Départ en retraite de Pierre

Villetaneuse, février 2013

My only paper with Pierre

Pierre Nicodème, Bruno Salvy, and Philippe Flajolet *Motif statistics*Theoretical Computer Science **287** (2002), no. 2, 593–618.

My only paper with Pierre

Pierre Nicodème, Bruno Salvy, and Philippe Flajolet *Motif statistics*

Theoretical Computer Science **287** (2002), no. 2, 593–618.

...will be mentioned by Julien this afternoon.

Newton Iteration in Computer Algebra and Combinatorics

Bruno Salvy Bruno.Salvy@inria.fr

Inria AriC Project, LIP ENS Lyon

Joint work with Carine Pivoteau and Michèle Soria, Journal of Combinatorial Theory, Series A 119 (2012), 1711–1773.

Villetaneuse, Pierre's retirement, Feb. 2013

I Introduction

Motivation: Random Generation

Random generation of large objects = simulation in the discrete world. It helps

- evaluate the order of magnitude of quantities of interest;
- differentiate exceptional values from statistically expected ones;
- compare models;
- test software.

Framework: Constructible Species

A small set of species

 $1,\mathcal{Z},\times,+,\mathrm{SEQ},\mathrm{SET},\mathrm{CYC},$ cardinality constraints that are finite unions of intervals, used recursively.

Examples:

- Regular languages
- Unambiguous context-free languages
- Trees $(\mathcal{B} = \mathcal{Z} + \mathcal{Z} \times \mathcal{B}^2, \ \mathcal{T} = \mathcal{Z} \times \operatorname{SET}(\mathcal{T}))$
- Mappings, . . .

Framework: Constructible Species

A small set of species

 $1, \mathcal{Z}, \times, +, \operatorname{SEQ}, \operatorname{SET}, \operatorname{CYC},$ cardinality constraints that are finite unions of intervals, used recursively (when it makes sense).

Examples:

- Regular languages
- Unambiguous context-free languages
- Trees $(\mathcal{B} = \mathcal{Z} + \mathcal{Z} \times \mathcal{B}^2, \ \mathcal{T} = \mathcal{Z} \times \operatorname{SET}(\mathcal{T}))$
- Mappings, . . .

Framework: Constructible Species

A small set of species

 $1, \mathcal{Z}, \times, +, \operatorname{SEQ}, \operatorname{SET}, \operatorname{CYC},$ cardinality constraints that are finite unions of intervals, used recursively (when it makes sense).

Examples:

- Regular languages
- Unambiguous context-free languages
- Trees $(\mathcal{B} = \mathcal{Z} + \mathcal{Z} \times \mathcal{B}^2, \mathcal{T} = \mathcal{Z} \times \operatorname{Set}(\mathcal{T}))$
- Mappings, . . .

- **1 Enumeration**: number of objects of size n for n = 0, 1, 2, ...
- **2** Random generation: all objects of size n with the same proba.

Two contexts: labelled/unlabelled.

Recursive Method

$$\mathcal{B} = \mathcal{Z} + \mathcal{Z} \times \mathcal{B}^2$$

```
DrawBinTree(n) = \{
  If n = 1 return \mathcal{Z}
  Else {
     U := Uniform([0,1]); k := 0; S := 0;
     while (S < U)\{k := k + 1; S := S + b_k b_{n-k-1}/b_n; \}
     return \mathcal{Z} \times \text{DrawBinTree}(n-k-1) \times \text{DrawBinTree}(k)
```

[Nijenhuis and Wilf; Flajolet, Zimmermann, Van Cutsem]

Recursive Method

$$\mathcal{B} = \mathcal{Z} + \mathcal{Z} \times \mathcal{B}^2$$

```
DrawBinTree(n) = \{
  If n = 1 return \mathcal{Z}
  Else {
     U := Uniform([0,1]); k := 0; S := 0;
     while (S < U)\{k := k + 1; S := S + b_k b_{n-k-1}/b_n; \}
     return \mathcal{Z} \times \text{DrawBinTree}(n-k-1) \times \text{DrawBinTree}(k)
Generalizes to all constructible species. Requires b_0, \ldots, b_n.
[Nijenhuis and Wilf; Flajolet, Zimmermann, Van Cutsem]
```

7 / 4

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each $t \in \mathcal{T}$ with probability $x^{|t|}/T(x)$, where: x > 0 fixed; $T(z) := \sum_{t \in \mathcal{T}} z^{|t|} = \text{generating series of } \mathcal{T}$; |t| = size.

