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Dominant Eigenvalue of the 
Laplace-Beltrami Operator on the Unit Sphere

Laplace operator in spherical coordinates in ℝd

Eigenvalue problem for Ω ⊂ 𝕊d−1 :
Δ𝕊d−1 f + λf = 0 in Ω, f |∂Ω = 0.

0 < λ1 < λ2 ≤ ⋯, λn → ∞Classical fact:

dominant eigenvalue
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Introduction

Goal:
Understand the asymptotic

behavior of random walks in the
positive octant.

Compute eigenvalues of the
Laplacian on spherical triangles.

Compute rigorous enclosures of
eigenvalues of the Laplacian on

spherical triangles.

Joel Dahne Enclosing Eigenvalues

Goal: (α, β, γ) ↦ λ1 with high precision

  Ω

spherical 
triangle

Δf = r1−d ∂
∂r (rd−1 ∂f

∂r ) + r−2Δ𝕊d−1 f
Laplace-Beltrami

(dimension d=3) 1/13



Results

[BogoselPerrollazRaschelTrotignon18]

Angles BPRT new
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(2π/3,3π/4,3π/4)

(2π/3,2π/3,2π/3)
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12.400051652843377905… ± 10−26

13.744355213213231835… ± 10−94

20.571973537984730557… ± 10−28

21.309407630190445260… ± 10−159

24.456913796299111694… ± 10−40

49.109945263284609920… ± 10−129

4.3 ± 5 10−2

5.16 ± 5 10−3

6.2 ± 5 10−2

finite elements & 
convergence acceleration

I.   Why do we care? 
II.  How do we do it? 
III. What is going on?
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I. Linear Recurrences with 
Constant Coefficients



Linear Recurrent Sequences

V. 6. TRANSFER MATRIX MODELS 361

The pieces are thus of the following types,

m = , h = , v = ,

and here is a particular tiling of a 5× 3 rectangle:

In order to approach this counting problem, one first defines a suitable collection, generi-
cally denoted by C, of combinatorial classes called configurations, in accordance with the strat-
egy summarized in Figure V.20, p. 356. A configuration relative to an n×k rectangle is a partial
tiling, such that all the first n−1 columns are entirely covered by dominoes while between zero
and three unit cells of the last column are covered. Here are for instance, configurations corre-
sponding to the example above.

These diagrams suggest the way configurations can be built by successive addition of
dominoes. Starting with the empty rectangle 0 × 3, one adds at each stage a collection of
at most three dominoes in such a way that there is no overlap. This creates a configuration
where, like in the example above, the dominoes may not be aligned in a flush-right manner.
Continue to add successively dominoes whose left border is at abscissa 1, 2, 3, etc, in a way
that creates no internal “holes”.

Depending on the state of filling of their last column, configuration can thus be classified
into 8 classes that we may index in binary as C000, . . . , C111. For instance C001 represent
configurations such that the first two cells (from top to bottom, by convention) are free, while
the third one is occupied. Then, a set of rules describes the new type of configuration obtained,
when the sweep line is moved one position to the right and dominoes are added. For instance,
we have

C010 ⊙ $⇒ C101.

In this way, one can set up a system of linear equations (resembling a grammar or a de-
terministic finite automaton) that expresses all the possible constructions of longer rectangles
from shorter ones according to the last layer added. The system contains equations like

C000 = ϵ + mmmC000 + mvC000 + vmC000
+ ·mmC100 + m·mC010 + mm·C001 + v·C001 + ·vC100
+ m··C011 + ·m·C101 + ··mC110 + ···C111 .

Here, a “letter” like mv represent the addition of dominoes, in top to bottom order, of types
m, v , respectively; the letter m·m means adding two m-dominoes on the top and on the bottom,
etc.

un+k = a0un + ⋯ + ak−1un+k−1 with initial conditions u0, …, uk−1

Numbers divisible 
by 5 in base 2

Tilings of rectangles 
of bounded height 
by dominos and 

monominos

very well understood

(un) is a LRS ⟺ its generating series U(z) :=
∞

∑
n=0

unzn is rational

Ex. Fibonacci: Fn+2 = Fn+1 + Fn, F0 = F1 = 1

F(z) =
z

1 − z − z2
=

(2ϕ − 1)/5
1 − zϕ

−
(2ϕ − 1)/5

1 + z /ϕ
Fn =

1
2πi ∮

F(z)
zn+1

dz
3/13



Classes of Univariate Power Series

RATIONAL

ALGEBRAIC

DIAGONAL

D-FINITE

DIFF. ALGEBRAIC

DIFF. TRANSCENDENTAL

Christol’s conjecture: All D-finite 
power series with integer 
coefficients and radius of 

convergence in (0,∞) are diagonals.

