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Introduction
Motivation: Random Generation

Random generation of large objects =
simulation in the discrete world.
It helps

@ evaluate the order of magnitude of
quantities of interest;

o differentiate exceptional values from
statistically expected ones;

@ compare models;

@ test software.
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Introduction

Framework: Constructible Species

A small set of species

1, Z, x,+,SEQ, SET, CYC,

cardinality constraints that are finite unions of intervals,
used recursively.

Examples:
@ Regular languages
@ Unambiguous context-free languages @ T
o Trees (B=Z+ZxB% T =Z x Ser(T)) @
o Mappings, ...

i
Analytic
Combinatorics

STRUCTURES

nd
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Introduction

Framework: Constructible Species

A small set of species

1, Z, x,+,SEQ, SET, CYC,

cardinality constraints that are finite unions of intervals,
used recursively (when it makes sense).

Examples:

@ Regular languages

@ Unambiguous context-free languages
o Trees (B=Z+Zx B T =Z xSET(T))
o Mappings, ...

SPECIES
IKE
STRUCTURES

COMBINATORIAL
IES AND

Analytic
Combinatorics
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ek
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Introduction

Framework: Constructible Species

A small set of species

1, Z, x,+,SEQ, SET, CYC,

cardinality constraints that are finite unions of intervals,
used recursively (when it makes sense).

Examples:

@ Regular languages

@ Unambiguous context-free languages
o Trees (B=Z+ZxB% T =Z xSeT(T))
o Mappings, ...

Two related problems:
© Enumeration: number of objects of size n for n =0,1,2,....
@ Random generation: all objects of size n with the same proba.

Two contexts: labelled/unlabelled.

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Introduction
Recursive Method

B=Z+ Z x B2

I
i
(/;DraWBinTree(n) ={

[ Ifn=1retun Z

M Else {

J U := Uniform([0,1]); k :==0; S := 0;

while (§ < U){k:=k+1;S:=5 + bxbp—k—1/bn; }

return Z x DrawBinTree(n — k — 1) x DrawBinTree(k)}}

[Nijenhuis and Wilf; Flajolet, Zimmermann, Van Cutsem]
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Introduction
Recursive Method

B=Z+ Z x B2

I
i
(/;DraWBinTree(n) ={

[ Ifn=1retun Z

M Else {

J U := Uniform([0,1]); k :==0; S := 0;

while (§ < U){k:=k+1;S:=5 + bxbp—k—1/bn; }

return Z x DrawBinTree(n — k — 1) x DrawBinTree(k)}}

Generalizes to all constructible species. Requires by, ..., by.

[Nijenhuis and Wilf; Flajolet, Zimmermann, Van Cutsem]
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Introduction
Boltzmann Samplers

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each t € T with probability x/!l / T(x), where: x >0
fixed; T(z) := 3, 2/tl = generating series of T |t| = size.

Same size, same probability
Expected size xT'(x)/ T(x) increases with x.

Complexity linear in |t| when the values T(x) are available.
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Introduction
Boltzmann Samplers

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each t € T with probability x/!l / T(x), where: x >0
fixed; T(z) := 3, 2/tl = generating series of T |t| = size.

Same size, same probability
Expected size xT'(x)/ T(x) increases with x.

Singleton
Easy.

Complexity linear in |t| when the values T(x) are available.
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Introduction
Boltzmann Samplers

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each t € T with probability x/t// T(x), where: x > 0
fixed; T(z) := 3, 2!tl = generating series of T |t| = size.

Same size, same probability
Expected size xT'(x)/T(x) increases with x.

Singleton

—

Cartesian Product C = A x B

Easy.

@ Generate ac A; be B;
@ Return (a, b).

Proof. C(x) = Z(ab)X'a'Hb‘ = A(x)B(x); Xl(?‘(j)b‘ = /)\((‘j) E)s((“:)'

Complexity linear in |t| when the values T(x) are available.
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Introduction
Boltzmann Samplers

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each t € T with probability x/!l / T(x), where: x >0
fixed; T(z) := 3, 2/tl = generating series of T |t| = size.

