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Computer Algebra

Effective mathematics (what can we compute?)
Their complexity (how fast?)

% Y% @’g p/\RIA}

Several million users. 30 years of algorithmic progress.

Thesis in this presentation:
linear differential and recurrence equations are
a good data-structure.



Topics

Fast computation with high precision;
automatic proofs of identities;
«computation» of expansions,

of (multiple) integrals, of (multiple) sums.



The objects of study

Def. A power series is called differentially finite (D-finite)
when it is the solution of a linear differential equation with
polynomial coefficients.

Exs: sin, cos, exp, log, arcsin, arccos, arctan,
arcsinh,hypergeometric series, Bessel functions, ...

Def. A sequence is polynomially recursive (P-recursive)
when it is the solution of a linear recurrence with
polynomial coefficients.




Example

Coefficient of X20000 jn P(X)=(14+X)20000(1 4 X+ X2)10000 ?

Linear differential equation of order 1
— linear recurrence of order 2

— unroll (cleverly).

> P := (1+x)7(2*N)*(1+x+x"2) "N:

deq := gfun:-holexprtodiffeq(P,y(xX)):
rec := gfun:-diffeqtorec(%,y(x),u(k)):
p := gfun:-rectoproc(subs(N=10000,rec),u(k)):
p(20000);

23982[...10590 digits...]33952

V V V V

Total time: 0.5 sec 5



l. Fast computation at
large precision

From large integers to precise numerical values



Fast multiplication

Direct consequence (by Newton iteration):

iﬂVGI’SGS, square—roots,... . same Ccost.



Binary Splitting for linear
recurrences (/0’s and 80’)

* n! by divide-and-conquer:

nli=n>x..- X Ln/2jj><ﬂn/2j+1)><---><1/

size O(nlogn) size O(nlogn)

Cost: O(n log’n loglog n) using FFT
 linear recurrences of order | reduce to

p!(n) := (p(n) x --- < p([n/2])) x (p([n/2] +1) x--- x p(1))

- arbitrary order: same idea, same cost (matrix factorial):

n
1 : .
ex: e,:= Z o satisfies a 2nd order rec, computed via
k=0

(r) =2 (30 ) () = a0 (5)

\ .

~"

A(n)



Numerical evaluation of solutions of LDEs

N 00
Principle:  f(x)= ) ax" + > ax"
=0

n— n=N-+1
—— N————
fast evaluation  good bounds

f solution of a LDE with coeffs in Q(x) (our data-structure!)

1. linear recurrence in N for the first sum (easy);
2. tight bounds on the tail (technical);
3. no numerical roundoff errors.

The technique used for fast evaluation of constants like

; c3/2 Z 3n 'n'3C3” B=545140134,
C=640320.




Analytic continuation

Compute f(x), f'(x), ..., f97Y(x) as new initial
conditions and handle error propagation: ..

arctan(1+1)

Ex: erf(m) with 15 digits:
0 > 3.1416 > 3.1415927 > 3.14159265358979

200 terms 18 terms 6 terms

Again: computation on integers. No roundoff errors. 10



[l. Proofs of Identities



Confinement

Lo~ =

| DE < the function and all its derivatives are confined
in a finite dimensional vector space

= the sum and product of solutions of LDEs satisfy LDEs

= same property for P-recursive sequences

12



Proof technique Le— s

> series(sin(x)"2+cos(x)"2-1,x%x,4);

f satisfies a LDE O(x*)
—
f.f 1 ... liveina . .
finite-dim. vector space Why is this a pI’OOf?

sin and cos satisfy a 2nd order LDE: y”'+y=0;
their squares and their sum satisty a 3rd order LDE;

the constant -1 satisfies y’'=0;
thus sin“+cos?-1 satisfies a LDE of order at most 4;

Cauchy’s theorem concludes.

Proofs of non-linear identities by linear algebra! 13




Example: Mehler’s identity for Hermite polynomials

v — U (X2 2
n eEXP (4U( ylfiuz_l_y )))

Z Hn(X>Hn(y)F — \/1 — 442

n=0

1. Definition of Hermite polynomials:
recurrence of order 2;

2. Product by linear algebra: Hnk(x)Hn+k(y)/(n+k)!, keN
generated over Q (x,n) by

Hn(X)Hn(Y) Hn+1(X)Hn(Y) Hn(X)Hn+1(Y) Hn+1(X)Hn+1(Y)

’ n! ’ n! ’ n!

n!
— recurrence of order at most 4;
3. Translate into differential equation.