Same size, same probability Expected size xT'(x)/T(x) increases with x.

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each $t \in \mathcal{T}$ with probability $x^{|t|}/T(x)$, where: x > 0 fixed; $T(z) := \sum_{t \in \mathcal{T}} z^{|t|} = \text{generating series of } \mathcal{T}$; |t| = size.

Same size, same probability Expected size xT'(x)/T(x) increases with x.

Singleton

Easy.

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each $t \in \mathcal{T}$ with probability $x^{|t|}/T(x)$, where: x > 0 fixed; $T(z) := \sum_{t \in \mathcal{T}} z^{|t|} = \text{generating series of } \mathcal{T}$; |t| = size.

Same size, same probability Expected size xT'(x)/T(x) increases with x.

Singleton

Easy.

Cartesian Product $C = A \times B$

- Generate $a \in \mathcal{A}$; $b \in \mathcal{B}$;
- Return (a, b).

Proof. $C(x) = \sum_{(a,b)} x^{|a|+|b|} = A(x)B(x); \frac{x^{|a|+|b|}}{C(x)} = \frac{x^{|a|}}{A(x)} \frac{x^{|b|}}{B(x)}.$ Complexity linear in |t| when the values T(x) are available.

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each $t \in \mathcal{T}$ with probability $x^{|t|}/T(x)$, where: x > 0 fixed; $T(z) := \sum_{t \in \mathcal{T}} z^{|t|} = \text{generating series of } \mathcal{T}$; |t| = size.

Same size, same probability Expected size xT'(x)/T(x) increases with x.

Singleton

Easy.

Cartesian Product $C = A \times B$

- Generate $a \in \mathcal{A}$; $b \in \mathcal{B}$;
- Return (a, b).

Disjoint Union $C = A \cup B$

- Draw b = Bernoulli(A(x)/C(x));
- If b = 1 then generate $a \in \mathcal{A}$ else generate $b \in \mathcal{B}$.

Proof.
$$\frac{x^{|a|}}{C(x)} = \frac{x^{|a|}}{A(x)} \frac{A(x)}{C(x)}$$
.

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each $t \in \mathcal{T}$ with probability $x^{|t|}/T(x)$, where: x > 0fixed; $T(z) := \sum_{t \in \mathcal{T}} z^{|t|} = \text{generating series of } \mathcal{T}; |t| = \text{size.}$

> Same size, same probability Expected size xT'(x)/T(x) increases with x.

Singleton

Easy.

Cartesian Product $C = A \times B$

- Generate $a \in \mathcal{A}$: $b \in \mathcal{B}$:
- Return (a, b).

Disjoint Union $C = A \cup B$

- Draw b = Bernoulli(A(x)/C(x));
- If b=1 then generate $a \in \mathcal{A}$ else generate $b \in \mathcal{B}$.

Use recursively (e.g., binary trees $\mathcal{B} = \mathcal{Z} \cup \mathcal{Z} \times \mathcal{B} \times \mathcal{B}$) Also: sets, cycles,...;

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each $t \in \mathcal{T}$ with probability $x^{|t|}/T(x)/|t|!$, where: x > 0 fixed; $T(z) := \sum_{t \in \mathcal{T}} z^{|t|}/|t|! = \text{generating series of } \mathcal{T}$; |t| = size.

Same size, same probability Expected size xT'(x)/T(x) increases with x.

Singleton

Easy.

Cartesian Product $C = A \times B$

- Generate $a \in \mathcal{A}$; $b \in \mathcal{B}$;
- Return (a, b).

Disjoint Union $C = A \cup B$

- Draw b = Bernoulli(A(x)/C(x));
- If b = 1 then generate $a \in \mathcal{A}$ else generate $b \in \mathcal{B}$.

Use recursively (e.g., binary trees $\mathcal{B} = \mathcal{Z} \cup \mathcal{Z} \times \mathcal{B} \times \mathcal{B}$)

Also: sets, cycles,...; labelled case

Oracle: Large Systems that are Interesting to Solve

The generating series are given by systems of equations.

In the worst case, these requirements would make no difference. **But** these systems inherit structure from combinatorics.

