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Computer Algebra
Effective mathematics (what can we compute?) 

Their complexity (how fast?)

Thesis in this presentation:  
linear differential and recurrence equations are 

a good data-structure.

Several million users. 30 years of algorithmic progress.
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Topics

Fast computation with high precision; 
automatic proofs of identities; 
«computation» of expansions,  
         of (multiple) integrals, of (multiple) sums.
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The objects of study
Def. A power series is called differentially finite (D-finite) 
when it is the solution of a linear differential equation with 
polynomial coefficients.

Exs: sin, cos, exp, log, arcsin, arccos, arctan, 
arcsinh,hypergeometric series, Bessel functions,…

Def. A sequence is polynomially recursive (P-recursive) 
when it is the solution of a linear recurrence with 
polynomial coefficients.

Prop.                    D-finite ⟺    P-recursive.f =
1X

n=0

fnz
n fn
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Example

Linear differential equation of order 1  
→ linear recurrence of order 2 
→ unroll (cleverly).

Coefficient of X20000 in P(X)=(1+X)20000(1+X+X2)10000 ?

> P := (1+x)^(2*N)*(1+x+x^2)^N:
> deq := gfun:-holexprtodiffeq(P,y(x)):
> rec := gfun:-diffeqtorec(%,y(x),u(k)):  
> p := gfun:-rectoproc(subs(N=10000,rec),u(k)):  
> p(20000);

23982[...10590 digits...]33952

Total time: 0.5 sec 5



I. Fast computation at 
large precision

From large integers to precise numerical values



Fast multiplication

Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). 
Two integers of n digits can be multiplied with 
O(n log(n) loglog(n)) bit operations.

Direct consequence (by Newton iteration):

inverses, square-roots,… : same cost.
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Binary Splitting for linear 
recurrences (70’s and 80’s)

• n! by divide-and-conquer:  
 
 
Cost: O(n log3n loglog n) using FFT

• linear recurrences of order 1 reduce to 

• arbitrary order: same idea, same cost (matrix factorial):

ex: satisfies a 2nd order rec, computed via

✓
en
en�1

◆
=

1

n

✓
n+ 1 �1
n 0

◆

| {z }
A(n)

✓
en�1

en�2

◆
=

1

n!
A!(n)

✓
1
0

◆
.

en :=
nX

k=0

1

k!
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p!(n) := (p(n)⇥ · · ·⇥ p(bn/2c))⇥ (p(bn/2c+ 1)⇥ · · ·⇥ p(1))

n! := n⇥ · · ·⇥ bn/2c| {z }
size O(n log n)

⇥ (bn/2c+ 1)⇥ · · ·⇥ 1| {z }
size O(n log n)



Numerical evaluation of solutions of LDEs

1. linear recurrence in N for the first sum (easy); 
2. tight bounds on the tail (technical); 
3. no numerical roundoff errors.

Principle: 
 
 
f solution of a LDE with coeffs in ℚ(x) (our data-structure!)

f(x) =
NX

n=0

anx
n

| {z }
fast evaluation

+
1X

n=N+1

anx
n

| {z }
good bounds

The technique used for fast evaluation of constants like 

1

⇡
=

12

C3/2

1X

n=0

(�1)n(6n)!(A+ nB)

(3n)!n!3C3n

with A=13591409, 
B=545140134, 

C=640320.
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Analytic continuation

Ex: erf(π) with 15 digits:  
0 ������!

200 terms
3.1416 �����!

18 terms
3.1415927 �����!

6 terms
3.14159265358979

arctan(1+i)

Again: computation on integers. No roundoff errors.

Compute                                     as new initial 
conditions and handle error propagation:

f(x), f 0(x), . . . , f(d�1)(x)
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II. Proofs of Identities



Confinement

LDE ⟺ the function and all its derivatives are confined 
in a finite dimensional vector space

⇒ the sum and product of solutions of LDEs satisfy LDEs

⇒ same property for P-recursive sequences

k+1 vectors in dimension k → an identity
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Proof technique
> series(sin(x)^2+cos(x)^2-1,x,4);

O(x4)

Why is this a proof?

1. sin and cos satisfy a 2nd order LDE: y’’+y=0; 
2. their squares and their sum satisfy a 3rd order LDE; 
3. the constant -1 satisfies y’=0; 
4. thus sin2+cos2-1 satisfies a LDE of order at most 4; 
5. Cauchy’s theorem concludes.

