
Introduction to D-finite
series with a view towards

reliable numerical evaluation
Bruno Salvy

Inria & ENS de Lyon

I. Equations as a  
data-structure

erf := (y00 + 2xy

0 = 0, cond. ini.)

The objects of study
Def. A power series is called D-finite when it is the
solution of a linear differential equation with polynomial
coefficients.

Exs: sin, cos, exp, log, arcsin, arccos, arctan,
arcsinh,hypergeometric series, Bessel functions,…

Def. A sequence is P-recursive when it is the solution of a
linear recurrence with polynomial coefficients

Prop. D-finite ⟺ P-recursive.f =
1X

n=0

fnz
n fn

Example
Coefficient of X20000 in P(X)=(1+X)20000(1+X+X^2)10000 ?

Example

Linear differential equation of order 1  
→ linear recurrence of order 2 
→ unroll (cleverly).

Coefficient of X20000 in P(X)=(1+X)20000(1+X+X^2)10000 ?

Example

Linear differential equation of order 1  
→ linear recurrence of order 2 
→ unroll (cleverly).

Coefficient of X20000 in P(X)=(1+X)20000(1+X+X^2)10000 ?

> P := (1+x)^(2*N)*(1+x+x^2)^N:!
> deq := gfun:-holexprtodiffeq(P,y(x)):!
> rec := gfun:-diffeqtorec(%,y(x),u(k)):  
> p := gfun:-rectoproc(subs(N=10000,rec),u(k)):  
> p(20000);

Example

Linear differential equation of order 1  
→ linear recurrence of order 2 
→ unroll (cleverly).

Coefficient of X20000 in P(X)=(1+X)20000(1+X+X^2)10000 ?

> P := (1+x)^(2*N)*(1+x+x^2)^N:!
> deq := gfun:-holexprtodiffeq(P,y(x)):!
> rec := gfun:-diffeqtorec(%,y(x),u(k)):  
> p := gfun:-rectoproc(subs(N=10000,rec),u(k)):  
> p(20000);

23982[...10590 digits...]33952

Total time: 0.5 sec

Dynamic Dictionary of
Mathematical Functions

• User need

• Recent algorithmic progress

• Math on the web

http://ddmf.msr-inria.inria.fr/

Heavy work by F. Chyzak

II. Numerical evaluation
at large precision

From large integers to precise numerical values

Fast multiplication
Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). 
Two integers of n digits can be multiplied with 
O(n log(n) loglog(n)) bit operations.

Fast multiplication
Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). 
Two integers of n digits can be multiplied with 
O(n log(n) loglog(n)) bit operations.

Applications (in the 70’s and the 80’s):

Fast multiplication
Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). 
Two integers of n digits can be multiplied with 
O(n log(n) loglog(n)) bit operations.

Applications (in the 70’s and the 80’s):

• inverses, square-roots,… by Newton iteration, same cost;

Fast multiplication
Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). 
Two integers of n digits can be multiplied with 
O(n log(n) loglog(n)) bit operations.

Applications (in the 70’s and the 80’s):

• inverses, square-roots,… by Newton iteration, same cost;
• n! by divide-and-conquer: 
 
 
Cost: O(n log3n loglog n)

n! = n⇥ · · ·⇥ dn/2e| {z }
size O(n log n)

⇥bn/2c ⇥ · · ·⇥ 1| {z }
size O(n log n)

Fast multiplication
Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). 
Two integers of n digits can be multiplied with 
O(n log(n) loglog(n)) bit operations.

Applications (in the 70’s and the 80’s):

• inverses, square-roots,… by Newton iteration, same cost;
• n! by divide-and-conquer: 
 
 
Cost: O(n log3n loglog n)

• any linear recurrence of order 1 (coeffs in Q(n));

n! = n⇥ · · ·⇥ dn/2e| {z }
size O(n log n)

⇥bn/2c ⇥ · · ·⇥ 1| {z }
size O(n log n)

Fast multiplication
Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). 
Two integers of n digits can be multiplied with 
O(n log(n) loglog(n)) bit operations.

Applications (in the 70’s and the 80’s):

• inverses, square-roots,… by Newton iteration, same cost;
• n! by divide-and-conquer: 
 
 
Cost: O(n log3n loglog n)

• any linear recurrence of order 1 (coeffs in Q(n));
• arbitrary order: same idea, same cost (matrix factorial).

n! = n⇥ · · ·⇥ dn/2e| {z }
size O(n log n)

⇥bn/2c ⇥ · · ·⇥ 1| {z }
size O(n log n)

Numerical evaluation of solutions of LDEs

Principle: 
 
 
f solution of a LDE with coeffs in Q(x) (our data-structure!)

f(x) =
NX

n=0

anx
n

| {z }
fast evaluation

+
1X

n=N+1

anx
n

| {z }
good bounds

Numerical evaluation of solutions of LDEs

1. linear recurrence in N for the first sum (easy);
2. tight bounds on the tail (technical);
3. no numerical roundoff errors.