Same size, same probability
Expected size xT'(x)/ T(x) increases with x.

Singleton Disjoint Union C = AU B
Easy. e Draw b = Bernoulli(A(x)/C(x));
@ If b=1 then generate a € A
Cartesian Product C = A x B else generate b € B.
o Generate a € A; b € B; o ol Ax)
Proof. &— = X221,

Clx) — Alx) €(x)

@ Return (a, b).

Complexity linear in |t| when the values T(x) are available.
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Introduction
Boltzmann Samplers

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each t € T with probability x/!l / T(x), where: x > 0
fixed; T(z) := 3, 2!tl = generating series of T [t| = size.

Same size, same probability
Expected size xT'(x)/T(x) increases with x.

Singleton Disjoint Union C = AU B

Easy. @ Draw b = Bernoulli(A(x)/C(x));
@ If b=1 then generate a € A

Cartesian Product C = A x B else generate b € B.

@ Generate ac A; be B;
@ Return (a, b).

Use recursively (e.g., binary trees B=Z U Z x B x B)
Also: sets, cycles,. . .;
Complexity linear in || when the values T(x) are available.

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Introduction
Boltzmann Samplers

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each t € T with probability xI!l/ T(x)/|t|!, where: x >0
fixed; T(z) := 3, 2/t1/|t|! = generating series of T [t| = size.

Same size, same probability
Expected size xT'(x)/T(x) increases with x.

Singleton Disjoint Union C = AU B

Easy. @ Draw b = Bernoulli(A(x)/C(x));
@ If b=1 then generate a € A

Cartesian Product C = A x B else generate b € B.

@ Generate ac A; be B;
@ Return (a, b).

Use recursively (e.g., binary trees B=Z U Z x B x B)
Also: sets, cycles,. .. ; labelled case
Complexity linear in || when the values T(x) are available.
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Introduction
Oracle: Large Systems that are Interesting to Solve

The generating series are given by systems of equations.

\

@ only one solution;
@ the right one;

@ only numerically.

0.5

In the worst case, these requirements would make no difference.
But these systems inherit structure from combinatorics.

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Introduction

Results (1/2): Fast Enumeration

Theorem (Enumeration in Quasi-Optimal Complexity)

First N coefficients of gfs of constructible species in
© arithmetic complexity:
o O(Nlog N) (both ogf and egf);
@ binary complexity:
o O(N?log® Nloglog N) (ogf);
o O(N?log® Nloglog N) (egf).

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Introduction

Results (2/2): Oracle

© The egfs and the ogfs of constructible species are convergent
in the neighborhood of 0;

@ A numerical iteration converging to Y(«) in the labelled case
(inside the disk);

© A numerical iteration converging to the
sequence Y(a),Y(a?),Y(a3),... for || - |
in the unlabelled case (inside the disk).

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Introduction

Examples (I): Polynomial Systems

Random generation following given XML grammars

Grammar nb max npb or%:;ls Fgli

eqs deg sols (
rss 10 5 2 0.02 0.03
PNML 22 4 4  0.05 0.1
xslt 40 3 10 04 1.5
relaxng 34 4 32 04 3.3
xhtml-basic 53 3 13 1.2 18
mathm|2 182 2 18 3.7 882
xhtml 93 6 56 34 1124
xhtml-strict 80 6 32 3.0 1590

xmlschema 59 10 24 0.5 6592

SVG 117 10 58 >1.5Go
docbook 407 11 67.7 >1.5Go
OpenDoc 500 3.9

[Darrasse 2008]
Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Introduction

Example (11): A Non-Polynomial “System”

Unlabelled rooted trees:

f(x) = xexp(f(x) + %f(x2) + %f(x3) +--)

09+
0.8
0.7+

0.6

T 1
0 0.1 02 03 0.4
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Combinatorics

I Combinatorics
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Combinatorics

