Introduction to D-finiteness and creative telescoping

Bruno Salvy Inria & ENS de Lyon

Workshop on Approximation and Combinatorics CIRM, April 2015

The objects of study

Def. A univariate power series is called D-finite when it is the solution of a linear differential equation with polynomial coefficients.

Exs: sin, cos, exp, log, arcsin, arccos, arctan, arcsinh, hypergeometric series, Bessel functions,...

Def. A sequence is P-recursive when it is the solution of a linear recurrence with polynomial coefficients.

Prop. $f = \sum_{n=0}^{\infty} f_n z^n$ D-finite $\iff f_n$ P-recursive.

Reference:

Classes of power series

on the blackboard

I. Closure properties

Bounds give proofs of identities

k+1 vectors in dimension $k \rightarrow$ an identity

LDE ↔ the function and all its derivatives are confined in a finite dimensional vector space

⇒ the sum and product of solutions of LDEs satisfy LDEs⇒ same property for P-recursive sequences

Proof technique

> series(sin(x)^2+cos(x)^2-1,x,4);

 $O(x^4)$

Why is this a proof?

- sin and cos satisfy a 2nd order LDE: y"+y=0;
- 2. their squares and their sum satisfy a 3rd order LDE;
- 3. the constant -1 satisfies y'=0;
- 4. thus sin²+cos²-1 satisfies a LDE of order at most 4;
- 5. Cauchy's theorem concludes.

Proofs of non-linear identities by linear algebra!

Example: Mehler's identity for Hermite polynomials

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{u^n}{n!} = \frac{\exp\left(\frac{4u(xy - u(x^2 + y^2))}{1 - 4u^2}\right)}{\sqrt{1 - 4u^2}}$$

- Definition of Hermite polynomials: recurrence of order 2;
- 2. Product by linear algebra: $H_{n+k}(x)H_{n+k}(y)/(n+k)!$, $k \in \mathbb{N}$ generated over $\mathbb{Q}(x,n)$ by

 $\frac{H_n(x)H_n(y)}{n!}, \frac{H_{n+1}(x)H_n(y)}{n!}, \frac{H_n(x)H_{n+1}(y)}{n!}, \frac{H_n(x)H_{n+1}(y)}{n!}$

 \rightarrow recurrence of order at most 4;

3. Translate into differential equation.

II. Algebraic series

Algebraic series are D-finite

Thm. [Abel, Cockle] If the power series S(X) is a zero of the irreducible polynomial $P(X,Y) \in \mathbb{K}[X,Y]$ of degree D in Y and char $\mathbb{K}=0$, then S(X) is solution of a linear differential equation of order at most D with coefficients in $\mathbb{K}[X]$.

Proof (= Algorithm)

1. Invert $P_Y \mod P$ in $\mathbb{K}(X)[Y]$;

2.
$$S' = P_Y^{-1}(S)P_X(S) = Q_1(S)$$
 with deg_Y $Q_1 < D$;

3. obtain $S^{(i)} = Q_i(S)$ for i = 2, ..., D with deg_Y $Q_i < D$;

4. linear algebra to eliminate $1, S^2, \ldots, S^{D-1}$.

A variant gives: F D-finite, S algebraic \Rightarrow F \circ S D-finite.

Minimality has a cost (here P has *total* degree D)

A useful approximation result

 $S(x) \in \mathbb{K}[[x]]$ zero of P(x,y), irreducible of degrees d_x and d_y ; $L(x,\partial_x)$ a linear differential operator, δ_x and δ_∂ its degrees; If $L(x,\partial_x) \cdot S(x) = O(x^{\sigma})$, with $\sigma \ge 4d_xd_y\delta_\partial + \delta_xd_y - 2d_x\delta_\partial$, then

 $L(x,\partial_x)\cdot S(x)=0.$

III. Diagonals

Algebraicity/D-Finiteness

Diag F is **algebraic** (and conversely):

when $F \in \mathbb{C}(X, Y)$ [Pólya,Furstenberg]

$$\operatorname{Diag} \mathsf{F}(\mathsf{t}) = \frac{1}{2\pi \mathsf{i}} \oint_{|\mathsf{y}|=\epsilon} \mathsf{F}(\mathsf{t}/\mathsf{y},\mathsf{y}) \frac{\mathsf{d}\mathsf{y}}{\mathsf{y}}$$

= sum of residues

when $F \in \mathbb{K}(X_1, \dots, X_m)$ and char $\mathbb{K} > 0$ [Furstenberg]

Diag F is **D-finite** when $F \in \mathbb{K}(X_1, \ldots, X_m)$, arbitrary \mathbb{K} [Lipshitz]

$$\begin{array}{l} \mbox{Equations for Diag F} \\ F = \frac{A}{B} \in \mathbb{C}(X,Y) \\ d_x := \deg_x B > \deg_x A, \qquad d_y := \deg_y B > \deg_y A \end{array}$$

$$\begin{array}{l} \mbox{Polynomial P(X,Y) s.t. P(X,Diag F)=0, with } \deg_y P = \begin{pmatrix} d_x + d_y \\ d_x \end{pmatrix} \\ (generically minimal) \qquad \deg_x P similar \end{array}$$

$$\begin{array}{l} \mbox{Linear differential equation with} \end{array}$$

 $(order, degree) \leq (O(d_x+d_y), O(d_x(d_x+d_y))).$

polynomial

size

Linear

direct computation by creative telescoping

IV. Creative Telescoping

Creative telescoping

 $I(\boldsymbol{x}) = \int f(\boldsymbol{x}, t) dt =? \text{ or } S(\boldsymbol{n}) = \sum_{k} u(\boldsymbol{n}, k) =?$

Input: equations (differential for *f* or recurrence for *u*). **Output**: equations for the sum or the integral.