U(z) :=
∞

∑
n=0

unzn

linear recurrent sequences

words in context-
free languages

     satisfies a linear recurrence 
with polynomial coefficients

(un)

      satisfies a linear diff. eqn. 
with polynomial coefficients

U(z)

                   P(z, U(z)) = 0

                               P(z, U(z), U′�(z), . . . ) = 0

Knowing where        fits helps deduce properties of       .U(z) (un)
4/13



Lattice Walks: a Mine of Linear 
Recurrences Waiting for Tools

Applications: queuing theory, statistical physics, combinatorics,..

𝒮 = {↑ ,↓ ,→ ,← ,↖}
ui,j,n = ui−1,j,n−1 + ui,j−1,n−1 + ui+1,j,n−1 + ui,j+1,n−1 + ui+1,j+1,n−1

Num. walks from (0,0) to (i, j) ∈ ℤ2 using n steps in 𝒮
Ex.:

U(x, y, z) := ∑
i,j,n

ui,j,nxiyjzn, U(0,0,z) = ∑
n≥0

enzn, U(1,1,z) = ∑
n≥0

unzn .

 Question: 𝒮, boundary conditions → nature of these series?

Boundary 
conditions:

no constraint : U rational;
ui,j,n = 0 for i < 0 : U algebraic;

ui,j,n = 0 for i < 0 and j < 0 :  depends on 𝒮.
5/13[BanderierFlajolet02]



Walks in ℕ2: Recent Progress

[Bernardi,Bostan,Bousquet-Mélou,Gessel,Gouyou-Beauchamps,Hardouin,Kauers, 
Kreweras,Melczer,Mishna,Raschel,Rechnitzer,Roques,Salvy,Singer]

79 quadrant models 
with small steps

Guess & 
Prove

algebraic

(4)

(1965,1985,2010)

Creative 
telescoping

D-finite

(19)

(2010)
non-D-finite

Probabilities & 
number theory

(2014)

(56)

Tutte 
invariants

Diff. algebraic
(2017)

(9) Differential 
Galois theory

Diff. transcendental
(2018)

(47)

Motivation 
for this work
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Probabilities & Number Theory for Walks in ℕd

𝒮 = {↑ ,↓ ,→ ,← ,↘}

Idea: Normalize so that 
the asymptotic behaviour 

is a Brownian motion

Author's personal copy

A. Bostan et al. / Journal of Combinatorial Theory, Series A 121 (2014) 45–63 51

Fig. 2. Five hundred steps with S = {(−1,0), (1,0), (0,−1), (0,1), (1,−1)}. Random walk X with steps drawn uniformly from
S (left); random walk Y with steps drawn from S with probabilities xi

0 y j
0/χ(x0, y0) (middle); random walk Z obtained by

decorrelating Y , with the cone M(N2) (right).

given probability xi
0 y j

0/χ(x0, y0). Finally, x0 and y0 are fixed by the condition E[(Y1(k), Y2(k))] =
(0,0). (This is a special case of the Cramér transform, see [3].) By differentiation with respect to x
(resp. y), the expectations are obtained as

E
[
Y1(k)

]
= x0

χ(x0, y0)

∂χ

∂x
(x0, y0), E

[
Y2(k)

]
= y0

χ(x0, y0)

∂χ

∂ y
(x0, y0).

A correct choice of (x0, y0) is therefore given by a positive solution to Eq. (2).
Since the step set of the walk is not confined to the right half-plane, the limit of χ(x, y) as x → 0+

is infinite, similarly for y → 0+ and for x or y tending to +∞. This proves the existence of a solution.
Its uniqueness comes from the convexity of χ , a Laurent polynomial with positive coefficients.

This new random walk Y is related to the original one: by induction on the number of steps,

P
[

n∑

k=1

(
Y1(k), Y2(k)

)
= (i, j), τ > n

]

= xi
0 y j

0
|S|n

χ(x0, y0)n P
[

n∑

k=1

(
X1(k), X2(k)

)
= (i, j), τ > n

]

,

where we use the same letter τ to denote the exit times of X and Y from N2. In view of Eq. (1), the
number of walks can be read off the new walk as

fS(i, j,n) = ρ(x0, y0)
n

xi
0 y j

0

P
[

n∑

k=1

(
Y1(k), Y2(k)

)
= (i, j), τ > n

]

.

Covariance and scaling. The second step is to reduce to the case of a random walk Z with no drift
and no correlation, i.e., whose covariance matrix Cov(Z) = (E[Zi Z j])i, j is the identity matrix.

The covariance matrix can be obtained from the characteristic polynomial again. Simple computa-
tions lead to

Cov(Y ) = 1
χ(x0, y0)

(
x2

0
∂2χ
∂x2 (x0, y0) x0 y0

∂2χ
∂x∂ y (x0, y0)

x0 y0
∂2χ
∂x∂ y (x0, y0) y2

0
∂2χ
∂ y2 (x0, y0)

)

.