Mini-Introduction to Species

@ Species F: Examples:
e 0 Z 1;
7 @ SET;
e SEQ, Cyc.
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Combinatorics

Mini-Introduction to Species

@ Species F: Examples:
e 0 Z 1;
7 @ SET;
e SEQ, Cyc.

o Composition F oG

Ry
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Combinatorics

Mini-Introduction to Species

@ Species F: Examples:
e 0 Z 1;
7 @ SET;
e SEQ, Cyc.
o Composition F o G: o V= H(Z,Y)

G
9 s f
o F
o :r . . B
G
9 g
g
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Combinatorics

Derivative
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Combinatorics

Derivative
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Combinatorics
Derivative
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Combinatorics
Derivative

species derivative

A+ B A+ B

A-B A -B+A-B
SEQ(B) SEQ(B)- B’ - SEQ(B)
Cyc(B) SEQ(B) - B/
SET(B) SET(B) - B

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Combinatorics
Derivative

species derivative
A+B A + 8B

A-B A -B+A-B
SEQ(B) SEQ(B)- B’ - SEQ(B)
Cyc(B) SEQ(B) - B
SET(B) SET(B) - B

Example:

H(G,S,P) :=(S+P,Seq-o(Z + P),Set=1(Z + S)) .

o _
oy

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics

QR

1 1
%) Seq(Z +P)-1-Seq(Z + P)
@ Setso(Z2+4+S8)-1 %)



Combinatorics
Joyal’s Implicit Species Theorem

If H(0,0) = 0 and OH/9Y(0,0) is nilpotent, then Y = H(Z,)Y)
has a unique solution, limit of

ylol — o, yirl — gz Yy (n>0).

Def. A =, B if they coincide up to size k (contact k).

If YIrt1l =, Ylrl then Ylrtetl]l =, YI+el (p = dimension).

e
4 : ?1 ¥ :m e
Em ?: Em 0 Emf‘P] \/':’“] ..o E"' 1
______ = =Y 0
E~\ 1:3 Y3 :m '\11
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Combinatorics
Joyal’s Implicit Species Theorem

If H(0,0) = 0 and OH/9Y(0,0) is nilpotent, then Y = H(Z,Y)
has a unique solution, limit of

ylol — o, yirl — gz Yy (n>0).

Def. A =, B if they coincide up to size k (contact k).

If YIrt1l =, Ylrl then Ylrtetl]l =, YI+el (p = dimension).

e
4 : ?1 ¥ :m e
Em ?: Em 0 Emf‘P] \/':’“] ..o E"' 1
______ = =Y 0
E~\ 1:3 Y3 :m '\11

We prove an iff when no 0 coordlnate.
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Combinatorics
Newton Iteration for Binary Trees

Y=1UZ x )?
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Combinatorics

Newton lteration for Binary Trees

Y=1UZ x )?

w4 <<Z R S
Tl e ~

6 2
V3 =) + .(éz dlooodt % 4+ 4.4+ "'Ké + ...
S

[Décoste, Labelle, Leroux 1982]
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Combinatorics

Newton lteration for Binary Trees

Y=1UZ x )?
Vr1 = Vo USEQ(Z x Yy x QU Z x O x Y,) x (1UZ x Y2\ V).

=0 Y=o

V2 = O + <<Z + & O/\Dd'@ +oot T e
L S e ~

6 2
V3 =) + .(éz dlooodt % 4+ 4.4+ "'Ké + ...
S

[Décoste, Labelle, Leroux 1982]
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Combinatorics
Combinatorial Newton lteration

Theorem (essentially Labelle)

For any well-founded system Y = H(Z,Y), if A has contact k
with the solution and A C H(Z,.A), then

A+Z< (Z.A) C(H(Z,A) - A)

i>0

has contact 2k + 1 with it.