Method: integration (summation) by parts and differentiation (difference) under the integral (sum) sign

Example (with Pascal's triangle):

$$\begin{split} u(n,k) &= \binom{n}{k} \text{ def. by } \left\{ \binom{n+1}{k} = \frac{n+1}{n+1-k} \binom{n}{k}, \binom{n}{k+1} = \frac{n-k}{k+1} \binom{n}{k} \right\} \\ S(n+1) &= \sum_{k} \binom{n+1}{k} = \sum_{k} \underbrace{\binom{n+1}{k} - \binom{n+1}{k+1}}_{\text{telesc.}} + \underbrace{\binom{n}{k+1} - \binom{n}{k}}_{\text{telesc.}} + 2\binom{n}{k} = 2S(n). \end{split}$$

Example: size of LDE for algebraic F

$$\begin{split} F(z) &= \frac{1}{2\pi i} \oint \underbrace{\frac{y P_y(z,y)}{P(z,y)}}_{U(z,y)} dy \\ \end{split} \\ \text{Differentiation under } \int \text{ and integration by parts:} \\ \text{find } \Lambda &= A(z,\partial_z) + \partial_y B(z,\partial_z,y,\partial_y) \text{ s.t. } \Lambda \cdot U = 0 \text{ and return } \Lambda. \\ \text{Bounds by counting dimensions} \\ z^i \partial_z^j \partial_y^k \cdot U &= \frac{Q}{P^{j+k+1}}, \\ \text{deg } Q &\leq i + (j+k+1)D. \\ \text{Taking } i &\leq N_z, \ j+k &\leq N_\partial, \ N_z &= 4D^2, N_\partial = 4D, \\ \dim(\text{lhs}) &= (N_z+1) \binom{N_\partial+2}{2} > \dim(\text{rhs}) = \binom{(N_\partial+1)D+N_z+2}{2}. \end{split}$$

Approximated by:

1. Reducing the search space restrict int. by parts to $\mathbb{Q}(\boldsymbol{x})\langle \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{t} \rangle$ and use Gröbner bases. (The « holonomic » approach) [Wilf-Zeilberger, also Sister Celine].

2. Proceeding by increasing slices (and indeterminate coeffs)

hypergeometric summation: dim=1 + param. Gosper. [Zeilberger]

infinite dim & GB (with F. Chyzak & M. Kauers)

$$\label{eq:critical_constraint} \begin{array}{l} Certificates \ are \ big \\ C_n := \sum\limits_{r,s} \underbrace{(-1)^{n+r+s} \binom{n}{r} \binom{n}{s} \binom{n+s}{s} \binom{n+r}{r} \binom{2n-r-s}{n} }_{f_{n,r,s}} \end{array}$$

 $(n+2)^{3}C_{n+2} - 2(2n+3)(3n^{2}+9n+7)C_{n+1} - (4n+3)(4n+4)(4n+5)C_{n} = 180 \text{ kB} \simeq 2 \text{ pages}$

$$\mathsf{I}(\mathsf{z}) = \oint \frac{(1+\mathsf{t}_3)^2 \mathsf{d} \mathsf{t}_1 \mathsf{d} \mathsf{t}_2 \mathsf{d} \mathsf{t}_3}{\mathsf{t}_1 \mathsf{t}_2 \mathsf{t}_3 (1+\mathsf{t}_3 (1+\mathsf{t}_1)) (1+\mathsf{t}_3 (1+\mathsf{t}_2)) + \mathsf{z} (1+\mathsf{t}_1) (1+\mathsf{t}_2) (1+\mathsf{t}_3)^4}$$

 $z^2(4z+1)(16z-1)\textbf{I}'''(z)+3z(128z^2+18z-1)\textbf{I}''(z)+(444z^2+40z-1)\textbf{I}'(z)+2(30z+1)\textbf{I}(z)=1\,080\,\,\textbf{kB}$

 $\simeq 12$ pages

Next, in
$$T_t(f) := \left(\operatorname{Ann} f + \underbrace{\partial_t \mathbb{Q}(x, t) \langle \partial_x, \partial_t \rangle}_{\text{int. by parts}}\right) \cap \underbrace{\mathbb{Q}(x) \langle \partial_x \rangle}_{\text{diff. under } \int}$$
.

we restrict to integrals of rational f and $\partial_t \mathbb{Q}(\boldsymbol{x})[t, 1/\det f] \langle \boldsymbol{\partial}_{\boldsymbol{x}}, \partial_t \rangle$