% M



Dynamic Dictionary of
Mathematical Functions

NIST Handbook
of Mathematical
Functions

» User need
 Recent algorithmic progress

 Maths on the web

http://ddmf.msr-inria.inria.fr/

15



Demonstration

Dynamic Dictionary of Mathematical Functions

41 8| A 0O O 2| + O ddmf.msr-inra.inria.fr/1.9.1/ddmf
ome
elcome to this interactive site on Mathematical Functions, with properties, truncated Mathematical Functions

expansions, numerical evaluations, plots, and more. The functions currently presented

are elementary functions and special functions of a single variable. More functions —
special functions with parameters, orthogonal polynomials, sequences — will be added with
the project advances.

The Airy function of the first kind Ai(z)
The Airy function of the second kind Bi (z)
The Anger function J.. (z)
The inverse cosine arccos (z)
The inverse hyperbolic cosine arccosh ()
The inverse cotangent arccot (z)
The inverse hyperbolic cotangent arccoth (z)
The inverse cosecant arccsc (z)
The inverse hyperbolic cosecant arccsch (z)
The inverse secant arcsec (z)
The inverse hyperbolic secant arcsech ()
The inverse sine arcsin (z)
The inverse hyperbolic sine arcsinh (z)
The inverse tangent arctan (z)
The inverse hyperbolic tangent arctanh (z)
The modified Bessel function of the first kind I..(z)
The Bessel function of the first kind J, (z)
The modified Bessel function of the second kind K, (z)
The Bessel function of the second kind Y, (x)
The Qhﬂb!ﬁhﬁlﬁlﬂﬂmnﬂf_m.e_ﬁm.k.nd T, (z)
hev functi nd kind U, (z)
The bxm_r!mc_cgmmgg@ Chi (z)
The cosine integral Ci (z)
The cosine cos (z)
The hyperbolic cosine cosh (z)
The Coulomb function F,, (ls z)
The Whittaker's parabolic function D, (z) 1 6
The parabolic cylinder function U (a, )
The mbnhc_whndﬁﬂummn V(a a:)

This is release 1.9.1 of DDMF
Select a special function from the list

What's new? The main changes in this release 1.9.1, dated May 2013, are:
¢ Proofs related to Taylor polynomial approximations.

Release history.

More on the project:

« Help on selecting and configuring the mathematical rendering
o DDMF developers list

Motivation of the project

Article on the project at ICMS'2010

Source code used to generate these pages

WL AN /)]



http://ddmf.msr-inria.inria.fr/

Guess & prove continued fractions

1. Diftferential equation produces first terms (easy):

X
arctan x = 75
=X
14 3
| 4 2
— X
, 15
1 4 5 5 >
Taylor %X / /.. Continued
1 | fraction
14 ...
2
7. Guess a formula (easy): a, =
(easy) 4n? — 1

3. Prove that the CF with these a, satisfies the
differential equation.

No human intervention needed. .




Automatic Proof of the guessed CF

. : RHS satisfies (X2+1)y’-1 =0; 1 >
» Convergents P,/Q, where P, and Q), satisfy the 1
_RE UnZUn 1+anUn 2 and Qn #O)

? X
arctan x =

¢ :)eﬁne Hn.: Qn 2+1 Pn/Qn - /

* Hyisa polynomial in P, Qn and their derivatives;

e therefore, it satisfies a
e from it, H,=O(x") visib
e from there, (Pn/Qn)’-1/(

_RE that can be computed,;

e
14+x%)=0(x") too;

. P»/Qn— arctan by integrating.

18



1. Ore Polynomials



From equations to operators

Dy < d/dx
x<> mult by x
product < composition
Dyx=XxDyx+1

Sh < (n>n+1)
n < mult by n
product <> composition

Snn:(n

1)Sn

Taylor morphism: Dyx — (n+1)S,; x » S,
produces linear recurrence from LDE

20



Framework: Ore polynomials

(fg)' = f'g+fg’,  Sn(fngn) = far1Sn(gn);  An(fagn) = far1An(gn) +An(fn)gn,
and many more (e.g., g-analogues)
are captured by A0 (A integral domain) with commutation

Oa=o(a)d + d(a)
0 a ring morphism, © a o-derivation (d(ab)=0(a)d(b)+0(a)b).

Main property: A,B in A{0), then deg AB=deg A+deg B.

Consequence 1: (non-commutative) Fuclidean division
Consequence 2: (non-commutative) Fuclidean algorithm

21



GCRD & LCLM

greatest common right divisor &
least common left multiple

GCRD(A,B): maximal operator whose solutions are
common to A and B.

LCLM(A,B): minimal operator having the solutions of A and
B for solutions.

Example: closure by sum.