Results (1/2): Fast Enumeration

Theorem (Enumeration in Quasi-Optimal Complexity)

First N coefficients of gfs of constructible species in

- 1 arithmetic complexity:
 - $O(N \log N)$ (both ogf and egf);
- binary complexity:
 - $O(N^2 \log^2 N \log \log N)$ (ogf);
 - $O(N^2 \log^3 N \log \log N)$ (egf).

Results (2/2): Oracle

- The egfs and the ogfs of constructible species are convergent in the neighborhood of 0;
- ② A numerical iteration converging to $\mathbf{Y}(\alpha)$ in the labelled case (inside the disk);
- **3** A numerical iteration converging to the sequence $\mathbf{Y}(\alpha), \mathbf{Y}(\alpha^2), \mathbf{Y}(\alpha^3), \ldots$ for $\|\cdot\|_{\infty}$ in the unlabelled case (inside the disk).

Examples (I): Polynomial Systems

Random generation following given XML grammars

Grammar	nb eqs	max deg	nb sols	oracle (s.)	FGb (s.)
rss	10	5	2	0.02	0.03
PNML	22	4	4	0.05	0.1
xslt	40	3	10	0.4	1.5
relaxng	34	4	32	0.4	3.3
xhtml-basic	53	3	13	1.2	18
mathml2	182	2	18	3.7	882
×html	93	6	56	3.4	1124
xhtml-strict	80	6	32	3.0	1590
xmlschema	59	10	24	0.5	6592
SVG	117	10		5.8	>1.5Go
docbook	407	11		67.7	>1.5Go
${\sf OpenDoc}$	500			3.9	

[Darrasse 2008]

Example (II): A Non-Polynomial "System"

Unlabelled rooted trees:

$$f(x) = x \exp(f(x) + \frac{1}{2}f(x^2) + \frac{1}{3}f(x^3) + \cdots)$$

II Combinatorics

Mini-Introduction to Species

• Species \mathcal{F} :

Examples:

- 0, Z, 1;
- SET;
- Seq, Cyc.

Mini-Introduction to Species

• Species \mathcal{F} :

• Composition $\mathcal{F} \circ \mathcal{G}$:

Examples:

- 0, Z, 1;
- Set;
- Seq, Cyc.

Mini-Introduction to Species

• Species \mathcal{F} :

• Composition $\mathcal{F} \circ \mathcal{G}$:

Examples:

- 0, Z, 1;
- Set;
- Seq, Cyc.

• $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$

Huet's zipper

species	derivative
$\overline{\mathcal{A} + \mathcal{B}}$	$\mathcal{A}'+\mathcal{B}'$
$\mathcal{A}\cdot\mathcal{B}$	$\mathcal{A}'\cdot\mathcal{B}+\mathcal{A}\cdot\mathcal{B}'$
$\mathrm{Seq}(\mathcal{B})$	$\operatorname{Seq}(\mathcal{B}) \cdot \mathcal{B}' \cdot \operatorname{Seq}(\mathcal{B})$
$\mathrm{Cyc}(\mathcal{B})$	$\operatorname{SeQ}(\mathcal{B})\cdot\mathcal{B}'$
$\operatorname{Set}(\mathcal{B})$	$\operatorname{Set}(\mathcal{B})\cdot\mathcal{B}'$

species	derivative
$\overline{\mathcal{A} + \mathcal{B}}$	$\mathcal{A}'+\mathcal{B}'$
$\mathcal{A}\cdot\mathcal{B}$	$\mathcal{A}'\cdot\mathcal{B}+\mathcal{A}\cdot\mathcal{B}'$
$\mathrm{Seq}(\mathcal{B})$	$\operatorname{Seq}(\mathcal{B}) \cdot \mathcal{B}' \cdot \operatorname{Seq}(\mathcal{B})$
$\mathrm{Cyc}(\mathcal{B})$	$\operatorname{SeQ}(\mathcal{B})\cdot\mathcal{B}'$
$\operatorname{Set}(\mathcal{B})$	$\operatorname{Set}(\mathcal{B})\cdot\mathcal{B}'$