A+ AT = At

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Combinatorics
Combinatorial Newton lteration

Theorem (essentially Labelle)

For any well-founded system Y = H(Z,Y), if A has contact k
with the solution and A C H(Z,.A), then

A+Z< (Z.A) C(H(Z,A) - A)

i>0

has contact 2k + 1 with it.

A
A

A+ AT = At

A
A

Generation by increasing Strahler numbers.

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics




Combinatorics
Newton Iteration for Series-Parallel Graphs

w0
w0

s [ e = Sones on o 2ot Bho o} 0 2% seven o Fo
spgein e hin g B

mﬁ}m%%mtﬁﬁiﬂm%m@jm@ﬂ@

sty (sl Ay 0 se?(2 + P — 1\ (seasi(2 + P - s
plr+1] pln = SETS0(Z + Sl 0 SETso(Z + Sl — Pl
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Combinatorics
Linear Species and Ordered Structures

The underlying sets are ordered
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Combinatorics
Linear Species and Ordered Structures

The underlying sets are ordered

| F: e increasing trees: Y = Z + [ F(Y);
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Combinatorics
Linear Species and Ordered Structures

The underlying sets are ordered

JF: e increasing trees: Y = Z + [ F(Y);
x @ alternating permutations (odd/even):
min .Ae = /.Aer, .Ao = Z+/.A%,
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Combinatorics
Linear Species and Ordered Structures

The underlying sets are ordered

JF: e increasing trees: Y = Z + [ F(Y);
x @ alternating permutations (odd/even):
min .Ae = /.Aer, .Ao = Z+/.A%,

e cycles: Cyc(A) = [SEQ(A)A;
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Combinatorics
Linear Species and Ordered Structures

The underlying sets are ordered

JF: e increasing trees: Y = Z + [ F(Y);
x @ alternating permutations (odd/even):
min .Ae = /.Aer, .Ao = Z+/.A%,

e cycles: Cyc(A) = [SEQ(A)A;
o sets: SET(A) =1+ [SET(A)A'.
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Combinatorics
Linear Species and Ordered Structures

JF: e increasing trees: YV = Z + [ F(Y);
e @ alternating permutations (odd/even):
o= [Ache, Ao=z+ [ 4

o cycles: Cyc(A) = [SEQ(A)A;
o sets: SET(A) =1+ [SET(A)A'.

Theorem (Enumeration in Quasi-Optimal Complexity)

First N coefficients of the solution of
Z
V(Z) = H(Z,(2)) + /0 (T, (7)) dT

with H and G constructible, in O(N log N) operations.
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Generating Series

Il Newton lteration for Power Series
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Generating Series

Newton Did It in 1671!

TP 1w yogut
Sttty 2683 A=y =0. ym=r— P r e e SO
e ap=y. -y A} HAmyaipmgapip
itxy | i K Xp
ety | ) A
i3 —3
—2a | —m2a3
otk mg=p. p5 3 Amixtg —ixgteg3
~+3ap* X —eiaXg  —b3agi
irp —} axt -axq
Aegatp | —aze qatq
- ~+atx —itx
—t3 —x3
-
Hon =1 -+43 *
— g *
" 35t -
H3agt | s ¥ hrrart
e (N P A R
e taxg 10142
R A pu— —taxr
Haatq | eraxt A-qatr
—id N —ax3
— X —lax
o Il T3Ix0 So9a*
¥ gttt — (s

Bruno Salvy
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Generating Series
Generating Series: a Simple Dictionary

It
ogf := sz, egf := z
teT teT

Language and Gen. Fcns (labelled)

AUB  A(z) + B(2)
AxB  A(z) x B(z)
SEQ(C) — é(z)
A A'(z)
Cyc(C) log %C(Z)

SET(C)  exp(C(2))

Consequence:
Combinatorial Newton iteration — Newton iteration for GFs
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Generating Series
Generating Series: a Simple Dictionary

It
o t o Z
ogf.-Zz' | egf.—zm.

teT teT

Language and Gen. Fcns (labelled) (11 labelled)

AUB  A(z) + B(z) A(z) + B(z)

