
Introduction to D-finiteness 
and creative telescoping 

Bruno Salvy 
Inria & ENS de Lyon

Workshop on Approximation and Combinatorics  
CIRM, April 2015



The objects of study
Def. A univariate power series is called D-finite when it is 
the solution of a linear differential equation with 
polynomial coefficients.

Exs: sin, cos, exp, log, arcsin, arccos, arctan, arcsinh, 
hypergeometric series, Bessel functions,…

Def. A sequence is P-recursive when it is the solution 
of a linear recurrence with polynomial coefficients.

Prop.                    D-finite ⟺    P-recursive.f =
1X
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Reference:



Classes of power series

on the blackboard



I. Closure properties

Bounds give proofs of identities



Confinement

LDE ⟺ the function and all its derivatives are confined 
in a finite dimensional vector space

⇒ the sum and product of solutions of LDEs satisfy LDEs

⇒ same property for P-recursive sequences

k+1 vectors in dimension k → an identity



Proof technique
> series(sin(x)^2+cos(x)^2-1,x,4);

O(x4)

Why is this a proof?

1. sin and cos satisfy a 2nd order LDE: y’’+y=0;
2. their squares and their sum satisfy a 3rd order LDE;
3. the constant -1 satisfies y’=0;
4. thus sin2+cos2-1 satisfies a LDE of order at most 4;
5. Cauchy’s theorem concludes.

Proofs of non-linear identities by linear algebra!

f satisfies a LDE 
⟺ 

f,f ’,f ’’,… live in a  
finite-dim. vector space



Example: Mehler’s identity for Hermite polynomials
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1. Definition of Hermite polynomials:  
recurrence of order 2;

2. Product by linear algebra: Hn+k(x)Hn+k(y)/(n+k)!, k∈ℕ  
generated over    (x,n) by  
 
 
→ recurrence of order at most 4;

3. Translate into differential equation.
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II. Algebraic series



Algebraic series are D-finite
Thm. [Abel, Cockle] If the power series S(X) is a zero of the 
irreducible polynomial P(X,Y)∈𝕂[X,Y] of degree D in Y and 
char 𝕂=0, then S(X) is solution of a linear differential equation of 
order at most D with coefficients in 𝕂[X].

Proof (= Algorithm)

1. Invert PY mod P in K(X)[Y ];

2. S0
= P�1

Y (S)PX(S) = Q1(S) with degY Q1 < D;

3. obtain S(i)
= Qi(S) for i = 2, . . . , D with degY Qi < D;

4. linear algebra to eliminate 1, S2, . . . , SD�1
.

A variant gives: F D-finite, S algebraic ⇒ F○S D-finite.



Minimality has a cost

O(D)

O(D3)

O(D)

Differential equation corresponding to recurrence of small order

order

Minimal differential equation (Cormier, Singer, Trager, Ulmer; Nahay)

O(D)

Nice differential equation (Bostan, Chyzak, Lecerf, S., Schost)

Corresponding recurrences

degree

degree

order

O(D2)

O(D2)

O(D2) O(D3)O(D2)O(D2)

O(D2)

O(D)

(here P has total degree D)

proof by creative telescoping



A useful approximation result

S(x)∈𝕂[[x]] zero of P(x,y), irreducible of degrees dx and dy;

If L(x,∂x)⋅S(x)=O(xσ), with σ ≥ 4dxdyδ∂+δxdy-2dxδ∂, then

L(x,∂x) a linear differential operator, δx and δ∂ its degrees;

L(x,∂x)⋅S(x) = 0.



III. Diagonals

Diag
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Algebraicity/D-Finiteness

Diag F(t) =
1

2⇡i

I

|y|=✏
F(t/y, y)

dy

y

= sum of residues

 when                    [Pólya,Furstenberg]F 2 C(X,Y)

Diag F is algebraic (and conversely):

when                                                      [Furstenberg]F 2 K(X1, . . . ,Xm) and charK > 0

F 2 K(X1, . . . ,Xm)Diag F is D-finite when                             , arbitrary  K [Lipshitz]



Equations for Diag F

Polynomial P(X,Y) s.t. P(X,Diag F)=0, with

F =
A

B
2 C(X,Y)
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Linear differential equation with

(order,degree)≤(O(dx+dy),O(dx(dx+dy))).

(generically minimal) degxP similar
exponential 

size

polynomial 
size

direct computation by creative telescoping



IV. Creative Telescoping



Creative telescoping

Input: equations 
(differential for f or 
recurrence for u).