Example:

$$\mathcal{H}(\mathcal{G}, \mathcal{S}, \mathcal{P}) := (\mathcal{S} + \mathcal{P}, \mathsf{Seq}_{>0}(\mathcal{Z} + \mathcal{P}), \mathsf{Set}_{>1}(\mathcal{Z} + \mathcal{S})).$$

$$\frac{\partial \boldsymbol{\mathcal{H}}}{\partial \boldsymbol{\mathcal{Y}}} = \begin{pmatrix} \varnothing & 1 & 1 \\ \varnothing & \varnothing & \operatorname{Seq}(\mathcal{Z} + \mathcal{P}) \cdot 1 \cdot \operatorname{Seq}(\mathcal{Z} + \mathcal{P}) \\ \varnothing & \operatorname{Set}_{>0}(\mathcal{Z} + \mathcal{S}) \cdot 1 & \varnothing \end{pmatrix}$$

Joyal's Implicit Species Theorem

$\mathsf{Theorem}$

If $\mathcal{H}(0,0) = 0$ and $\partial \mathcal{H}/\partial \mathcal{Y}(0,0)$ is nilpotent, then $\mathcal{Y} = \mathcal{H}(\mathcal{Z},\mathcal{Y})$ has a unique solution, limit of

$$\mathbf{\mathcal{Y}}^{[0]}=0, \qquad \mathbf{\mathcal{Y}}^{[n+1]}=\mathbf{\mathcal{H}}(\mathcal{Z},\mathbf{\mathcal{Y}}^{[n]}) \quad (n\geq 0).$$

Def. $A =_k B$ if they coincide up to size k (contact k).

Key Lemma

If
$$\mathcal{Y}^{[n+1]} =_k \mathcal{Y}^{[n]}$$
, then $\mathcal{Y}^{[n+p+1]} =_{k+1} \mathcal{Y}^{[n+p]}$, $(p = \text{dimension})$.

Joyal's Implicit Species Theorem

Theorem

If $\mathcal{H}(0,0) = 0$ and $\partial \mathcal{H}/\partial \mathcal{Y}(0,0)$ is nilpotent, then $\mathcal{Y} = \mathcal{H}(\mathcal{Z},\mathcal{Y})$ has a unique solution, limit of

$$\mathbf{\mathcal{Y}}^{[0]}=0, \qquad \mathbf{\mathcal{Y}}^{[n+1]}=\mathbf{\mathcal{H}}(\mathcal{Z},\mathbf{\mathcal{Y}}^{[n]}) \quad (n\geq 0).$$

Def. $A =_k B$ if they coincide up to size k (*contact* k).

Key Lemma

If
$$\mathcal{Y}^{[n+1]} =_k \mathcal{Y}^{[n]}$$
, then $\mathcal{Y}^{[n+p+1]} =_{k+1} \mathcal{Y}^{[n+p]}$, $(p = \text{dimension})$.

We prove an iff when no 0 coordinate.

Newton Iteration for Binary Trees

$$\mathcal{Y} = 1 \cup \mathcal{Z} \times \mathcal{Y}^2$$

$$\mathcal{Y} = 1 \cup \mathcal{Z} \times \mathcal{Y}^2$$

[Décoste, Labelle, Leroux 1982]

Newton Iteration for Binary Trees

$$\mathcal{Y} = 1 \cup \mathcal{Z} \times \mathcal{Y}^2$$

$$\mathcal{Y}_{n+1} = \mathcal{Y}_n \cup \operatorname{SEQ}(\mathcal{Z} \times \mathcal{Y}_n \times \square \cup \mathcal{Z} \times \square \times \mathcal{Y}_n) \times (1 \cup \mathcal{Z} \times \mathcal{Y}_n^2 \setminus \mathcal{Y}_n).$$

$$\mathcal{Y}_0 = \emptyset$$
 $\mathcal{Y}_1 = \circ$

$$\mathcal{Y}_2 = \begin{pmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

$$\mathcal{Y}_3 = \mathcal{Y}_2 + \mathcal{Y}_0 + \cdots + \mathcal{Y}_0 + \cdots + \mathcal{Y}_0 + \cdots$$

[Décoste, Labelle, Leroux 1982]

Combinatorial Newton Iteration

Theorem (essentially Labelle)

For any well-founded system $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$, if \mathcal{A} has contact k with the solution and $\mathcal{A} \subset \mathcal{H}(\mathcal{Z}, \mathcal{A})$, then

$$\mathcal{A} + \sum_{i>0} \left(\frac{\partial \mathcal{H}}{\partial \mathcal{Y}}(\mathcal{Z}, \mathcal{A}) \right)^{\prime} \cdot (\mathcal{H}(\mathcal{Z}, \mathcal{A}) - \mathcal{A})$$

has contact 2k + 1 with it.

