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Examples of Creative Telescoping
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Aippe. |- Prove them automatically e

- 2. Find the rhs given the |hs
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Main Example for this Talk

: e_pXTn(X) _(__1)\n
/_1 Vi dx = (—1)"xwl,(p)

> f:=exp(-p*x)*ChebyshevT(n,x)/sqrt(1-xA2);
[ e P* ChebyshevT(n, )
| V1 — 12
> redct(Int(f,x=-1..1),[n::shift,p::diff]);
[le)%b'+']ll)$>'_'717111)32'_':27113%1 —_ QL[)WL—_-Iﬂ

Interpretation: the integral F),(p) satisfies

pF,1+pF —nF, =0, pF,io—2(n+1)F,; 1 —pF, =0
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Context: LDEs as a Data-Structure

. . Numerical evaluation
Polynomial equations

g Local and asymptotic

Differential s L B

Equations

Proofs of identities

Closed forms

Definite sums
and integrals

ConverSIOns

Solutions called differentially finite (abbrev. D-finite)
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Creative Telescoping

— /fn(x,t) dt =7 or Up,(x)= Zunk($) =

Input: equations Output: equations for
(differential and/or the sum or the integral.
recurrence).

Example:

= (1) et {70 = 5 () () = 11 ()
U(n+1) = (Hl) (\(Hl) (Zi) (kil>_(2>+

elesc. telesc.

IF one knows A(n,S,) and B(n k Sn,Sk) such that
(A(H,Sn)+AkB( < Sn,Sk) (ﬂ,k)—
then the sum telescopes, leading to A(n,S,) - U(n)=0.
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Creative Telescoping

I(x) = / f(x, t) dt =7

IF one knows A(x,0x) and B(x,t,0x,0;) such that

(A(x,0,) +0(B(x1,8,,30) -f(x,H=0,

. \// .
then the integral « telescopes », leading to A(x,0x) - 1(x)=0.

Then | come along and try differentiating under the
integral sign, and often it worked. So I got a great

reputation for doing integrals.
Richard P. Feynman 1985

~ Method: mtegratlon (summatlon) by parts and
| dlfferentlatlon (difference) under the integral (sum) Sign
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Chyzak’s Algorithm

: €_prn(£E) __(__1)\n
/_1 Vi dx = (—1)"7l,(p)
%f,_/

Ann f generated by
Dy, +x, nS,— (x*—1)Dx — (p(1 —x*) — (n 4 1)x)
(1 —x*)DZ — (2px* + 3x — 2p)Dy — (p°x* + 3px — n? — p* + 1)

Undetermined coefficients

( D Ckml(n. p)DESn”‘> + Dy (6

certificate

o(n, p,x) +ai(n,p,x)D ) mod Ann f

(k,m)
da a 0 Increase
Reduces 10 =2+ =5 (P +3px—n —pf) = = 3~ cmuon, [
(k,m) until a soln
da1 aj 1 is found
O TAT T2 (2px® +3x — 2p) = — Z Ck,muﬁ,zu

[Chyzak00] (k,m) 6/16



Weakness: Certificates are Big

T

r,S . ,
fn,r,s

(n+2)Chino —2(2n 4+ 3)(3n* +9n 4+ 7)Coi1 — (4n +3)(4n + 4)(4n + 5)C,
= A/ (- )+ Ag(---) = 180 kB ~ 2 pages

(1 -+ t3)2dt1dt2dt3

(z) = 7{ tatots(1 4+ t3(1 +11))(1 +t3(1 +t2)) +2(1 4 t1)(1 + t2)(1 + t3)*

7% (4z + 1)(16z — )" (z) + 32(1282° + 18z — 1)I"(z) + (444z° 4 40z — 1)I'(z) + 2(30z + 1)I(2)
d d d

_ 2. B 2oy =1 KB~ 12
dtl( )+dt2( )+dt3( ) =1080 pages

and sometimes also unnecessary
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Reduction-Based Creative Telescoping

Zcm(x)ﬁm + 0, Z a; i(x,1)0'0) € Annf

m (i,7)es

telescoper certificate

O is a linear map in Q(x,t)(0x, )/ Ann f

Principle:

Reduce successive 0™ modulo the image of 0;
until a linear dependency is found
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Previous Work

First generation of algorithms: relying on holonomy
Restrict int. by parts to Q(x) (04, Or) and use elimination.
[Zeilberger90,91, Takayama90]
Second generation: faster using better certificates & algorithms

Hypergeometric summation: dim=1 + param. Gosper.

