 1+
a1z

1+
a2z

1+
a3z

. . .

a2k =
1

2(2k+ 1)
, a2k+1 =

�1

2(2k� 1)
.

(easily found by guessing)

Automatic proof of the continued fraction (Maulat-S. 2014):
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Application to continued 
fraction expansions

• Convergents Pk/Qk where Pk and Qk satisfy a LRE  
(and Qk(0)≠0);  

• Hk:=(Qk)2((Pk/Qk)’-(Pk/Qk)) satisfies a LRE from which 
val Hk≥k visible.

ez = 1+
a1z

1+
a2z

1+
a3z

. . .

a2k =
1

2(2k+ 1)
, a2k+1 =

�1

2(2k� 1)
.

(easily found by guessing)

Automatic proof of the continued fraction (Maulat-S. 2014):

More generally: guess-and-proof approach 
to CF for solutions of Ricatti equations



Mehler’s identity for Hermite polynomials

1. Definition of Hermite polynomials: recurrence of order 2; 

2. Product by linear algebra: 
generated over Q(x,n) by 
 
 
 
→ recurrence of order at most 4; 

3. Translate into a differential equation.

1X

n=0

H
n

(x)H
n

(y)
un

n!
=

exp

⇣
4u(xy�u(x2+y

2))
1�4u

2

⌘

p
1� 4u2

Hn+k(x)Hn+k(y)/(n+ k)!, k 2 N

Hn(x)Hn(y)

n!
,
Hn+1(x)Hn(y)

n!
,
Hn(x)Hn+1(y)

n!
,
Hn+1(x)Hn+1(y)

n!

demo



Preventing catastrophic 
cancellation

erf (x) =
2p
⇡

1X

n=0

(�1)n x2n+1

(2n+ 1) n!
.

|ynxn|
(x = 5)

lost digits ⇡ log(max |ynxn|)� log |y(x)|
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Preventing catastrophic 
cancellation

• Solution: exp(x2)erf(x) has positive coefficients.
• Can be generalized [GawronskiMullerReinhard2007].
• Chevillard-Mezzarobba2013 use Ai(jx)Ai(x/j)Ai(x) to 

compute Ai(x).
• Serra et alii 2014 use it for probability of collisions.

erf (x) =
2p
⇡

1X

n=0

(�1)n x2n+1

(2n+ 1) n!
.

|ynxn|
(x = 5)

lost digits ⇡ log(max |ynxn|)� log |y(x)|

In all cases: closure by product gives recurrences



IV. Ore polynomials



From equations to operators
S ↔ (n↦n+1) 

n ↔ mult by n 
product ↔ composition 

Sn=(n+1)S

D ↔ d/dx  
x↔ mult by x 

product ↔ composition 
Dx=xD+1



From equations to operators
S ↔ (n↦n+1) 

n ↔ mult by n 
product ↔ composition 

Sn=(n+1)S

Taylor morphism: D ↦ (n+1)S; x ↦ S-1 

produces linear recurrence from LDE

D ↔ d/dx  
x↔ mult by x 

product ↔ composition 
Dx=xD+1



From equations to operators
S ↔ (n↦n+1) 

n ↔ mult by n 
product ↔ composition 

Sn=(n+1)S

Taylor morphism: D ↦ (n+1)S; x ↦ S-1 

produces linear recurrence from LDE

Ore (1933): general framework for these non-commutative 
polynomials.  
Main property: deg AB=deg A+deg B.  
Consequence 1: (non-commutative) Euclidean division  
Consequence 2: (non-commutative) Euclidean algorithm.

D ↔ d/dx  
x↔ mult by x 

product ↔ composition 
Dx=xD+1
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Reduction of order
Input: a (large) linear differential equation + ini. cond  
Output: a factor annihilating this solution

• Step 1: use the recurrence to compute a large 
number of terms;

• Step 2: guess a linear differential equation 
annihilating this series (linear algebra, Padé-Hermite 
approximants);

• Step 3: prove the guess by Euclidean division.



GCRD & LCLM

Example: closure by sum.

greatest common right divisor &  
least common left multiple

GCRD(A,B): minimal operator whose solutions are 
common to A and B.  
LCLM(A,B): minimal operator having the solutions of A and 
B for solutions.

Computation: Euclidean algorithm or linear algebra.



Example from a continued 
fraction expansion

Aim: a recurrence for all k.

Pk = akx
2
Pk�2 + Pk�1, ak =

(
2k

(2k+1)(2k+3) , k even,

�2(k+2)
(2k+1)(2k+3) , k odd.



Example from a continued 
fraction expansion

• Step 1: use both recurrences to find a relation between 
Pk,Pk+2,Pk+4 for even k and one for odd k; 

• Step 2: compute their LCLM (order 8); 

• Step 3: use the initial conditions to reduce (order 4).

Aim: a recurrence for all k.

Pk = akx
2
Pk�2 + Pk�1, ak =

(
2k

(2k+1)(2k+3) , k even,

�2(k+2)
(2k+1)(2k+3) , k odd.



Ore fractions
Generalize commutative case:

R=Q-1P with P & Q operators. 
Sum and product reduce to that form using LCLM.
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Application: extend Taylor morphism to Chebyshev expansions

Generalize commutative case:

R=Q-1P with P & Q operators. 
Sum and product reduce to that form using LCLM.

Taylor 
xn+1=x·xn ↔ x ↦ X:=S-1 

(xn)’=nxn-1 ↔ d/dx ↦ D:=(n+1)S



Ore fractions

Application: extend Taylor morphism to Chebyshev expansions

Generalize commutative case:

R=Q-1P with P & Q operators. 
Sum and product reduce to that form using LCLM.

Taylor 
xn+1=x·xn ↔ x ↦ X:=S-1 

(xn)’=nxn-1 ↔ d/dx ↦ D:=(n+1)S

Chebyshev 
2xTn(x)=Tn+1(x)+Tn-1(x) 
↔ x ↦ X:=(S+S-1)/2 

2(1-x2)Tn’(x)=-nTn+1(x)+nTn-1(x) 
 ↔ d/dx ↦ D:=(1-X2)-1n(S-S-1)/2.



Ore fractions

Application: extend Taylor morphism to Chebyshev expansions

Generalize commutative case:

R=Q-1P with P & Q operators. 
Sum and product reduce to that form using LCLM.

Taylor 
xn+1=x·xn ↔ x ↦ X:=S-1 

(xn)’=nxn-1 ↔ d/dx ↦ D:=(n+1)S

Chebyshev 
2xTn(x)=Tn+1(x)+Tn-1(x) 
↔ x ↦ X:=(S+S-1)/2 

2(1-x2)Tn’(x)=-nTn+1(x)+nTn-1(x) 
 ↔ d/dx ↦ D:=(1-X2)-1n(S-S-1)/2.

Prop. [Benoit, S (2009)] If y is a solution of L(x,d/dx), then its 
Chebyshev coefficients annihilate the numerator of L(X,D).



Conclusion



Summary

• Linear differential equations and recurrences are a 
great data-structure; 

• Numerous algorithms have been developed in 
computer algebra; 

• Efficient code is available; 
• More is true (creative telescoping, diagonals,…); 
• More to come in DDMF, including formal proofs.



New project: FastRelax

24

Computer Algebra Formal proofs

Computer 
Arithmetic

double erf(double x) {…}

y

00 + 2xy

0 = 0