Principle: 
 
 
f solution of a LDE with coeffs in Q(x) (our data-structure!)

f(x) =
NX

n=0

anx
n

| {z }
fast evaluation

+
1X

n=N+1

anx
n

| {z }
good bounds

Numerical evaluation of solutions of LDEs

1. linear recurrence in N for the first sum (easy);
2. tight bounds on the tail (technical);
3. no numerical roundoff errors.

Principle: 
 
 
f solution of a LDE with coeffs in Q(x) (our data-structure!)

f(x) =
NX

n=0

anx
n

| {z }
fast evaluation

+
1X

n=N+1

anx
n

| {z }
good bounds

The technique used for fast evaluation of constants like

1

⇡
=

12

C3/2

1X

n=0

(�1)n(6n)!(A+ nB)

(3n)!n!3C3n

with A=13591409,
B=545140134,

C=640320.

Numerical evaluation of solutions of LDEs

1. linear recurrence in N for the first sum (easy);
2. tight bounds on the tail (technical);
3. no numerical roundoff errors.

Principle: 
 
 
f solution of a LDE with coeffs in Q(x) (our data-structure!)

f(x) =
NX

n=0

anx
n

| {z }
fast evaluation

+
1X

n=N+1

anx
n

| {z }
good bounds

The technique used for fast evaluation of constants like

1

⇡
=

12

C3/2

1X

n=0

(�1)n(6n)!(A+ nB)

(3n)!n!3C3n

with A=13591409,
B=545140134,

C=640320.

Code available: NumGfun [Mezzarobba 2010]

arctan(1+i)

f(x), f 0(x), . . . , f(d�1)(x)

Analytic continuation

arctan(1+i)

Compute as new initial
conditions and handle error propagation:

f(x), f 0(x), . . . , f(d�1)(x)

Analytic continuation

Ex: erf(π) with 15 digits:  
0 ������!

200 terms
3.1416 �����!

18 terms
3.1415927 �����!

6 terms
3.14159265358979

arctan(1+i)

Again: computation on integers. No roundoff errors.

Compute as new initial
conditions and handle error propagation:

f(x), f 0(x), . . . , f(d�1)(x)

III. Closure properties

k+1 vectors in dimension k → an identity

Confinement

LDE ⟺ the function and all its derivatives are confined
in a finite dimensional vector space

⇒ the sum and product of solutions of LDEs satisfy LDEs

⇒ same property for P-recursive sequences

Proofs of identities
> series(sin(x)^2+cos(x)^2-1,x,4);

O(x4)

Why is this a proof?

Proofs of identities
> series(sin(x)^2+cos(x)^2-1,x,4);

O(x4)

Why is this a proof?

1. sin and cos satisfy a 2nd order LDE: y’’+y=0;
2. their squares and their sum satisfy a 3rd order LDE;
3. the constant -1 satisfies y’=0;
4. thus sin2+cos2-1 satisfies a LDE of order at most 4;
5. Cauchy’s theorem concludes.

Application to continued
fraction expansions

ez = 1+
a1z

1+
a2z

1+
a3z

. . .

a2k =
1

2(2k+ 1)
, a2k+1 =

�1

2(2k� 1)
.

(easily found by guessing)

Automatic proof of the continued fraction (Maulat-S. 2014):

Application to continued
fraction expansions

• Convergents Pk/Qk where Pk and Qk satisfy a LRE  
(and Qk(0)≠0);

• Hk:=(Qk)2((Pk/Qk)’-(Pk/Qk)) satisfies a LRE from which
val Hk≥k visible.

ez = 1+
a1z

1+
a2z

1+
a3z

. . .

a2k =
1

2(2k+ 1)
, a2k+1 =

�1

2(2k� 1)
.

(easily found by guessing)

Automatic proof of the continued fraction (Maulat-S. 2014):

Application to continued
fraction expansions

• Convergents Pk/Qk where Pk and Qk satisfy a LRE  
(and Qk(0)≠0);

• Hk:=(Qk)2((Pk/Qk)’-(Pk/Qk)) satisfies a LRE from which
val Hk≥k visible.

ez = 1+
a1z

1+
a2z

1+
a3z

. . .

a2k =
1

2(2k+ 1)
, a2k+1 =

�1

2(2k� 1)
.