Output: equations for the 
sum or the integral.

Method: integration (summation) by parts and differentiation 
(difference) under the integral (sum) sign

Example (with Pascal’s triangle):
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Example: size of LDE for algebraic F 

O(D)

O(D2)

order

degree

O(D2)

F(z) =
1

2⇡i

I
yPy(z, y)

P(z, y)| {z }
U(z,y)

dy

Differentiation under ∫ and integration by parts:

find ⇤ = A(z, @z) + @yB(z, @z, y, @y) s.t. ⇤ · U = 0 and return A.

Bounds by counting dimensions

zi@j
z@

k
y · U =

Q

Pj+k+1
, degQ  i+ (j+ k+ 1)D.

Taking i  Nz, j+ k  N@ ,
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Telescoping Ideal

Approximated by:

1. Reducing the search space

2. Proceeding by increasing slices (and indeterminate coeffs)

Tt(f) :=
⇣
Ann f + @tQ(x, t)h@

x

, @ti| {z }
int. by parts

⌘
\ Q(x)h@

x

i| {z }
di↵. under

R
.

restrict int. by parts to                     and use Gröbner bases. (The 
« holonomic » approach) [Wilf-Zeilberger, also Sister Celine].

Q(x)h@
x

, @ti

hypergeometric 
summation:  
dim=1 + 
param. Gosper. 
[Zeilberger]  

finite dim, 
Ore algebras 
& GB(F. Chyzak) 

infinite dim & GB 
(with F. Chyzak & 
M. Kauers)



Certificates are big
Cn :=
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(n+ 2)3Cn+2 � 2(2n+ 3)(3n2 + 9n+ 7)Cn+1 � (4n+ 3)(4n+ 4)(4n+ 5)Cn = 180 kB ' 2 pages

I(z) =

I
(1+ t3)2dt1dt2dt3

t1t2t3(1+ t3(1+ t1))(1+ t3(1+ t2)) + z(1+ t1)(1+ t2)(1+ t3)4

z2(4z+ 1)(16z� 1)I000(z) + 3z(128z2 + 18z� 1)I00(z) + (444z2 + 40z� 1)I0(z) + 2(30z+ 1)I(z) = 1 080 kB

' 12 pages

Next, in Tt(f) :=
⇣
Ann f + @tQ(x, t)h@

x
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⌘
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we restrict to integrals of rational f and @tQ(x)[t, 1/ den f]h@
x
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Algorithm: R0:=[P/Qm] 
   for i=1,2,… do Ri:=[∂tRi-1] 
   when there is a relation c0(t)R0+…+ci(t)Ri=0 
         return c0+…+ci∂t

i

Bivariate integrals by Hermite reduction

I(t) =

I
P(t, x)

Q

m(t, x)
dx Int. over a cycle 

where Q≠0.

Q square-free

If m=1, Euclidean division: P=aQ+r, degx r<degx Q

If m>1, Bézout identity and integration by parts
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[BostanChenChyzakLi10]



More variables: Griffiths-Dwork reduction

I(t) =
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1. Control degrees by homogenizing (x1,…,xn)↦(x0,…,xn) 
2. If m=1, [P/Q]:=P/Q 
3. If m>1, reduce modulo Jacobian ideal J := h@0Q, . . . , @nQi

Thm. [Griffiths] In the regular case (                finite dim),  
if R=P/Qm hom of degree -n-1,                                 .

Q(t)[x]/J
[R] = 0 ,

H
Rdx = 0

→  SAME ALGORITHM.

Int. over a cycle 
where Q≠0.

Q square-free



Size and complexity

Non-regular case by deformation, better way in Pierre Lairez’s work.

I(t) =

I
P(t, x)

Q

m(t, x)| {z }
2Q(t,x)

dx no regularity 
assumed

N := deg

x

Q, d
t

:= max(deg

t

Q, deg
t

P)

Thm. [Bostan-Lairez-S. 2013] A linear differential equation 
for I(t) can be computed in O(e3nN8ndt) operations in ℚ.   
It has order ≤Nn and degree O(enN3ndt).

Note: generically, the certificate has at least        monomials.Nn2/2

degxP not too big

tight



Conclusion

Perhaps (tight) approximation theorems would 
be useful to circumvent the certificates? 

Is any of this useful in approximation? 

Other ideas? 

Questions?