Computation: Euclidean algorithm or linear algebra.

22



Reduction of order

Input: a (large) linear recurrence equation + ini. cond
Output: a factor annihilating this solution

Step 1: use the recurrence and its initial conditions to compute
a large number of terms;

Step 2: a linear recurrence equation annihilating this
sequence (linear algebra);

Step 3: take the of this operator and the initial one;

Step 3: that this factor annihilates the solution by
checking sufficiently many initial conditions.

23



Example from a continued
fraction expansion

2k
: k even,
S {@kglgggﬁ k
(2k+1)(2k+3)’ odd.

Aim: a recurrence for all k.

» Step 1: use both recurrences to find a relation between
Pk, Pk+2,Pk+4 for even k and one for odd k;

 Step 2: compute their LCLM (order 8);

 Step 3: use the initial conditions to reduce (order 4).
24



Chebyshev expansions

vvvvvvvv

2(V2 + 1)(

Chebyshev

T1 (X) T3 (X) T5 (X>

(2v2+3)  3(2v2+3)? " 5(2v/2 + 3)3

3



Ore fractions

Generalize commutative case:

R=Q'P with P & Q operators.

B-'A=D-'C when bA=dC with bB=dD=LCLM(B,D).

Algorithms for sum and product:
B-'A+D-1C=LCLM(B,D)'(bA+dC), with bB=dD=LCLM(B, D)
B-'AD-'C=(aB)'dC, with aA=dD=LCLM(A,D).

26



Application: Chebyshev
expansions

Extend Taylor morphism to Chebyshev expansions

Taylor
XxMHl=x.x" & x » X:=5"1
(x")'=nx"! < d/dx » D:=(n

Prop. If y is a solution of L(x,d/dx), then its Chebyshev
coefficients annihilate the numerator of L(X,D).

27



V. Systems of
equations



Example: Contiguity of Hypergeometric Series

(coordinates in Q(a,b,c,2))

(a+1)(z— 1)S§F (b—a—1)z




Ore Algebras

O:=K(x1,...,x:)¢01,...,0r:=K(x1,...,X){O1) - (O,
with commuting &'s and for i#j, 0i(0;)=0 and 0(6;)=0;.

Def. LM (leading monomial) on next slide.

Main property: A,B in O, then LM(AB)=LM(A)LM(B).

Consequence: (non-commutative) Crobner bases

Grobner bases as a data-structure to encode special functions
30



1.

2

3.

4

5.

6.

/.

Grobner Bases

. order on Nk
compatible with +, 0 minimal.
of a polynomial:

>

the largest one.

of a (left) ideal I: corners

of stairs.

AR

. mod /:
basis below the stairs (Vect{o*f}).

of P:
Rewrite P mod / on this basis.

A
— e | | | e | | | | — | —

llll‘
lll‘

.
|
|
R
L

« size » of the quotient.
. dimension 0.

An access to (finite-dimensional) vector spaces.

31



Closure Properties

| I )

AR RSAE glh=

Algorithms by linear algebra

simple definitions = data-structures for more complicated functiong>



V. Sums and Integrals



Examples

S0 SO0
(OO ) -GG

s
+ 00 ln ]. — a4
/ xJ1(ax)l1(ax)Yo(x)Kg(x) dx = — (2 2 )
; N a
. (14 2xy + 4y®) exp (144);4{/2) Hn (%)

Dri (1 4y2)3 Y= 2]

k? n (_1)kq(5k2—k)/2

n q B
Z (@ )k(qA)n—k Z (a5 4)n—k (95 9)n-tk

k=0 k=—n

1. Prove them automatically

Aims: 2. Find the rhs given the |hs

Note: at least o

free variable

ne

34



Creative telescoping
I(x):/f(x,t)dt ~2 or U(n) =Y u(nk) =?

k

Input: equations Output: equations for the
(differential for f or sum or the integral.
recurrence for u).

Example:

u(n, k) = (E) def. by {(”tl> — n:i;(ﬂ)
+

S(n+1)=zk:<ntl) :Zﬂntl)_cii) k<k

telesc

telesc.

IF one knows A(n,S») and B(n k,Sn,Sk) such that
(A(n,Sn)+ALB(n,k,Sh,Sk)) - u(n, k)=0,

then the sum telescopes, leading to A(n,S,)-U(n)=0. 35




Creative Telescoping
|(x) :/f(x,t) dt =7

IF one knows A(x,0y) and B(x,t,0x,0) such that

/—\

(A(x,0x) +0(B(x,t,0x,04) - f(x,H)=0,

then the integral « telescopes », leading to A(x,0x) -1(x)=0.