$$\mathcal{A} + \mathcal{A}^{+} = \mathcal{A} + \mathcal{A}$$

Combinatorial Newton Iteration

Theorem (essentially Labelle)

For any well-founded system $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$, if \mathcal{A} has contact k with the solution and $\mathcal{A} \subset \mathcal{H}(\mathcal{Z}, \mathcal{A})$, then

$$\mathcal{A} + \sum_{i>0} \left(\frac{\partial \mathcal{H}}{\partial \mathcal{Y}}(\mathcal{Z}, \mathcal{A}) \right)^{\prime} \cdot (\mathcal{H}(\mathcal{Z}, \mathcal{A}) - \mathcal{A})$$

has contact 2k + 1 with it.

$$\mathcal{A} + \mathcal{A}^{+} = \mathcal{A} + \mathcal{A}$$

Generation by increasing Strahler numbers.

Newton Iteration for Series-Parallel Graphs

$$\begin{pmatrix} \mathcal{S}^{[n+1]} \\ \mathcal{P}^{[n+1]} \end{pmatrix} = \begin{pmatrix} \mathcal{S}^{[n]} \\ \mathcal{P}^{[n]} \end{pmatrix} + \begin{pmatrix} \sum_{k \geq 0} \begin{pmatrix} 0 & \operatorname{Seq}^2(\mathcal{Z} + \mathcal{P}^{[n]}) - 1 \\ \operatorname{Set}_{>0}(\mathcal{Z} + \mathcal{S}^{[n]}) & 0 \end{pmatrix}^k \begin{pmatrix} \operatorname{Seq}_{>1}(\mathcal{Z} + \mathcal{P}^{[n]}) - \mathcal{S}^{[n]} \\ \operatorname{Set}_{>0}(\mathcal{Z} + \mathcal{S}^{[n]}) - \mathcal{P}^{[n]} \end{pmatrix}.$$

The underlying sets are ordered

The underlying sets are ordered

Examples

• increasing trees: $\mathcal{Y} = \mathcal{Z} + \int \mathcal{F}(\mathcal{Y})$;

The underlying sets are ordered

Examples

- increasing trees: $\mathcal{Y} = \mathcal{Z} + \int \mathcal{F}(\mathcal{Y})$;
- alternating permutations (odd/even):

$$\mathcal{A}_e = \int \mathcal{A}_e \mathcal{A}_o, \quad \mathcal{A}_o = \mathcal{Z} + \int \mathcal{A}_o^2;$$

The underlying sets are ordered

Examples

- increasing trees: $\mathcal{Y} = \mathcal{Z} + \int \mathcal{F}(\mathcal{Y})$;
- alternating permutations (odd/even):

$$\mathcal{A}_{e}=\int\mathcal{A}_{e}\mathcal{A}_{o},\quad\mathcal{A}_{o}=\mathcal{Z}+\int\mathcal{A}_{o}^{2};$$

• cycles: $Cyc(A) = \int Seq(A)A'$;

The underlying sets are ordered

Examples

- increasing trees: $\mathcal{Y} = \mathcal{Z} + \int \mathcal{F}(\mathcal{Y})$;
- alternating permutations (odd/even):

$$\mathcal{A}_{e}=\int\mathcal{A}_{e}\mathcal{A}_{o},\quad\mathcal{A}_{o}=\mathcal{Z}+\int\mathcal{A}_{o}^{2};$$

- cycles: $Cyc(A) = \int Seq(A)A'$;
- sets: $Set(A) = 1 + \int Set(A)A'$.

Exampl<u>es</u>

- increasing trees: $\mathcal{Y} = \mathcal{Z} + \int \mathcal{F}(\mathcal{Y})$;
- alternating permutations (odd/even):

$$\mathcal{A}_e = \int \mathcal{A}_e \mathcal{A}_o, \quad \mathcal{A}_o = \mathcal{Z} + \int \mathcal{A}_o^2;$$

- cycles: $Cyc(A) = \int Seq(A)A'$;
- sets: $Set(A) = 1 + \int Set(A)A'$.

Theorem (Enumeration in Quasi-Optimal Complexity)

First N coefficients of the solution of

$$oldsymbol{\mathcal{Y}}(\mathcal{Z}) = oldsymbol{\mathcal{H}}(\mathcal{Z},oldsymbol{\mathcal{Y}}(\mathcal{Z})) + \int_0^{\mathcal{Z}} oldsymbol{\mathcal{G}}(\mathcal{T},oldsymbol{\mathcal{Y}}(\mathcal{T})) \, d\mathcal{T}$$

with \mathcal{H} and \mathcal{G} constructible, in $O(N \log N)$ operations.

