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New project: FastRelax (starting this Fall)

2

Computer Algebra Formal proofs

Computer 
Arithmetic

y

00 + 2xy

0 = 0 + ini. cond.

5 teams, 4 years

double erf(double x) {…}



I. Equations as a  
data-structure

erf := (y00 + 2xy

0 = 0, ini. cond.)

basis of the gfun package

http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/


Dynamic Dictionary of 
Mathematical Functions

• User need 

• Recent algorithmic progress 

• Maths on the web

http://ddmf.msr-inria.inria.fr/

Heavy work by F. Chyzak



Demonstration

http://ddmf.msr-inria.inria.fr/


II. Numerical evaluation 
via the Taylor series

From large integers to precise numerical values



Numerical evaluation of solutions of LDEs

1. linear recurrence in N for the first sum (easy); 
2. tight bounds on the tail (e.g., [Mezzarobba,S.2010]); 
3. no numerical roundoff errors.

Principle: 
 
 
f solution of a LDE with coeffs in Q(x) (our data-structure!)

f(x) =
NX

n=0

anx
n

| {z }
fast evaluation

+
1X

n=N+1

anx
n

| {z }
good bounds

The technique used for fast evaluation of constants like 

1

⇡
=

12

C3/2

1X

n=0

(�1)n(6n)!(A+ nB)

(3n)!n!3C3n

with A=13591409, 
B=545140134, 

C=640320.

Code available: NumGfun [Mezzarobba 2010]

http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/


Binary Splitting for linear 
recurrences (70’s and 80’s)

• n! by divide-and-conquer: 
 
 
Cost: O(n log3n loglog n) using FFT 

• linear recurrences of order 1 reduce to 

• arbitrary order: same idea, same cost (matrix factorial):

n! = n⇥ · · ·⇥ dn/2e| {z }
size O(n log n)

⇥bn/2c ⇥ · · ·⇥ 1| {z }
size O(n log n)

p!(n) := (p(n)⇥ · · ·⇥ p(dn/2e))⇥ (p(bn/2c)⇥ · · ·⇥ p(1))

ex satisfies a 2nd order rec, computed via

✓
en
en�1

◆
=

1

n

✓
n+ 1 �1
n 0

◆

| {z }
A(n)

✓
en�1

en�2

◆
=

1

n!
A!(n)

✓
1
0

◆
.

en :=
nX

k=0

1

k!



Analytic continuation

Ex: erf(π) with 15 digits:  
0 ������!

200 terms
3.1416 �����!

18 terms
3.1415927 �����!

6 terms
3.14159265358979

arctan(1+i)

Again: computation on integers. No roundoff errors.

Compute                                     as new initial 
conditions and handle error propagation:

f(x), f 0(x), . . . , f(d�1)(x)



III. Chebyshev expansions

Taylor Chebyshev



From equations to operators
(n↦n+1) ↔ S 

mult by n ↔ n 
composition ↔ product 

Sn=(n+1)S

Taylor morphism: D ↦ (n+1)S; x ↦ S-1 

produces linear recurrence from LDE

Ore (1933): general framework for these non-commutative 
polynomials.  
Main property: deg AB=deg A+deg B.  
Consequence 1: (non-commutative) Euclidean division  
Consequence 2: (non-commutative) Euclidean algorithm.

d/dx ↔ D  
mult by x ↔ x 

composition ↔ product 
Dx=xD+1

erf: D

2 + 2xD 7! (n+ 1)S(n+ 1)S+ 2S

�1(n+ 1)S = (n+ 1)(n+ 2)S2 + 2n



Ore fractions (Q-1P with P&Q operators)

Application: extend Taylor morphism to Chebyshev expansions

Thm. (Ore 1933) Sums and products reduce to that form.

Taylor 
xn+1=x·xn, (xn)’=nxn-1  

↔ X:=S-1, D:=(n+1)S

Prop. [Benoit, S (2009)] If y is a solution of L(x,d/dx), then its 
Chebyshev coefficients annihilate the numerator of L(X,D).

erf: D

2 + 2xD 7! (2(S�1 � S)�1
n)2 + 2

S+ S

�1

2

2(S�1 � S)�1
n

= pol(n, S)�1(2(n+ 1)(n+ 4)S4 � 4(n+ 2)3S2 + 2n(n+ 3))

Efficient numerical use: arXiv:1407.2802 (2 weeks ago).

Chebyshev 
2xTn(x)=Tn+1(x)+Tn-1(x),  

2(1-x2)Tn’(x)=-nTn+1(x)+nTn-1(x) 
↔ X:=(S+S-1)/2,  

D:=(1-X2)-1n(S-S-1)/2=2(S-1-S)-1n.

http://arxiv.org/abs/1407.2802


III. Continued Fractions

Taylor
Continued 

fraction

arctan x =
x

1+
1
3x

2

1+
4
15x

2

1+
9
35x

2

1+ · · ·



A guess & prove approach 
(Maulat, S. 2014)

arctan x =
x

1+
1
3x

2

1+
4
15x

2

1+
9
35x

2

1+ · · ·

1. Differential equation produces first terms (easy):

2. Guess a formula (easy): an =
n2

4n2 � 1

3. Prove that the CF with these an satisfies the 
differential equation.

No human intervention needed.



Proof technique
> series(sin(x)^2+cos(x)^2-1,x,4);

O(x4)

Why is this a proof?

1. sin and cos satisfy a 2nd order LDE: y’’+y=0; 
2. their squares and their sum satisfy a 3rd order LDE; 
3. the constant -1 satisfies y’=0; 
4. thus sin2+cos2-1 satisfies a LDE of order at most 4; 
5. Cauchy’s theorem concludes.

Proofs of non-linear identities by linear algebra!

f satisfies a LDE 
⟺ 

f,f’,f’’,… live in a 
finite-dim. vector space



Automatic Proof of the guessed CF

• Aim: RHS satisfies (x2+1)y’-1=0; 
• Convergents Pn/Qn where Pn and Qn satisfy a LRE  

(and Qn(0)≠0);  
• Define Hn:=(Qn)

2((x2+1)(Pn/Qn)’-1); 
• Hn is a polynomial in Pn,Qn and their derivatives; 
• therefore, it satisfies a LRE that can be computed; 
• from it, Hn=O(xn) visible, ie lim Pn/Qn soln; 
• conclude Pn/Qn➝ arctan (check initial cond.). 

arctan x
?
=

x

1+
· · ·

1+
n2

4n2�1x
2

1+ · · ·

More generally: this guess-and-proof approach 
applies to CF for solutions of (q-)Ricatti equations 

→ all explicit C-fractions in Cuyt et alii. 



Conclusion

• Linear differential equations and recurrences are a 
great data-structure; 

• Numerous algorithms have been developed in 
computer algebra; 

• Efficient code is available; 
• More is true (creative telescoping, diagonals,…); 
• More to come in DDMF, including formal proofs.

The End


