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l. Equations as a
data-structure

erf := (y"" + 2xy’ = 0, cond. ini.)



The objects of study

Def. A power series is called D-finite when it is the
solution of a linear differential equation with polynomial
coefficients.

Exs: sin, cos, exp, log, arcsin, arccos, arctan,
arcsinh,hypergeometric series, Bessel functions, ...

Def. A sequence is P-recursive when it is the solution of a
linear recurrence with polynomial coefficients







Example

Coefficient of X29000 in P(X)=(1+X)20000(T 4 X+XA2)10000 ?
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Example

Coefficient of X20000 jn P(X)=(1+X)20000(7 £ X4 X/A2)10000 ?

Linear differential equation of order 1
— |inear recurrence of order 2
— unroll (cleverly).

>

V V V V

P := (1+x)"(2*N)*(1+x+x"2)"N:

deq := gfun:-holexprtodiffeq(P,y(xX)):
rec := gfun:-diffeqtorec(%,y(x),u(k)):
p := gfun:-rectoproc(subs(N=10000,rec),u(k)):
p(20000);



Example

Coefficient of X20000 jn P(X)=(1+X)20000(7 £ X4 X/A2)10000 ?

Linear differential equation of order 1
— linear recurrence of order 2

— unroll (cleverly).

> P := (1+x)7(2*N)*(1+x+x"2) "N:

deq := gfun:-holexprtodiffeq(P,y(xX)):
rec := gfun:-diffeqtorec(%,y(x),u(k)):
p := gfun:-rectoproc(subs(N=10000,rec),u(k)):
p(20000);

23982[...10590 digits...]33952

V V V V

Total time: 0.5 sec
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II. Numerical evaluation
at large precision

From large integers to precise numerical values
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O(n log(n) loglog(n)) bit operations.
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Fast multiplication

Fast Fourier Transform (Gauss, Cooley-Tuckey, Schonhage-Strassen).
Two integers of n digits can be multiplied with
O(n log(n) loglog(n)) bit operations.

Applications (in the 70’s and the 80’s):

* inverses, square-roots,... by Newton iteration, same cost;
 n! by divide-and-conquer:
nl=nx---x[n/2] x|n/2] x---x1

J/ \

size O(n log n) size O(n log n)
Cost: O(n log’n loglog n)

e any linear recurrence of order 1 (coeffs in Q(n));

« arbitrary order: same idea, same cost (matrix factorial).
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Numerical evaluation of solutions of LDEs

N o0
Principle: f(x) = Zanxn -+ Z AnX"
—0

n— n=N-+1
N—— N— ——
fast evaluation  good bounds

f solution of a LDE with coeffs in Q(x) (our data-structure!)

1. linear recurrence in N for the first sum (easy);
2. tight bounds on the tail (technical);
3. no numerical roundoff errors.

The technique used for fast evaluation of constants like

o ith A=13591409
(A + nB) Wit ,
; c3/2 Z 3n 'n'3C3“ B=545140134,
C=640320.

Code available: [IMezzarobba 2010]



f(x),f'(x),... ,f(d_l)(x)

arctan(1+1)



Analytic continuation

Compute f(x), f'(x), ...,f97Y(x) as new initial
conditions and handle error propagation: ..

.............

arctan(1+1)




Analytic continuation

Compute f(x), f'(x), ...,f97Y(x) as new initial
conditions and handle error propagation: ..

arctan(1+1)

Ex: erf(m) with 15 digits:
0 .+ 3.1416 » 3.1415927 » 3.14159265358979

200 terms 18 terms 6 terms

Again: computation on integers. No roundoff errors.



11l. Closure properties

Lo~ 2




Confinement

= the sum and product of solutions of LDEs satisty LDEs

= same property for P-recursive sequences



Proofs of identities

> series(sin(x)”"2+cos(x)"2-1,%,4);

O(x%)



Proofs of identities

> series(sin(x)"2+cos(x)"2-1,x%x,4);

.t
.t
.t

U1 &~ Lo N —

O(x%)

Why is this a proof?

. sin and cos satisfy a 2nd order LDE: y"'+y=0;

neir squares and their sum satisfy a 3rd order LDE;
ne constant -1 satisfies y'=0;

nus sin?4+cos?-1 satisfies a LDE of order at most 4;

. Cauchy’s theorem concludes.



Application to continued
fraction expansions
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Automatic of the continued fraction (Maulat-S. 2014):
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val Hi>k visible.



Application to continued
fraction expansions

. 1 d1Z 5 1 5 —1
e =1+ — ; — :
Lz KT 202k +1) T T 22k — 1)
| 4 232 (easily found by )
Automatic of the continued fraction (Maulat-S. 2014):

» Convergents Pi/Qx where Py and Qy satisfy a LRE
(and Qk(0)£0);

o Hi:=(Qi)?*((Pv/Qk)’-(P/Qx)) satisties a LRE from which
val Hi>k visible.