Proofs of non-linear identities by linear algebra!

f satisfies a LDE 
⟺ 

f,f’,f’’,… live in a  
finite-dim. vector space
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Example: Mehler’s identity for Hermite polynomials

1X

n=0

H
n

(x)H
n

(y)
un

n!
=

exp

⇣
4u(xy�u(x2+y

2))
1�4u

2

⌘

p
1� 4u2

1. Definition of Hermite polynomials:  
recurrence of order 2; 

2. Product by linear algebra: Hn+k(x)Hn+k(y)/(n+k)!, k∈ℕ  
generated over    (x,n) by 
 
 
→ recurrence of order at most 4; 

3. Translate into differential equation.

Q
Hn(x)Hn(y)

n!
,
Hn+1(x)Hn(y)

n!
,
Hn(x)Hn+1(y)

n!
,
Hn+1(x)Hn+1(y)

n!
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Dynamic Dictionary of 
Mathematical Functions

• User need 

• Recent algorithmic progress 

• Maths on the web

http://ddmf.msr-inria.inria.fr/
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Demonstration
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http://ddmf.msr-inria.inria.fr/


Guess & prove continued fractions

arctan x =
x

1+
1
3x

2

1+
4
15x

2

1+
9
35x

2

1+ · · ·

1. Differential equation produces first terms (easy):

2. Guess a formula (easy): an =
n2

4n2 � 1

3. Prove that the CF with these an satisfies the 
differential equation.

No human intervention needed.

Taylor Continued 
fraction
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Automatic Proof of the guessed CF

• Aim: RHS satisfies (x2+1)y’-1=0; 
• Convergents Pn/Qn where Pn and Qn satisfy the 

LRE un=un-1+anun-2 (and Qn(0)≠0);  
• Define Hn:=(Qn)2((x2+1)(Pn/Qn)’-1); 
• Hn is a polynomial in Pn,Qn and their derivatives; 
• therefore, it satisfies a LRE that can be computed; 
• from it, Hn=O(xn) visible 
• from there, (Pn/Qn)’-1/(1+x2)=O(xn) too; 
• conclude Pn/Qn➝ arctan by integrating.

arctan x
?
=

x

1+
· · ·

1+
n2

4n2�1x
2

1+ · · ·
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III. Ore Polynomials



From equations to operators

Sn ↔ (n↦n+1) 
n ↔ mult by n 

product ↔ composition 
Snn=(n+1)Sn

Taylor morphism: Dx ↦ (n+1)Sn; x ↦ Sn
-1 

produces linear recurrence from LDE

Dx ↔ d/dx 
x↔ mult by x 

product ↔ composition 
Dxx=xDx+1
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Framework: Ore polynomials

Consequence 1: (non-commutative) Euclidean division  
Consequence 2: (non-commutative) Euclidean algorithm

(fg)0 = f 0g+fg0, Sn(fngn) = fn+1Sn(gn), �n(fngn) = fn+1�n(gn)+�n(fn)gn,

and many more (e.g., q-analogues)  
are captured by 𝔸⟨∂⟩ (𝔸 integral domain) with commutation

@a = �(a)@ + �(a)

σ a ring morphism, δ a σ-derivation (δ(ab)=σ(a)δ(b)+δ(a)b).

Main property: A,B in 𝔸⟨∂⟩, then deg AB=deg A+deg B.
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GCRD & LCLM

Example: closure by sum.

greatest common right divisor &  
least common left multiple

GCRD(A,B): maximal operator whose solutions are 
common to A and B.  
LCLM(A,B): minimal operator having the solutions of A and 
B for solutions.

Computation: Euclidean algorithm or linear algebra.
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Reduction of order
Input: a (large) linear recurrence equation + ini. cond  
Output: a factor annihilating this solution 

• Step 1: use the recurrence and its initial conditions to compute 
a large number of terms; 

• Step 2: guess a linear recurrence equation annihilating this 
sequence (linear algebra); 

• Step 3: take the gcrd of this operator and the initial one; 

• Step 3: prove that this factor annihilates the solution by 
checking sufficiently many initial conditions.
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Example from a continued 
fraction expansion

• Step 1: use both recurrences to find a relation between  
Pk,Pk+2,Pk+4 for even k and one for odd k; 

• Step 2: compute their LCLM (order 8); 

• Step 3: use the initial conditions to reduce (order 4).