Ax B A(z) >< B(z) A(z) >1< B(z)

SEQ(C) C(z) 1-C(2)
A’ ( —

Cyc(C) Iogm Zk>1 |°g1 @z
SET(C)  exp(C(2)) eXP(ZC( /i)

Consequence:
Combinatorial Newton iteration — Newton iteration for GFs
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Generating Series
Newton lteration for Power Series has Good Complexity

To solve ¢(y) = 0, iterate
ylrttl =yl ot g Ioly ot il — gy Iy

Quadratic convergence \ "

11 / oer

Divide-and-Conquer
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Generating Series
Newton lteration for Power Series has Good Complexity

To solve ¢(y) = 0, iterate

=yl 11 g lhy o1l = gy Iy

Quadratic convergence \ "

I]: / iz

Divide-and-Conquer
© Solve at precision N/2; Cost(y[”]) = constant x Cost(last step).
@ Compute ¢ and ¢ there;

@ Solve for ul"+1l.

I+
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Generating Series
Newton lteration for Power Series has Good Complexity

To solve ¢(y) = 0, iterate

= bl gyl (),

Quadratic convergence \ ’

ﬁ / Oy

Divide-and-Conquer

y[n+1]

To solve at precision N
O Solve at precision N/2; Cost(y[”]) = constant x Cost(last step).
@ Compute ¢ and ¢ there;
@ Solve for yln*11.
Useful in conjunction with fast multiplication (quasi-linear):
@ power series at order N: O(N log ) ops on the coefficients;
o N-bit integers: O(N log N loglog N) bit ops.
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Generating Series
Example: Series-Parallel Graphs

P = Set>1(Z + S) %) Set>0(Z + S) %)

iy
i el |
=g T

93
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Generating Series
Example: Series-Parallel Graphs (labelled case)

P =Set-1(Z+S). I Set-o(Z2+S) &

translates into

G =S+P, 0
OH
S =(1-z-pP) -1, (0

0

P =t -1-2z-5.

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Generating Series
Example: Series-Parallel Graphs (labelled case)

translates into

G =S5+P, 0 1 1

. OH o
S :(l—Z—P) —1, 872 0 0 (1—Z—P)
P —etS_1-7-5. 0 5 -1 0

Glnl
Newton iteration: Y[ .= (5[n]>,
plnl

OH !
[n+1] _ ylnl _OH vy [nly _ ylnl
v+l —y +<Id (Y )) (H(Y ) - Y )
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Generating Series
Example: Series-Parallel Graphs (labelled case)

translates into

G =S5+P, 0 1 1

. OH o
S :(1—Z—P) —1, 872 0 0 (1—Z—P)
P —etS_1-7-5. 0 5 -1 0

Glnl
Newton iteration: Y[ .= (5[n]>,
plnl

8H -1 n+1
[+1] _ ] _OH vy [nly _ yln] 2
v+l —y +<Id (Y )) <H(Y )—Y )modz .
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Generating Series
Example: Series-Parallel Graphs (labelled case)

translates into

G =S+P, 0 1 1
1 OH 5
5 :(1—Z—P) —].7 87Y— 0 O (1—Z—P)
P :eZJrS—l—Z—S. 0 ez+5—1 0
Glnl
Newton iteration: Y[ := <5[nl>,
Pl

aH ! n+1
ylr+1 — ylnl _ 2yl . vy _ ylnl 2t

= Wanted: efficient matrix inverse, efficient exp.
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Generating Series
Example: Unlabelled Rooted Trees

@ Combinatorial equation: Y = Z - SET(Y) =: H(Z,));

Nipe 2
‘. &
N
Raney
Y%
e
R
Y
g '}'
Y
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Generating Series
Example: Unlabelled Rooted Trees

@ Combinatorial equation: Y = Z - SET(Y) =: H(Z,));