More generally: guess-and-proof approach
to CF for solutions of Ricatti equations



Mehler’s identity for Hermite polynomials

v — U (X2 2
n eEXP (4U( yl_uiuz_l_y )))

ZHn(X)Hn(y)m — \/1_4u2

n=0

1. Definition of Hermite polynomials: recurrence of order 2;

2. Product by linear algebra: Hy 1« (X)Hnak(y)/(n + k), k e N
generated over Q(x,n) by

Hn(X)Hn(Y) Hn+1(X)Hn(y) Hn(X)Hn+1(Y) Hn+1(X)Hn+1(Y)
n! ’ n! ’ n! ’

— recurrence of order at most 4;

3. Translate into a differential equation.
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» Solution: exp(x?)erf(x) has positive coefficients.
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Preventing catastrophic
.cancellation

..........

» Solution: exp(x?)erf(x) has positive coefficients.

« Can be generalized [GawronskiMullerReinhard2007].

» Chevillard-Mezzarobba2013 use Ai(jx)Ai(x/j)Ai(x) to
compute Al(x).

............................................................................................................................
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Solution: exp(x®)erf(x) has positive coefficients.

Can be generalized [GawronskiMullerReinhard2007].
Chevillard-Mezzarobba2013 use Ai(jx)Ai(x/j)Ai(x) to
compute Al(x).

Serra et alii 2014 use it for probability of collisions.
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Preventing catastrophic
.cancellation

.........................................................................................................

....................................................................

Solution: exp(x®)erf(x) has positive coefficients.

Can be generalized [GawronskiMullerReinhard2007].
Chevillard-Mezzarobba2013 use Ai(jx)Ai(x/j)Ai(x) to
compute Al(x).

Serra et alii 2014 use it for probability of collisions.

In all cases: closure by product gives recurrences



V. Ore polynomials
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From equations to operators

D < d/dx S < (n~n+1)
x< mult by x n < mult by n
product < composition product © composition
Dx=xD+1 Sn=(n+1)S

Taylor morphism: D » (n+1)S; X » S/
produces linear recurrence from LDE

Ore (1933): general framework for these non-commutative
polynomials.

Main property: deg AB=deg A+deg B.

Consequence 1: (non-commutative)

Consequence 2: (non-commutative)
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approximants);



Reduction of order

Input: a (large) linear differential equation + ini. cond
Output: a factor annihilating this solution

 Step 1: use the recurrence to compute a large
number of terms;

* Step 2: a linear differential equation
annihilating this series (linear algebra, Padé-Hermite
approximants);

» Step 3: the guess by Euclidean division.



GCRD & LCLM

greatest common right divisor &
least common left multiple

GCRD(A,B): minimal operator whose solutions are
common to A and B.

LCLM(A,B): minimal operator having the solutions of A and
B for solutions.

Example: closure by sum.

Computation: Euclidean algorithm or linear algebra.



Example from a continued
fraction expansion

ok
: k even,
Py = ax*Py_2 + Py_1, ax = { <2k_+213k(ik53) "
(2k+1)(2kL3)’ odd.

Aim: a recurrence for all k.



Example from a continued
fraction expansion

ok
: k even,
P, = aux®Py_o + Pr_1, ax = { <2k_+213k(ik53) "
(2k+1)(2kL3)’ odd.

Aim: a recurrence for all k.

e Step 1: use both recurrences to find a relation between
Px,Pr+2,Prsa for even k and one for odd k;

« Step 2: compute their LCLM (order 8);

o Step 3: use the initial conditions to reduce (order 4).
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R=Q'P with P & Q operators.
Sum and product reduce to that form using LCLM.
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Ore fractions

Generalize commutative case:

R=Q'P with P & Q operators.
Sum and product reduce to that form using LCLM.

Application: extend Taylor morphism to Chebyshev expansions

Taylor
XMtl=x . x" < x » X:=S"!
(x")'=nx"1 < d/dx » D:=(n+1)S

Prop. [Benoit, S (2009)] If y is a solution of L(x,d/dx), then its
Chebyshev coefticients annihilate the numerator of L(X,D).



Conclusion



Summary

Linear differential equations and recurrences are a
great data-structure;

Numerous algorithms have been developed in
computer algebra;

Efficient code is available;

More is true (creative telescoping, diagonals,...);
More to come in DDMF, including formal proofs.




New project: FastRelax

vy’ +2xy' =0

Computer Algebra

Formal proofs

double erf(double x) {...}

Computer
Arithmetic

REAL NUMBERS
0
|

| I B

FLOATING-POINT
NUMBERS

24