Aim: a recurrence for all k.

Pk = akx
2
Pk�2 + Pk�1, ak =

(
2k

(2k+1)(2k+3) , k even,

�2(k+2)
(2k+1)(2k+3) , k odd.
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Chebyshev expansions

Taylor Chebyshev

2(
p
2+ 1)

✓
T1(x)

(2
p
2+ 3)

� T3(x)

3(2
p
2+ 3)2

+
T5(x)

5(2
p
2+ 3)3

+ · · ·
◆

arctan

z� 1

3
z3 +

1

5
z5 + · · ·
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B-1A=D-1C when bA=dC with bB=dD=LCLM(B,D).

Ore fractions
Generalize commutative case:

R=Q-1P with P & Q operators.

Algorithms for sum and product:

B-1A+D-1C=LCLM(B,D)-1(bA+dC), with bB=dD=LCLM(B,D)

B-1AD-1C=(aB)-1dC, with aA=dD=LCLM(A,D).
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Application: Chebyshev 
expansions

Extend Taylor morphism to Chebyshev expansions

Taylor 
xn+1=x·xn ↔ x ↦ X:=S-1 

(xn)’=nxn-1 ↔ d/dx ↦ D:=(n+1)S

Chebyshev 
2xTn(x)=Tn+1(x)+Tn-1(x) 
↔ x ↦ X:=(S+S-1)/2 

2(1-x2)Tn’(x)=-nTn+1(x)+nTn-1(x) 
 ↔ d/dx ↦ D:=(1-X2)-1n(S-S-1)/2.

Prop. If y is a solution of L(x,d/dx), then its Chebyshev 
coefficients annihilate the numerator of L(X,D).
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IV. Systems of 
equations



Sa

∂z

Example: Contiguity of Hypergeometric Series

ua,n+1

ua,n
=

(a+ n)(b+ n)

(c+ n)(n+ 1)
! z(1� z)F00 + (c� (a+ b+ 1)z)F0 � abF = 0,

ua+1,n

ua,n
=

n

a
+ 1 ! SaF := F(a+ 1, b; c; z) =

z

a
F0 + F.

Gauss 1812: contiguity relation.
dim=2 ) S2aF, SaF,F linearly dependent
(coordinates in ℚ(a,b,c,z))

(a+ 1)(z� 1)S2aF+ ((b� a� 1)z+ 2� c+ 2a)SaF+ (c� a� 1)F = 0.

F(a, b; c; z) =
1X

n=0

(a)n(b)n
(c)nn!| {z }
ua,n

z

n, (x)n := x(x+ 1) · · · (x+ n� 1).
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Ore Algebras

Gröbner bases as a data-structure to encode special functions

Main property: A,B in O, then LM(AB)=LM(A)LM(B).

Consequence: (non-commutative) Gröbner bases

O:=𝕂(x1,…,xr)⟨∂1,…,∂r⟩:=𝕂(x1,…,xr)⟨∂1⟩⋯⟨∂r⟩,

with commuting ∂i’s and for i≠j, δi(∂j)=0 and σi(∂j)=∂j.

Def. LM (leading monomial) on next slide.
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Gröbner Bases
1. Monomial ordering: order on ℕk, 
compatible with +, 0 minimal. 

2. Leading monomial of a polynomial: 
the largest one. 

3. Gröbner basis of a (left) ideal I: corners 
of stairs. 

4. Quotient mod I:  
basis below the stairs (Vect{∂αf}). 

5. Reduction of P:  
Rewrite P mod I on this basis. 

6. Dimension:  
« size » of the quotient. 

7. D-finiteness: dimension 0.

An access to (finite-dimensional) vector spaces.
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Closure Properties

+

Proposition.
dimann(f + g)  max(dimann f, dimann g),

dimann(fg)  dimann f + dimann g,

dimann(@f)  dimann f.