@ Combinatorial Newton iteration: e 2l
‘. g
Yt = yIl 4 Spq(H VM) - (R (YIM) \ VI v
%ﬂ’r \
2oy
Y
N 7
0
N‘dﬂt” W
vy
y ’}'
A
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Generating Series
Example: Unlabelled Rooted Trees

@ Combinatorial equation: Y = Z - SET(Y) =: H(Z,));

@ Combinatorial Newton iteration: e 2l
‘- g
y["+1] — y[”] + SEQ(H(y[”])) . (’H(y["]) \y["]) i
~ ~ &;"r oy \
@ OGF equation: ¥(z) = H(z, ¥(2)) \&K’ /A
< - 1. 1. « )
Y(z) = zexp(Y(z) + EY(Z2) + §Y(z3) +-) T{Q” J
Ay
y ’}'
A
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Generating Series
Example: Unlabelled Rooted Trees

@ Combinatorial equation: Y = Z - SET(Y) =: H(Z,));

@ Combinatorial Newton iteration: e 2l
‘- g
Y= Y+ Ssq(H (M) - (I \ ) g
~ ~ &;"r oy \
@ OGF equation: ¥(z) = H(z, ¥(2)) \&K’ /A
< o 1. 1. « )
Y(z):zexp(Y(z)—|—EY(Z2)+§Y(23)+...) “‘A‘ﬁf .
T
© Newton for OGF: y 5 "
g'/[n-&—l] — S’/[n] + H(Z7 Y[n]) t Y[n] \'
1— H(z, Yn)

0,
z+z2—|—z3—|—z4—|—---,
z—|—22+2z3—|—4z4—|—9z5+2026+---
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Generating Series
Newton Iteration for Inverses

oy)=a—1/y = 1/¢/(y) = y* = |yl =yl — ylrl(aylnl 1),

Cost: a small number of multiplications

Works for: Applications:
@ Numerical inversion;
@ Reciprocal of power series; e SEQ
@ Inversion of matrices. o (/- %’J)‘l

[Schulz 1933; Cook 1966; Sieveking 1972; Kung 1974]
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Generating Series
Inverses for Series-Parallel Graphs

G =5+P, 0 1 1

1 OH .
S :(l—Z—P) —1, 87: 0 0 (1*Z*P)
P =etS_-1-2z-6. 0 et -1 0

Newton iteration:

Ut = gl gl (¥t 4 1d - U) mod 22",
vyl oyl yln+l (H(Y[n]) _ Y[n]) mod 22"

Can be lifted combinatorially.
Also a numerical iteration!
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Generating Series
Inverses for Series-Parallel Graphs

G =S5+P, 0 1 1

) OH 5
5 :(1—Z—P) —1, aT: 0 0 (1—Z—P)
P —=etS_1_7-_56. 0 et -1 0

Newton iteration:
yln1 — ylal 4 yln] (%(Y[”l) LUl 4 1d —U[”]> mod 72,
ylrtl =yl g+l (H(Y["]) — Y[”]) mod 22"

Can be lifted combinatorially.
Also a numerical iteration!
= Wanted: efficient exp.
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Generating Series
From the Inverse to the Exponential

@ Logarithm of power series: log f = [(f'/f)
(recall Cyc(A) = [ A'SEQ(A))

@ exponential of power series: ¢(y) =a—logy.

a— log el
1/elnl

= elnl 1 elnl (a — /e[n]//e[n]> mod 22",

on+1

eln 1l — elnl mod z°

And 1/el"l is computed by Newton iteration too!

[Brent 1975; Hanrot-Zimmermann 2002]
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Generating Series
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0
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Generating Series
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Fast conversion using the generating series:

FI H S,' i
rri\\//((F)) = —ZSH—lt' < rev(F) = exp <—Z I_t) .
i>0
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Generating Series
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Fast conversion using the generating series:
rev(F) ; Si
———E Si 1t < F)=e —E N
rev(F) o~ an rev(F) = exp < i

Application: composed product and sums

(F,G) — II (@t—aB) or II @¢—(a+n).