(easily found by guessing)

Automatic proof of the continued fraction (Maulat-S. 2014):

More generally: guess-and-proof approach
to CF for solutions of Ricatti equations

Mehler’s identity for Hermite polynomials

1. Definition of Hermite polynomials: recurrence of order 2;

2. Product by linear algebra: 
generated over Q(x,n) by 
 
 
 
→ recurrence of order at most 4;

3. Translate into a differential equation.

1X

n=0

H
n

(x)H
n

(y)
un

n!
=

exp

⇣
4u(xy�u(x2+y

2))
1�4u

2

⌘

p
1� 4u2

Hn+k(x)Hn+k(y)/(n+ k)!, k 2 N

Hn(x)Hn(y)

n!
,
Hn+1(x)Hn(y)

n!
,
Hn(x)Hn+1(y)

n!
,
Hn+1(x)Hn+1(y)

n!

demo

Preventing catastrophic
cancellation

erf (x) =
2p
⇡

1X

n=0

(�1)n x2n+1

(2n+ 1) n!
.

|ynxn|
(x = 5)

lost digits ⇡ log(max |ynxn|)� log |y(x)|

Preventing catastrophic
cancellation

• Solution: exp(x2)erf(x) has positive coefficients.

erf (x) =
2p
⇡

1X

n=0

(�1)n x2n+1

(2n+ 1) n!
.

|ynxn|
(x = 5)

lost digits ⇡ log(max |ynxn|)� log |y(x)|

Preventing catastrophic
cancellation

• Solution: exp(x2)erf(x) has positive coefficients.
• Can be generalized [GawronskiMullerReinhard2007].

erf (x) =
2p
⇡

1X

n=0

(�1)n x2n+1

(2n+ 1) n!
.

|ynxn|
(x = 5)

lost digits ⇡ log(max |ynxn|)� log |y(x)|

Preventing catastrophic
cancellation

• Solution: exp(x2)erf(x) has positive coefficients.
• Can be generalized [GawronskiMullerReinhard2007].
• Chevillard-Mezzarobba2013 use Ai(jx)Ai(x/j)Ai(x) to

compute Ai(x).

erf (x) =
2p
⇡

1X

n=0

(�1)n x2n+1

(2n+ 1) n!
.

|ynxn|
(x = 5)

lost digits ⇡ log(max |ynxn|)� log |y(x)|

Preventing catastrophic
cancellation

• Solution: exp(x2)erf(x) has positive coefficients.
• Can be generalized [GawronskiMullerReinhard2007].
• Chevillard-Mezzarobba2013 use Ai(jx)Ai(x/j)Ai(x) to

compute Ai(x).
• Serra et alii 2014 use it for probability of collisions.

erf (x) =
2p
⇡

1X

n=0

(�1)n x2n+1

(2n+ 1) n!
.

|ynxn|
(x = 5)

lost digits ⇡ log(max |ynxn|)� log |y(x)|

Preventing catastrophic
cancellation

• Solution: exp(x2)erf(x) has positive coefficients.
• Can be generalized [GawronskiMullerReinhard2007].
• Chevillard-Mezzarobba2013 use Ai(jx)Ai(x/j)Ai(x) to

compute Ai(x).
• Serra et alii 2014 use it for probability of collisions.

erf (x) =
2p
⇡

1X

n=0

(�1)n x2n+1

(2n+ 1) n!
.

|ynxn|
(x = 5)

lost digits ⇡ log(max |ynxn|)� log |y(x)|

In all cases: closure by product gives recurrences

IV. Ore polynomials

From equations to operators
S ↔ (n↦n+1)

n ↔ mult by n
product ↔ composition

Sn=(n+1)S

D ↔ d/dx  
x↔ mult by x

product ↔ composition
Dx=xD+1

From equations to operators
S ↔ (n↦n+1)

n ↔ mult by n
product ↔ composition

Sn=(n+1)S

Taylor morphism: D ↦ (n+1)S; x ↦ S-1 

produces linear recurrence from LDE

D ↔ d/dx  
x↔ mult by x

product ↔ composition
Dx=xD+1

From equations to operators
S ↔ (n↦n+1)

n ↔ mult by n
product ↔ composition

Sn=(n+1)S

Taylor morphism: D ↦ (n+1)S; x ↦ S-1 

produces linear recurrence from LDE

Ore (1933): general framework for these non-commutative
polynomials.  
Main property: deg AB=deg A+deg B.  
Consequence 1: (non-commutative) Euclidean division  
Consequence 2: (non-commutative) Euclidean algorithm.