One way to compute the appropriate scaling is in two steps. First, define a new walk obtained

from Y by (W1, W2) = (Y1/
√

E[Y 2
1 ], Y2/

√
E[Y 2

2 ]). By a direct computation, the walk W has no drift
and satisfies
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,

where we use the same letter τ to denote the exit times of X and Y from N2. In view of Eq. (1), the
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0
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[
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(
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)
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.

Covariance and scaling. The second step is to reduce to the case of a random walk Z with no drift
and no correlation, i.e., whose covariance matrix Cov(Z) = (E[Zi Z j])i, j is the identity matrix.

The covariance matrix can be obtained from the characteristic polynomial again. Simple computa-
tions lead to

Cov(Y ) = 1
χ(x0, y0)

(
x2

0
∂2χ
∂x2 (x0, y0) x0 y0

∂2χ
∂x∂ y (x0, y0)

x0 y0
∂2χ
∂x∂ y (x0, y0) y2

0
∂2χ
∂ y2 (x0, y0)

)
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One way to compute the appropriate scaling is in two steps. First, define a new walk obtained

from Y by (W1, W2) = (Y1/
√

E[Y 2
1 ], Y2/

√
E[Y 2

2 ]). By a direct computation, the walk W has no drift
and satisfies

a. fix probabilities 
for each step that 
remove drift

b. linear transform to 
remove correlation
ℕd becomes a cone K

[DenisovWachtel15;Chudnovsky85;André89;Katz70]

Arithmetic ingredient:
U(z) D-finite, convergent, with integer coefficients ⇒ p ∈ ℚ .

λ1 dominant eigenvalue of Δ𝕊d−1 on K ∩ 𝕊d−1 .

en ∼ Kρnn−p/2 with p = λ1 + (d /2 − 1)2 − (d /2 − 1) > 0,

Probabilistic ingredient:

7/13



Planar Case

Δf(r, θ) =
1
r

∂
∂r (r

∂f
∂r ) +

1
r2

∂2f
∂θ2

θ = 0 → c = 0

θ = α → λ = λk := ( kπ
α )

2

, k ∈ ℕ⋆ .
Boundary:

r

θ

Polar 
coordinates

α
  Ω

∂ΩLaplace-Beltrami

Eigenfunctions: sin( λθ + c)

Ex.

−
p
2

= 1 −
π

arccos(u)
, 8u3 − 8u2 + 6u − 1 = 0, u > 0 ⇒ p ∉ ℚ ⇒ U not D-finite.

[BostanRaschelSalvy14]

𝒮 = {↑ ,↓ ,→ ,← ,↘}

Automatic proof of 51 of the 56 non-Dfinite cases.
8/13



II. 3D Walks: Laplacian on 
Spherical Triangles

No more closed-forms? Turn to numerical approximation.



Use it to find ( f ⋆, λ⋆) s.t. f ⋆ is small on ∂Ω;

Method of Particular Solutions

Eigenvalue problem for Ω :
Δf + λf = 0 in Ω, f |∂Ω = 0.

A 3-step method:

1. Find a basis of solutions of  
2.    
3. A close-by (eigenvalue,eigenfunction) satisfies

Δf + λf = 0 in Ω;

|λ − λ⋆ |
λ⋆

≤
supx∈∂Ω | f ⋆(x) |

∥f⋆∥
Vol(Ω) .

Reliable estimate 
needed

[FoxHenriciMoler67]

High precision 
needed

replace by f small

9/13



Separation of variables: f = F(ϕ)G(θ) gives

F(ϕ) = sin(μϕ + c), G(θ) = Pμ
ν(cos θ) (μ ≤ 0)

with λ = ν(ν + 1) . Ferrers function of the 1st kind 
(cousins of the Legendre 

functions; spherical harmonic 
when μ,ν integers; known to Arb)

Step 1. EigenFunctions

Spherical 
coordinates 

Δ𝕊2 f(θ, ϕ) =
1

sin θ
∂
∂θ (sin θ

∂f
∂θ ) +

1
sin2 θ

∂2f
∂ϕ2

ϕ = 0 → c = 0

ϕ = ϕmax → μ = μk := −
kπ

ϕmax
, k ∈ ℕ .First 2 boundaries:

10/13



Step 2. The Final Boundary

BN
ν (ϕ) :=

N

∑
k=0

cksin(μkϕ)Pμk
ν (cos θ(ϕ))

For each ν,  use [BetckeTrefethen05]

ν s.t. B∞
ν |[0,ϕmax]

= 0, ∥Bν∥Ω ≈ 1.Wanted:

Find c0, …, cN s.t. ∥BN
ν ∥∞ is minimized, with ∥c∥ = 1.

choose x1, …, xmb
 on the boundary, y1, …, ymi

 in the interior;
form a matrix (

uν,j(xi)
uν,j(yi))

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

nu

si
gm

a(
nu
)

Figure 4: The function �(⌫) for the triangle with angles
⇥
3⇡
4 ,

⇡
4 ,

⇡
3

⇤
(N = 8). To the left we

can clearly locate the values of ⌫ corresponding to the first three eigenvalues. The red box to
the left indicates the area seen to the right. The minimum is located at ⌫ = 4.4706045910.

and we therefore choose to place this one on the north pole and the second one on the line
� = 0; a plot of the triangle in spherical coordinates is given in Figure 2. For this triangle
we get µ0 = �4/3 and the functions we use in our expansion are given by

u(k)
⌫ (✓,�) = sin(�4k�/3)P ⌫

�4k/3(cos(✓)) k = 1, 2, . . .

To give an idea of how the method works we take 8 terms in the expansion, N = 8,
together with 16 points spread out on the boundary and 16 random points in the interior.
We then plot the value of �(⌫) for ⌫ in the range 0 to 8, see Figure 4. From the figure we
can clearly locate the first three eigenvalues. Zooming in on the first one we can locate the
minimum which is at ⌫ = 4.4706045910 corresponding to the eigenvalue ⌫(⌫+1) = 24.456910,
see Figure 4. Already here all the digits coincide with the known ones.

In Figure 5 we see an estimate of the convergence curve for ⌫. It was computed by finding
the ⌫ that minimizes � for N from 1 to 32, using the value for N = 32 as the “exact” solution.
We also see the width of the computed enclosure of the eigenvalue. It can be seen that the
width of the enclosure is always larger than the corresponding error. This is expected since
Theorem 1 in general does not give a tight enclosure and we are also only computing an
upper bound for ✏. Still we see that the width converges at a linear rate. For N = 32 we get
that the eigenvalue is contained in the enclosure [24.4569137962991± 6.45 · 10�14].

Next we consider all triangles occurring in Table 3 in [9] that have at most one singular
vertex, the angles for the triangles can be found in Table 1 column 3. Two of these triangles,
number 4 and 6, have the property that two of the angles are the same. The lower boundary
of these triangles will therefore be symmetric with respect to the midpoint. We can use this
by only computing on half of the boundary. In addition only every other u(k)

� will have a
non-zero coe�cient and we can discard the rest. In all computations with these two triangles
we are using this symmetry and with N we then mean the number of non-zero terms in the
expansion. Notice that our method does not require us to prove that every other term indeed
is zero, we simply get worse convergence if that is not the case.

12

Figure 6: The convergence of the width of the enclosure. The number corresponds to the
numbering in table 1. For some of them the enclosure for very low N are infinite and
therefore not shown in the plot. All of them show what seems to be linear convergence, but
at di↵erent rates. Notice that the two with the best convergence correspond to the triangles
4 and 6 where we are using symmetries.

better bound.
Similar to Figure 4 we plot �(⌫) computed using N = 8, see Figure 7. While we can

locate some minimums of � it is less regular than the one in Figure 4. The first eigenvalue
can at least be located and zooming on it we find that the minimum is at ⌫ = 2.047390892
corresponding to the eigenvalue ⌫(⌫+1) = 6.2392004. Here only the first two digits coincide
with the known ones.

In Figure 8 we see an estimate of the convergence for ⌫. It was computed in the same
way as that in Figure 5 with the di↵erence that we used the seven digit eigenvalue from [9]
for the “exact” value.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

nu

si
gm

a(
nu
)

Figure 7: The function �(⌫) for the triangle with angles
⇥
⇡
2 ,

2⇡
3 ,

3⇡
4

⇤
(N = 8). The red box

to the left indicates the area seen to the right. The minimum is located at ⌫ = 2.047390892.

14

good case → many digits not so good case → fewer digits 11/13



Step 3. Rigorous Bound on the Boundary

11 / 21

Taylor approximation

0 0.2 0.4 0.6 0.8 1
-6e-24

-4e-24

-2e-24

0

2e-24

4e-24

6e-24

t

u

Plot with Taylor expansion with 12 terms

Joel Dahne Enclosing Eigenvalues

Use a rigorous 
polynomial approximation

Taylor coefficients 
from gfun

interval evaluation 
in Arb.
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Summary & Conclusion

Thank you.

Linear recurrences with constant coefficients remain 
mysterious; 

lattice walks provide a simple source of examples; 

more and more tools are available; 

high-precision is useful in experimental mathematics; 

work still in progress (improve speed, work on the 
bad cases).