Algorithms by linear algebra

simple definitions → data-structures for more complicated functions32



V. Sums and Integrals



Examples
nX

k=0

✓
n

k

◆2✓n+ k

k

◆2

=
nX

k=0

✓
n

k

◆✓
n+ k

k

◆ kX

j=0

✓
k

j

◆3

X

j,k

(�1)j+k

✓
j+ k

k+ l

◆✓
r

j

◆✓
n

k

◆✓
s+ n� j� k

m� j

◆
= (�1)l

✓
n+ r

n+ l

◆✓
s� r

m� n� l

◆

1. Prove them automatically 
2. Find the rhs given the lhsAims:

Note: at least one 
free variable

Z +1

0
xJ1(ax)I1(ax)Y0(x)K0(x) dx = � ln(1� a

4)

2⇡a2

1

2⇡i

I
(1+ 2xy + 4y2) exp

⇣
4x

2

y

2

1+4y

2

⌘

yn+1

(1+ 4y2)
3

2

dy =

H
n

(x)

bn/2c!

nX

k=0

qk
2

(q; q)k(q; q)n�k
=

nX

k=�n

(�1)kq(5k
2�k)/2

(q; q)n�k(q; q)n+k
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Creative telescoping

Input: equations 
(differential for f or 
recurrence for u).

Output: equations for the 
sum or the integral.

Example:

u(n, k) =

✓
n

k

◆
def. by

⇢✓
n+ 1

k

◆
=

n+ 1

n+ 1� k

✓
n

k

◆
,

✓
n

k+ 1

◆
=

n� k

k+ 1

✓
n

k

◆�

S(n+ 1) =
X

k

✓
n+ 1

k

◆
=

X

k

✓
n+ 1

k

◆
�
✓
n+ 1

k+ 1

◆

| {z }
telesc.

+

✓
n

k+ 1

◆
�
✓
n

k

◆

| {z }
telesc.

+2

✓
n

k

◆
= 2S(n).

PascalIF one knows A(n,Sn) and B(n,k,Sn,Sk) such that

then the sum telescopes, leading to A(n,Sn)⋅U(n)=0.

(A(n,Sn)+ΔkB(n,k,Sn,Sk))⋅u(n,k)=0,

I(x) =

Z
f(x, t) dt =? or U(n) =

X

k

u(n, k) =?

certificate
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Then I come along and try differentiating under the 
integral sign, and often it worked. So I got a great 
reputation for doing integrals. 

Richard P. Feynman 1985

Creative Telescoping

Method: integration (summation) by parts and differentiation 
(difference) under the integral (sum) sign

I(x) =

Z
f(x, t) dt =?

IF one knows A(x,∂x) and B(x,t,∂x,∂t) such that

then the integral « telescopes », leading to A(x,∂x) ⋅I(x)=0.

(A(x,∂x) +∂t B(x,t,∂x,∂t))⋅f(x,t)=0,
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Telescoping Ideal

• hypergeometric 
summation: 
dim=1 + param. Gosper. 
[Zeilberger] 

• holonomy: restrict int. by 
parts to  
and Gröbner bases. 
[Wilf-Zeilberger, also Sister Celine] 

• finite dim, Ore algebras 
& GB [Chyzak] 

• infinite dim & GB  

• rational f and restrict to 
                                in 
very good complexity. 

37

Tt(f) :=
⇣
Ann f + @tQ(x, t)h@

x

, @ti| {z }
int. by parts

⌘
\ Q(x)h@

x

i| {z }
di↵. under

R
.

Q(x)h@
x

, @ti
Q(x)[t, 1/den f]h@

x

, @ti
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Chyzak’s Algorithm
Tt(f) :=

⇣
Ann f + @tQ(x, t)h@

x

, @ti| {z }
int. by parts

⌘
\ Q(x)h@

x

i| {z }
di↵. under

R
.

Input: a Gröbner basis G for Ann f in 𝔸= 
Output: P in               and Q in 𝔸, 
reduced wrt G and such that (P+∂tQ)f=0.

For r=1,2,3,…  
    1. use indeterminate coefficients to define  
    

2. reduce P+∂tQ using G, leading to a 1st order system 
for qi,j(x,t) and pα(x);

Q =
X

(i,j) below stairs

q

i,j(x, t)@
i

x

@j

t

, P =
X

|↵|r

p↵(x)@
↵
x

.

3. stop if a rational solution is found.