Then | come along and try differentiating under the
integral sign, and often it worked. So | got a great

reputation for doing integrals.
Richard P. Feynman 1985

Method: inteération (summation) by parts and differentiation
| (difference) under the integral (sum) sign

I

36



Telescoping ldeal

Tu(f) := (Annf + 9,0(,1)(8.,0,) ) N Q) () -

N’
int. by parts diff. under f
® hypergeometric ® finite dim, Ore algebras
summation: & GB [Chyzak] |
dim=1 + param. Gosper.
[Zeilberger] ® infinite dim & GB

® holonomy: restrict int. by
parts to@(w)(@m, Or) @ rational f and restrict to
and Grobner bases. OEE T den £1(8., 84) in
[Wilf-Zeilberger, also Sister Celine] :
very good complexity.

37



Chyzak’s Algorithm

To(f) = (Annf + 0,Q(@, 1)(9x, 01} ) N Q@) (8.)
int. by parts diff. under f

Input: a Grobner basis G for Ann f in A=Q(x, t)(x, Ok)
Output: P inQ(x){(0) and Q in A,
reduced wrt G and such that (P+6:Q)f=0.
Forr=1,2,3,...

1. use indeterminate coefficients to define

Q = Y a8, P =) pa(x)05.

(i,j) below stairs || <r

2. reduce P+0:Q using G, leading to a 1st order system
for qii(x,1) and px(x);

3. stop if a rational solution is found. 38



Examples of applications

Hypergeometric: binomial sums, hypergeometric series;

I (r) = ar )

k=0

Higher dimension: classical orthogonal polynomials,
special functions like Bessel, Airy, Struve, Weber, Anger,
hypergeometric and generalized hypergeometric, ...
2 ' cos(zt
Jol(z) = ;/O \/1(—t)2 dt
Infinite dimension: Bernoulli, Stirling or Eulerian numbers,
incomplete Gamma function, ...

/Oooexp(—xy)r(n,x)dx:r(n) <1 ( ! )

y y +1)"

39



VI. Faster Creative
Telescoping



Certificates are big

fn,r,s
(n+2)°Chio —2(2n +3)(3n* +9n + 7)Cprp1 — (4n +3)(4n + 4)(4n 4 5)C, = 180 kB ~ 2 pages

1(z) =

7{ (1 + t3)?dt dtodts
titot3(1 4+ t3(1+t1)) (L +t3(1 +t2)) +z(1 +t1)(1 + to)(1 + t3)*

z%(4z 4 1)(16z — 1)1 (z) + 32(1282° + 18z — 1)I"(z) + (444z° + 40z — 1)I'(z) +2(30z + 1)I(z) = 1080 kB
~ 12 pages

Next, in Te(f) := (Annf +8,Q(, ), 0:) ) N Q) (D)

J/

N N

int. by parts diff. under [

we restrict to rational f and 8.Q(z)[t,1/ denf](d, d;)
41



Bivariate integrals by Hermite reduction

Q square-free

P(t
I(t) = 7{ nf ) dx Int. over a cycle
Q (t7 X) where Q#£0.

It m=1, Euclidean division: P=aQ+r(deg\ r<deg Q,

g — é + 8X/a Def. Reducedform:f —_ = —

If m>1, Bézout identity and integration by parts _
P u+t o v/(1—m)

P = UQ + VaxQ — @ — Qm—z FOx Qm—l
" p
= AL
@ Am—1]




More variables: Griffiths-Dwork reduction

Q square-free
I(t) = 7{ Qprfziz))() dx Int. over a cycle
= where Q0.
1. Control degrees by homogenizing (x1,...,Xn)~(Xo, ..., Xn)
f m=1, [P/Ql:=P/Q

f m>1, reduce modulo Jacobian ideal J := (9yQ, ..., 0,Q)
P=r+vo0oQ+ -+ v,0,Q

2.
3.

—~ SAME ALGORITHM. i



Size and complexity

P(t, x
|(t) — % ( 7_) dx no regularity
Qm (t7 5) assumed
——
cQ(t,x)
N :=deg, Q, d;:=max(deg,Q,deg,P) deg,P not too big

Thm. A linear differential equation for I(t) can be computed

in O(e’"N8"dy) operations in Q.
It has ordef <N" and degree O(e"N>"d)).

’ tight

Note: generically, the certificate has at least N"/2 monomials.

This has consequences for multiple binomial sums.
44



Conclusion

Linear differential equations and recurrences
are a great data-structure;

Numerous algorithms have been developed in
computer algebra;

Efficient code is available;

More is to be found (certificate-free algorithms,
diagonals,...)