Undetermined coefficients in finite dim, Ore algebras & GB.

ldem in infinite dim.
[Wilf-Zeilberger90,92,ChyzakS.98,Chyzak00,Chyzak-Kauers-S.09]

New generation: reduction-based algorithms

Rational bivariate, hypergeometric, algebraic, mixed

Algebraic, Fuchsian, differentially finite
[Bostan et alii 10-15,Chen et alii 12-18, Hoeven 17]
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l. Griffiths-Dwork Reduction for
Multiple Integrals
of Rational Functions



Griffiths-Dwork Reduction

P(t, x) Q square-free
— 7{ Q™ (t, x) dx Int. over a cycle
= where Q0.
1. Control degrees by homogenizing (x1,...,Xn)~(Xo, ..., Xn)

2. If m=1, no reduction needed [P/Q]:=P/Q
3. If m>1, reduce modulo Jacobian ideal J := (9yQ, ..., 0, Q)

P=r+4+vo0oQ + - - + vnOnQ
P r 1 (80 Vi, >_|_ 1 Ogvg =+ -+ + Onv,

Qm 1+°'°+8“Qm—1 \m—l Qm-1
A;il

Q" Q" m-—1

[me]‘ Q—rm Am-1] (recursive definition)

Thm. [Grifflths] In the regular case ( ( )[ ]/J finitedlm
~|f R=P/Qm hom of degree -n- 1 [R] =0 < f l

—_— _— — =

— =

— Algo for CT: differentiate wrt t, reduce and iterate.
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Size and Complexity

P(t, x
|(t) — % ( 7_) dx no regularity
QM (t7 K) assumed
———
cQ(t,x)
N :=deg, Q, d;:=max(deg, Q,deg,P) deg.P not too big wrt N

__ -

Thm. A linear differential equation for I(t) can be computed

in O(e3nN8ndy) operations in Q.

11 It has ordef <N" and degree O(e"N3nd)).
tight -

Note: generically, the certificate has at least N*/2 monomials.

S T O T

[Bostan-Lairez-Salvy13,Lairez16,Bostan-Lairez-S.17,LairezSafey18] 11/16

Applications to diagonals, volumes
& multiple binomial sums x4




Il. Generalized Hermite Reduction



Hermite Reduction

Input: @/()L:tput g,h € K(t) s.t. [ =h+ Drg

and h does not have multiple poles

classical in the integration of univariate rational functions

In other words, h is a canonical form of f@odulo Im 0;

Canonical: h=0 iff f is a derivative.
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Lagrange’s Identity

Def. Adjointof L = ¢, D] +--- 4 ¢y :

(proof: integration by parts and induction.)

Corl.g=M(f) = dq,g :f + Dy(q) rational fcn

e

Cor2. If L(f) =0, foranyu, L*(u)f is a derivative!

The computation reduces to

rational fcns x f and working modulo Im L* .



Generalized Hermite Reduction

Input: @E K(t), M(t,0) a linear differential operator

Hermite: special case when M = 0,

Output: h € K(t) s.t. f :@—I— M (g) for some g € K(t)
and h =0« f € Im M.

Algorithm similar to rational solutions: (sketch)
local analysis at singularities, plus cleanup on polynomials.

See also [vdH 17]
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Example

e PrT ()

1 \/&1 — 372
| S —
.l‘.‘

dx = (—1)"xl,(p)

Ann f generated by
Dp +x, nS,— (x*—1)Dy, — (p(1 —x*) — (n + 1)x)
L:=(1 —x*)D2 — (2px? 4+ 3x — 2p)Dy — (p°x* + 3px — n? — p* + 1)
1f=(1)f reduced by L* to (1)f
Dpf=(-x)f reduced by L* to (-x)f
Snf=((px2+(n-1)x-p)/n)f reduced by L* to (x+n/p)f
(Dp)2f=(x2)f reduced by L* to (x/p+1+n2/p2)f
Conclusion: the integral F;,(p) satisfies
F, + Foy1 = 2 F, p°Fy + pF,, = (n° +p°)F,
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Conclusions

1. Complete algorithm for D-finite integration

2. It really works!

x3+1

n+x+1 ( (x+1)* )n \/xZ —5e x(x—3)(x—4)2 dx I 1 5 <H F 4 . )
(x—4)(x—3)2(x2—5)3 lﬂ . SeC. m I n

[ @rariia-ofcl /ac /@i in 53 sec. (HF >Th)
(HF=Koutschan’s HolonomicFunctions)

3. Still an efficiency problem with apparent singularities
(work in progress)

The End