Q(x)h@
x

i
Q(x, t)h@

x

, @
t

i
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Examples of applications
• Hypergeometric: binomial sums, hypergeometric series;  

• Higher dimension: classical orthogonal polynomials, 
special functions like Bessel, Airy, Struve, Weber, Anger, 
hypergeometric and generalized hypergeometric,…  

• Infinite dimension: Bernoulli, Stirling or Eulerian numbers, 
incomplete Gamma function,…

2nX

k=0

(�1)k
✓
2n

k

◆3
= (�1)n

(3n)!

n!3

J0(z) =
2

⇡

Z 1

0

cos(zt)p
1� t2

dt

Z 1

0
exp(�xy)�(n, x) dx =

�(n)

y

✓
1� 1

(y + 1)

n

◆
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VI. Faster Creative  
Telescoping



Certificates are big
Cn :=

X

r,s

(�1)n+r+s

✓
n

r

◆✓
n

s

◆✓
n+ s

s

◆✓
n+ r

r

◆✓
2n� r � s

n

◆

| {z }
fn,r,s

(n+ 2)3Cn+2 � 2(2n+ 3)(3n2 + 9n+ 7)Cn+1 � (4n+ 3)(4n+ 4)(4n+ 5)Cn = 180 kB ' 2 pages

I(z) =

I
(1+ t3)2dt1dt2dt3

t1t2t3(1+ t3(1+ t1))(1+ t3(1+ t2)) + z(1+ t1)(1+ t2)(1+ t3)4

z2(4z+ 1)(16z� 1)I000(z) + 3z(128z2 + 18z� 1)I00(z) + (444z2 + 40z� 1)I0(z) + 2(30z+ 1)I(z) = 1 080 kB

' 12 pages

Next, in Tt(f) :=
⇣
Ann f + @tQ(x, t)h@

x

, @ti| {z }
int. by parts

⌘
\ Q(x)h@

x

i| {z }
di↵. under

R
.

we restrict to rational f and @tQ(x)[t, 1/ den f]h@
x

, @ti
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Algorithm: R0:=[P/Qm] 
   for i=1,2,… do Ri:=[∂tRi-1] 
   when there is a relation c0(t)R0+…+ci(t)Ri=0 
         return c0+…+ci∂t

i

Bivariate integrals by Hermite reduction

I(t) =

I
P(t, x)

Q

m(t, x)
dx Int. over a cycle 

where Q≠0.

Q square-free

If m=1, Euclidean division: P=aQ+r, degx r<degx Q

If m>1, Bézout identity and integration by parts

P = uQ+ v@
x

Q ! P

Qm

=
u+ @

x

v

m�1

Qm�1

| {z }
A

m�1

+@
x

v/(1�m)

Qm�1

Def. Reduced form:

P

Q

�
:=

r

Q

P

Q
=

r

Q
+ @

x

Z
a


P

Qm

�
:= [Am�1]
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More variables: Griffiths-Dwork reduction

I(t) =

I
P(t, x)

Q

m(t, x)
dx

P= r + v0@0Q+ · · ·+ vn@nQ

P

Qm
=

r

Qm
� 1

m� 1

✓
@0

v0
Qm�1

+ · · ·+ @n
vn

Qm�1

◆
+

1

m� 1

@0v0 + · · ·+ @nvn
Qm�1

| {z }
Am�1


P

Qm

�
:=

r

Qm
+ [Am�1]

1. Control degrees by homogenizing (x1,…,xn)↦(x0,…,xn) 
2. If m=1, [P/Q]:=P/Q 
3. If m>1, reduce modulo Jacobian ideal J := h@0Q, . . . , @nQi

Thm. [Griffiths] In the regular case (                finite dim),  
if R=P/Qm hom of degree -n-1,                                 .

Q(t)[x]/J
[R] = 0 ,

H
Rdx = 0

→  SAME ALGORITHM.

Int. over a cycle 
where Q≠0.

Q square-free
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Size and complexity
I(t) =

I
P(t, x)

Q

m(t, x)| {z }
2Q(t,x)

dx no regularity 
assumed

N := deg

x

Q, d
t

:= max(deg

t

Q, deg
t

P)

Thm. A linear differential equation for I(t) can be computed 
in O(e3nN8ndt) operations in ℚ.   
It has order ≤Nn and degree O(enN3ndt).

Note: generically, the certificate has at least        monomials.Nn2/2

degxP not too big

tight

This has consequences for multiple binomial sums.
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Conclusion

• Linear differential equations and recurrences 
are a great data-structure; 

• Numerous algorithms have been developed in 
computer algebra; 

• Efficient code is available; 
• More is to be found (certificate-free algorithms, 

diagonals,…)