F(a)=0,G(8)=0 F(a)=0,G(8)=0
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Generating Series
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Fast conversion using the generating series:
reV(F)' i S,' i
ev(F) :—;5;+1t < rev(F) = exp _ZTt .

Application: composed product and sums

(F,G) — II (@t—aB) or II @¢—(a+n).

F(a)=0,G(8)=0 F(a)=0,G(8)=0
Easy in Newton representation: _ a° Y ° = (af)® and

ST e (D) (S5 )

[Schonhage 1982; Bostan, Flajolet, Salvy, Schost 2006]




Generating Series

Timings

Applications (crypto): over finite fields, degree > 200000 expected.

12000 T T T T 60 T T
Bivariate resultant computation Our algorithm
10000 - 50 B
8000 [ — 40 A
6000 — 30 A
4000 — 20 A
2000 [ B 10 A
0 | I I I 0 I I I I
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000

Timings in seconds vs. output degree N, over [F,, 26 bits prime p
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Generating Series
Conclusion for Series-Parallel Graphs

G=8+P, S=SEQ.o(Z+P), P=SET-1(Z+S)

compiles into the Newton iteration:

jln+1] — Il _ ,'[n](e[n],'[n] ~1),
elr+1] — gln] _ gln] (1 + %5['1] — f(%e[n]),'[n]) ’
vlntil — lnl — v[”]((l 7 p[n])v[n] —1),
0 1 1
yln+1 — ylnl £ ylnl . 0 0 Sr+112 | Lyl g —ylnl 7
0 el"t_1 0
Gln+1] Glnl sl o plnl _ glnl
Sl+1l | = | gl |  ylntil | Int1] _ gl mod 22",
pln+1] plnl eln+1] _ pln]

Computation reduced to products and linear ops.



Generating Series

Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,
ar () + -+ ao(t)y(t) = 0,

compute the first N terms of a basis of power series solutions.
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Generating Series
Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,
ar(t)y(£) + -+ + ao(t)y(t) = 0,
compute the first N terms of a basis of power series solutions.

Algorithm

@ Convert into a system & : Y — Y' — A(t)Y (D® = ®);
Q@ D[, (U) = d(Y) rewrites U' — AU = Y’ — AY;;

© Variation of constants: U =Y [ Y7}(Y — AY);

@ Y ! by Newton iteration too.

Special case: recover good exponential.

[Bostan, Chyzak, Ollivier, Salvy, Schost, Sedoglavic 2007]
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Generating Series
Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,

ar(t)y(8) + -+ + ao(t)y(t) = O,

compute the first NV terms of a basis of power series solutions.

Algorithm

@ Convert into a system ®: Y — Y' — A(t)Y (D = );
Q@ Dol (U) = ®(Y) rewrites U — AU = Y' — AY;;

© Variation of constants: U =Y [ Y~}(Y' — AY);

Q@ Y ! by Newton iteration too.

Special case: recover good exponential.
Lifts to integral equations for linear species.

[Bostan, Chyzak, Ollivier, Salvy, Schost, Sedoglavic 2007]



Generating Series

Timings

"MatMul.dat" —— "Newton.dat" —

time (in seconds) time (in seconds)

OCRNWAND~N®

Polynomial matrix multiplication vs. solving Y/ = AY'.
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Generating Series
Non-Linear Differential Equations

Example from cryptography:

¢y (X3 +Ax+B)y? - (y* + Ay + B).
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Generating Series
Non-Linear Differential Equations

Example from cryptography:
¢y (X +Ax+B)y? — (v’ + Ay + B).

Differential:

D¢, : uws 2(x3 4+ Ax + B)y'u' — (3y? + A)u.

Solve the linear differential equation

Do|, u= ¢(y)
at each iteration.

Again, quasi-linear complexity.

[Bostan, Morain, Salvy, Schost 2008]
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Oracle

IV Oracle
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Oracle
Exponential Generating Series

Combinatorial Specification

4

Combinatorial Newton iteration for

4
Newton iteration for the gf Y(z)
((y()7 - 7y/\/) fast)
4

Numerical Newton iteration
starting from 0 converges to the
value of Y(x).