III Newton Iteration for Power Series

Newton Did It in 1671!

$y^3 + a^2y - 2a^3 + axy - x^3 = 0$. $y = a - \frac{x}{4} + \frac{x^2}{64a} + \frac{111x^3}{512a^2} + \frac{509x^6}{6384a^3}$ &c	
+ a + p = y. +y 5 +axy +x²y -x³ -2a³	+a3 +3a2p+3ap3+p3 +a1x+axp +a3 +a2p -x3 -2a3
;x+q=p. +p; +3ap² +4xp +4x²p +a²x -x;	- +x² + +x²q - xq²+q² + +xx - xxq + 3aq² - ax² + +xaq - ax² + +a²q - x;
$\begin{array}{c} +\frac{x^{2}}{44^{2}}+r=q, & +q^{3}\\ -(xq^{2})\\ +3xq^{2}\\ +(x^{2}q)\\ -(xxq)\\ +4x^{2}q\\ -(xx)\\ -(xx)\\ +44^{2}-(xx)-(x^{2}x)+(x^{2}x)\\ +(x^{2}-(xx))+(x^{2}x)\end{array}$	* $\frac{13^4}{-3056^4} + \frac{1}{11} (x^1 r) + \frac{1}{3} dr^2$ $+ \frac{13^4}{-1047^4} + \frac{1}{16} x^2 r$ $+ \frac{13^4}{-16} x^3 + \frac{1}{4} (x^2 r)$ $+ \frac{1}{16} x^3 - \frac{1}{4} x^7$ $- \frac{1}{16} x^3$ $- \frac{1}{16} x^4$ $- \frac{1}{16} x^4 + \frac{1}{16} \frac{112^3}{16} + \frac{1}{16} \frac{103^4}{16}$

Generating Series: a Simple Dictionary

$$\mathsf{ogf} := \sum_{t \in \mathcal{T}} \mathsf{z}^{|t|}, \quad \mathsf{egf} := \sum_{t \in \mathcal{T}} \frac{\mathsf{z}^{|t|}}{|t|!}.$$

Language and Gen. Fcns (labelled)

$$\begin{array}{lll}
A \cup B & A(z) + B(z) \\
A \times B & A(z) \times B(z) \\
SEQ(C) & \frac{1}{1 - C(z)} \\
A' & A'(z) \\
CYC(C) & \log \frac{1}{1 - C(z)} \\
SET(C) & \exp(C(z))
\end{array}$$

Consequence:

Combinatorial Newton iteration \mapsto Newton iteration for GFs

Generating Series: a Simple Dictionary

$$\operatorname{ogf} := \sum_{t \in \mathcal{T}} z^{|t|}, \quad \operatorname{egf} := \sum_{t \in \mathcal{T}} \frac{z^{|t|}}{|t|!}.$$

Consequence:

Combinatorial Newton iteration \mapsto Newton iteration for GFs

Newton Iteration for Power Series has Good Complexity

To solve $\phi(y) = 0$, iterate

$$y^{[n+1]} = y^{[n]} - u^{[n+1]}, \quad \phi'(y^{[n]})u^{[n+1]} = \phi(y^{[n]}).$$

Quadratic convergence

Divide-and-Conquer

Newton Iteration for Power Series has Good Complexity

To solve $\phi(y) = 0$, iterate

$$y^{[n+1]} = y^{[n]} - u^{[n+1]}, \quad \phi'(y^{[n]})u^{[n+1]} = \phi(y^{[n]}).$$

Quadratic convergence

Divide-and-Conquer

To solve at precision *N*

- Solve at precision N/2;
- 2 Compute ϕ and ϕ' there;
- Solve for $u^{[n+1]}$.

 $Cost(y^{[n]}) = constant \times Cost(last step).$

Newton Iteration for Power Series has Good Complexity

To solve $\phi(y) = 0$, iterate

$$y^{[n+1]} = y^{[n]} - u^{[n+1]}, \quad \phi'(y^{[n]})u^{[n+1]} = \phi(y^{[n]}).$$

Quadratic convergence

↓

Divide-and-Conquer

To solve at precision N

- Solve at precision N/2;
- 2 Compute ϕ and ϕ' there;
- Solve for $u^{[n+1]}$.