Bivariate integrals by Hermite reduction

[BostanChenChyzakLi10]

$$\begin{split} \mathsf{I}(\mathsf{t}) &= \oint \frac{\mathsf{P}(\mathsf{t},\mathsf{x})}{\mathsf{Q}^\mathsf{m}(\mathsf{t},\mathsf{x})} \, \mathsf{d}\mathsf{x} & \begin{array}{c} \mathsf{Q} \text{ square-free} \\ \mathsf{Int. over a cycle} \\ \mathsf{where } \mathsf{Q} \neq \mathsf{0}. \end{split} \\ \mathsf{If m=1, Euclidean division: } \mathsf{P}=\mathsf{a}\mathsf{Q}+\mathsf{r}, \ \mathsf{deg}_\mathsf{x} \mathsf{r} < \mathsf{deg}_\mathsf{x} \mathsf{Q} \\ \frac{\mathsf{P}}{\mathsf{Q}} &= \frac{\mathsf{r}}{\mathsf{Q}} + \partial_\mathsf{x} \int \mathsf{a} & \mathsf{Def. Reduced form: } \begin{bmatrix} \mathsf{P} \\ \overline{\mathsf{Q}} \end{bmatrix} := \frac{\mathsf{r}}{\mathsf{Q}} \\ \mathsf{If m>1, Bézout identity and integration by parts} \\ \mathsf{P} &= \mathsf{u}\mathsf{Q} + \mathsf{v}\partial_\mathsf{x}\mathsf{Q} \quad \rightarrow \quad \frac{\mathsf{P}}{\mathsf{Q}^\mathsf{m}} = \underbrace{\mathsf{u} + \frac{\partial_\mathsf{x}\mathsf{v}}{\mathsf{m}-1}}_{\mathsf{Q}^\mathsf{m}-1} + \partial_\mathsf{x} \frac{\mathsf{v}/(1-\mathsf{m})}{\mathsf{Q}^\mathsf{m}-1} \\ \mathsf{Ngorithm: } \mathsf{R}_0 &:= [\mathsf{P}/\mathsf{Q}^\mathsf{m}] \\ \mathsf{for i=1,2,... do } \mathsf{R}_i &:= [\partial_i \mathsf{R}_{i-1}] \\ \mathsf{when there is a relation } \mathsf{c}_0(\mathsf{t})\mathsf{R}_0 + \ldots + \mathsf{c}_i(\mathsf{t})\mathsf{R}_i = \mathsf{0} \\ \mathsf{return } \mathsf{c}_0 + \ldots + \mathsf{c}_i\partial_t^\mathsf{i} \end{aligned}$$

More variables: Griffiths-Dwork reduction

$$I(t) = \oint \frac{P(t,\underline{x})}{Q^{m}(t,\underline{x})} \, d\underline{x}$$

Q square-free Int. over a cycle where Q≠0.

1. Control degrees by homogenizing $(x_1, ..., x_n) \mapsto (x_0, ..., x_n)$ 2. If m=1, [P/Q]:=P/Q

3. If m>1, reduce modulo Jacobian ideal $J:=\langle \partial_0 Q,\ldots,\partial_n Q\rangle$

$$\begin{split} P &= r + v_0 \partial_0 Q + \dots + v_n \partial_n Q \\ \frac{P}{Q^m} &= \frac{r}{Q^m} - \frac{1}{m-1} \left(\partial_0 \frac{v_0}{Q^{m-1}} + \dots + \partial_n \frac{v_n}{Q^{m-1}} \right) + \underbrace{\frac{1}{m-1} \frac{\partial_0 v_0 + \dots + \partial_n v_n}{Q^{m-1}}}_{A_{m-1}} \\ \left[\frac{P}{Q^m} \right] &:= \frac{r}{Q^m} + [A_{m-1}] \end{split}$$

Thm. [Griffiths] In the regular case $(\mathbb{Q}(t)[\underline{x}]/J)$ (finite dim)) if R=P/Q^m hom of degree -n-1, [R] = 0 $\Leftrightarrow \oint \text{Rd}\underline{x} = 0$.

→ SAME ALGORITHM.

Size and complexity $I(t) = \oint \frac{P(t,\underline{x})}{Q^{m}(t,\underline{x})} d\underline{x}$ no regularity assumed $\in \mathbb{Q}(t, x)$ $N := \deg_x Q, \quad d_t := \max(\deg_t Q, \deg_t P)$ deg_xP not too big Thm. [Bostan-Lairez-S. 2013] A linear differential equation

for I(t) can be computed in O($e^{3n}N^{8n}d_t$) operations in **Q**. It has order $\leq N^n$ and degree O($e^nN^{3n}d_t$).

Note: generically, the certificate has at least $N^{n^2/2}$ monomials.

tight

Non-regular case by deformation, better way in Pierre Lairez's work.

Conclusion

Perhaps (tight) approximation theorems would be useful to circumvent the certificates?

Is any of this useful in approximation?

Other ideas?

Questions?