0 %
0,25 0,255 0,26 0,265 0.27 0,275 0.28
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Oracle
Exponential Generating Series

Combinatorial Specification

4

Combinatorial Newton iteration for ) «

N2
Newton iteration for the gf Y(z) y
((yo,---,yn) fast)
‘U’ (X}

Numerical Newton iteration
starting from 0 converges to the
value of Y(x).
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Oracle

Ordinary Generating Function on an Example

@ Combinatorial Equation: Y = Z - SET(Y) =: H(Z,));

o
(ﬂ"\’(
N
w6
ey
8 N ¥
[y
el
§
" '}'
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Oracle

Ordinary Generating Function on an Example

@ Combinatorial Equation: Y = Z - SET(Y) =: H(Z,));

<
© Combinatorial Newton iteration: Wy
Yt = Yl Seo(H(YIM) - (H V) \ V)
N
W
SRS
s
vy
N ’}'
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Oracle

Ordinary Generating Function on an Example

@ Combinatorial Equation: Y = Z - SET(Y) =: H(Z,));

o
© Combinatorial Newton iteration: Wy
Yt = Yl Seo(H(YIM) - (H V) \ V)
© OGF equation: \7(~z) = H(z,j/(z)) %’f, )
=zexp(Y(2)+ LY+ LY+ ) Mg AL
(s
vy
" ’}'
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Oracle

Ordinary Generating Function on an Example

@ Combinatorial Equation: Y = Z - SET(Y) =: H(Z,));

© Combinatorial Newton iteration: (ﬂ:(,
Yt = ylol 4 Seq(H(YIM)) - (H(VIM) \ Vi)
@ OGF equation: Y(z) = H(z, Y(2)) %{‘. ‘
=zexp(Y(2) + %\7(22) + %\7(23) +--) J"&\% I
@ Newton for OGF: Y+l = ylnl % & T:f »
¥
g ’}'
i
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Oracle

Ordinary Generating Function on an Example

@ Combinatorial Equation: Y = Z - SET(Y) =: H(Z,));

@ Combinatorial Newton iteration: (ﬂ: 4
Yt = ylol 4 Seq(H(YIM)) - (H(VIM) \ Vi)
@ OGF equation: Y(z) = H(z, Y(2)) %{', )
=zexp(Y(z) + 3V(22) + iV (%) +-) Jw&\% I
@ Newton for OGF: YIrt1l = ylnl 4 HEYID vl &=
1—H(z,YI) s}\t’ 4
© Numerical iteration: . v
n YI(0.3) yIl(0.32) yIn(0.33) g
0 0 0 0 il
1 .43021322639 0.99370806338e-1 0.27759817516e-1
2 54875612912 0.99887132154e-1 0.27770629187e-1
3 55709557053 0.99887147197e-1 0.27770629189%-1
4 55713907945 0.99887147198e-1 0.27770629189%-1
5 55713908064 0.99887147198e-1 0.27770629189%e-1
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Conclusion

V Conclusion
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Conclusion

Conclusion

@ Summary:
e Newton iteration has good complexity;
e Oracle: numerical Newton iteration that gives the values of ...
power series that are the gfs of ...
combinatorial iterates.
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Conclusion
Conclusion

@ Summary:
e Newton iteration has good complexity;
e Oracle: numerical Newton iteration that gives the values of ...
power series that are the gfs of ...
combinatorial iterates.
@ Read the paper for:
o Well-defined systems (with 1);
e Majorant species;
o PowerSet (it is not a species).
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Conclusion
Conclusion

@ Summary:
e Newton iteration has good complexity;
e Oracle: numerical Newton iteration that gives the values of ...
power series that are the gfs of ...
combinatorial iterates.
@ Read the paper for:
o Well-defined systems (with 1);
o Majorant species;
o PowerSet (it is not a species).

THE END
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