 $Cost(y^{[n]}) = constant \times Cost(last step).$

Useful in conjunction with fast multiplication (quasi-linear):

- power series at order N: $O(N \log N)$ ops on the coefficients;
- *N*-bit integers: $O(N \log N \log \log N)$ bit ops.

Example: Series-Parallel Graphs

$$\begin{cases} \mathcal{G} &= \mathcal{S} + \mathcal{P}, \\ \mathcal{S} &= \mathsf{Seq}_{>0}(\mathcal{Z} + \mathcal{P}), \quad \frac{\partial \mathcal{H}}{\partial \mathcal{Y}} = \begin{pmatrix} \varnothing & 1 & 1 \\ \varnothing & \varnothing & \mathsf{Seq}^2(\mathcal{Z} + \mathcal{P}) \\ \varnothing & \mathsf{Set}_{>0}(\mathcal{Z} + \mathcal{S}) & \varnothing \end{pmatrix} \end{cases}$$

$$\begin{cases} \mathcal{G} &= \mathcal{S} + \mathcal{P}, \\ \mathcal{S} &= \mathsf{Seq}_{>0}(\mathcal{Z} + \mathcal{P}), \\ \mathcal{P} &= \mathsf{Set}_{>1}(\mathcal{Z} + \mathcal{S}). \end{cases} \frac{\partial \mathcal{H}}{\partial \mathcal{Y}} = \begin{pmatrix} \varnothing & 1 & 1 \\ \varnothing & \varnothing & \mathsf{Seq}^2(\mathcal{Z} + \mathcal{P}) \\ \varnothing & \mathsf{Set}_{>0}(\mathcal{Z} + \mathcal{S}) & \varnothing \end{pmatrix}$$

translates into

$$\begin{cases} G = S + P, \\ S = (1 - z - P)^{-1} - 1, & \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & (1 - z - P)^{-2} \\ 0 & e^{z+S} - 1 & 0 \end{pmatrix}$$

translates into

$$\begin{cases} G = S + P, \\ S = (1 - z - P)^{-1} - 1, & \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & (1 - z - P)^{-2} \\ 0 & e^{z+S} - 1 & 0 \end{pmatrix}$$

Newton iteration:
$$\mathbf{Y}^{[n]} := \begin{pmatrix} G^{[n]} \\ S^{[n]} \\ P^{[n]} \end{pmatrix}$$
,

$$\mathbf{Y}^{[n+1]} = \mathbf{Y}^{[n]} + \left(\mathsf{Id} - \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} (\mathbf{Y}^{[n]}) \right)^{-1} \cdot \left(\mathbf{H} (\mathbf{Y}^{[n]}) - \mathbf{Y}^{[n]} \right)$$

translates into

$$\begin{cases} G = S + P, \\ S = (1 - z - P)^{-1} - 1, & \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & (1 - z - P)^{-2} \\ 0 & e^{z + S} - 1 & 0 \end{pmatrix}$$

Newton iteration: $\mathbf{Y}^{[n]} := \begin{pmatrix} G^{[n]} \\ S^{[n]} \\ P^{[n]} \end{pmatrix}$,

$$\mathbf{Y}^{[n+1]} = \mathbf{Y}^{[n]} + \left(\operatorname{Id} - \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} (\mathbf{Y}^{[n]}) \right)^{-1} \cdot \left(\mathbf{H} (\mathbf{Y}^{[n]}) - \mathbf{Y}^{[n]} \right) \operatorname{mod} z^{2^{n+1}}.$$

translates into

$$\begin{cases} G &= S + P, \\ S &= (1 - z - P)^{-1} - 1, \\ P &= e^{z + S} - 1 - z - S. \end{cases} \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & (1 - z - P)^{-2} \\ 0 & e^{z + S} - 1 & 0 \end{pmatrix}$$

Newton iteration: $\mathbf{Y}^{[n]} := \begin{pmatrix} G^{[n]} \\ S^{[n]} \\ P^{[n]} \end{pmatrix}$,

$$\mathbf{Y}^{[n+1]} = \mathbf{Y}^{[n]} + \left(\operatorname{Id} - \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} (\mathbf{Y}^{[n]}) \right)^{-1} \cdot \left(\mathbf{H} (\mathbf{Y}^{[n]}) - \mathbf{Y}^{[n]} \right) \operatorname{mod} z^{2^{n+1}}.$$

⇒ Wanted: efficient matrix inverse, efficient exp.