D ↔ d/dx  
x↔ mult by x

product ↔ composition
Dx=xD+1

Reduction of order

Reduction of order
Input: a (large) linear differential equation + ini. cond  
Output: a factor annihilating this solution

Reduction of order
Input: a (large) linear differential equation + ini. cond  
Output: a factor annihilating this solution

• Step 1: use the recurrence to compute a large
number of terms;

Reduction of order
Input: a (large) linear differential equation + ini. cond  
Output: a factor annihilating this solution

• Step 1: use the recurrence to compute a large
number of terms;

• Step 2: guess a linear differential equation
annihilating this series (linear algebra, Padé-Hermite
approximants);

Reduction of order
Input: a (large) linear differential equation + ini. cond  
Output: a factor annihilating this solution

• Step 1: use the recurrence to compute a large
number of terms;

• Step 2: guess a linear differential equation
annihilating this series (linear algebra, Padé-Hermite
approximants);

• Step 3: prove the guess by Euclidean division.

GCRD & LCLM

Example: closure by sum.

greatest common right divisor &  
least common left multiple

GCRD(A,B): minimal operator whose solutions are
common to A and B.  
LCLM(A,B): minimal operator having the solutions of A and
B for solutions.

Computation: Euclidean algorithm or linear algebra.

Example from a continued
fraction expansion

Aim: a recurrence for all k.

Pk = akx
2
Pk�2 + Pk�1, ak =

(
2k

(2k+1)(2k+3) , k even,

�2(k+2)
(2k+1)(2k+3) , k odd.

Example from a continued
fraction expansion

• Step 1: use both recurrences to find a relation between
Pk,Pk+2,Pk+4 for even k and one for odd k;

• Step 2: compute their LCLM (order 8);

• Step 3: use the initial conditions to reduce (order 4).

Aim: a recurrence for all k.

Pk = akx
2
Pk�2 + Pk�1, ak =

(
2k

(2k+1)(2k+3) , k even,

�2(k+2)
(2k+1)(2k+3) , k odd.

Ore fractions
Generalize commutative case:

R=Q-1P with P & Q operators.
Sum and product reduce to that form using LCLM.

Ore fractions

Application: extend Taylor morphism to Chebyshev expansions

Generalize commutative case:

R=Q-1P with P & Q operators.
Sum and product reduce to that form using LCLM.

Ore fractions

Application: extend Taylor morphism to Chebyshev expansions

Generalize commutative case:

R=Q-1P with P & Q operators.
Sum and product reduce to that form using LCLM.

Taylor 
xn+1=x·xn ↔ x ↦ X:=S-1

(xn)’=nxn-1 ↔ d/dx ↦ D:=(n+1)S

Ore fractions

Application: extend Taylor morphism to Chebyshev expansions

Generalize commutative case:

R=Q-1P with P & Q operators.
Sum and product reduce to that form using LCLM.

Taylor 
xn+1=x·xn ↔ x ↦ X:=S-1

(xn)’=nxn-1 ↔ d/dx ↦ D:=(n+1)S

Chebyshev
2xTn(x)=Tn+1(x)+Tn-1(x)
↔ x ↦ X:=(S+S-1)/2 

2(1-x2)Tn’(x)=-nTn+1(x)+nTn-1(x) 
 ↔ d/dx ↦ D:=(1-X2)-1n(S-S-1)/2.

Ore fractions

Application: extend Taylor morphism to Chebyshev expansions

Generalize commutative case:

R=Q-1P with P & Q operators.
Sum and product reduce to that form using LCLM.

Taylor 
xn+1=x·xn ↔ x ↦ X:=S-1

(xn)’=nxn-1 ↔ d/dx ↦ D:=(n+1)S

Chebyshev
2xTn(x)=Tn+1(x)+Tn-1(x)
↔ x ↦ X:=(S+S-1)/2 

2(1-x2)Tn’(x)=-nTn+1(x)+nTn-1(x) 
 ↔ d/dx ↦ D:=(1-X2)-1n(S-S-1)/2.

Prop. [Benoit, S (2009)] If y is a solution of L(x,d/dx), then its
Chebyshev coefficients annihilate the numerator of L(X,D).

Conclusion

Summary

• Linear differential equations and recurrences are a
great data-structure;

• Numerous algorithms have been developed in
computer algebra;

• Efficient code is available;
• More is true (creative telescoping, diagonals,…);
• More to come in DDMF, including formal proofs.

New project: FastRelax

24

Computer Algebra Formal proofs

Computer 
Arithmetic

double erf(double x) {…}

y

00 + 2xy

0 = 0