• Combinatorial equation: $\mathcal{Y} = \mathcal{Z} \cdot \text{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$

- **①** Combinatorial equation: $\mathcal{Y} = \mathcal{Z} \cdot \operatorname{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- 2 Combinatorial Newton iteration:

$$\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{Seq}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) \setminus \mathcal{Y}^{[n]})$$

- Combinatorial equation: $\mathcal{Y} = \mathcal{Z} \cdot \text{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- Combinatorial Newton iteration:

$$\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{Seq}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) \setminus \mathcal{Y}^{[n]})$$

 $oldsymbol{\mathfrak{I}}$ OGF equation: $ilde{Y}(z)=H(z, ilde{Y}(z))$

$$\tilde{Y}(z) = z \exp(\tilde{Y}(z) + \frac{1}{2}\tilde{Y}(z^2) + \frac{1}{3}\tilde{Y}(z^3) + \cdots)$$

- **①** Combinatorial equation: $\mathcal{Y} = \mathcal{Z} \cdot \operatorname{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- Combinatorial Newton iteration:

$$\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{Seq}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) \setminus \mathcal{Y}^{[n]})$$

3 OGF equation: $\tilde{Y}(z) = H(z, \tilde{Y}(z))$

$$\tilde{Y}(z) = z \exp(\tilde{Y}(z) + \frac{1}{2}\tilde{Y}(z^2) + \frac{1}{3}\tilde{Y}(z^3) + \cdots)$$

Newton for OGF:

$$\tilde{Y}^{[n+1]} = \tilde{Y}^{[n]} + \frac{H(z, \tilde{Y}^{[n]}) - \tilde{Y}^{[n]}}{1 - H(z, \tilde{Y}^{[n]})}
0,
z + z^2 + z^3 + z^4 + \cdots,$$

 $z + z^2 + 2z^3 + 4z^4 + 9z^5 + 20z^6 + \cdots$

Newton Iteration for Inverses

$$\phi(y) = a - 1/y \Rightarrow 1/\phi'(y) = y^2 \Rightarrow y^{[n+1]} = y^{[n]} - y^{[n]}(ay^{[n]} - 1).$$

Cost: a small number of multiplications

Works for:

Applications:

- Numerical inversion;
- Reciprocal of power series;
- Inversion of matrices.

- Seq
- $(I \frac{\partial H}{\partial Y})^{-1}$

[Schulz 1933; Cook 1966; Sieveking 1972; Kung 1974]

Inverses for Series-Parallel Graphs

$$\begin{cases} G = S + P, \\ S = (1 - z - P)^{-1} - 1, & \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & (1 - z - P)^{-2} \\ 0 & e^{z+S} - 1 & 0 \end{pmatrix}$$

Newton iteration:

$$\begin{cases} U^{[n+1]} &= U^{[n]} + U^{[n]} \cdot \left(\frac{\partial \mathbf{H}}{\partial \mathbf{Y}} (\mathbf{Y}^{[n]}) \cdot U^{[n]} + \operatorname{Id} - U^{[n]} \right) \operatorname{mod} z^{2^{n}}, \\ \mathbf{Y}^{[n+1]} &= \mathbf{Y}^{[n]} + U^{[n+1]} \cdot \left(\mathbf{H} (\mathbf{Y}^{[n]}) - \mathbf{Y}^{[n]} \right) \operatorname{mod} z^{2^{n+1}}. \end{cases}$$

Can be lifted combinatorially.

Also a numerical iteration!

Inverses for Series-Parallel Graphs

$$\begin{cases} G = S + P, \\ S = (1 - z - P)^{-1} - 1, & \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & (1 - z - P)^{-2} \\ 0 & e^{z+S} - 1 & 0 \end{pmatrix}$$

Newton iteration:

$$\begin{cases} U^{[n+1]} &= U^{[n]} + U^{[n]} \cdot \left(\frac{\partial \mathbf{H}}{\partial \mathbf{Y}} (\mathbf{Y}^{[n]}) \cdot U^{[n]} + \operatorname{Id} - U^{[n]} \right) \operatorname{mod} z^{2^{n}}, \\ \mathbf{Y}^{[n+1]} &= \mathbf{Y}^{[n]} + U^{[n+1]} \cdot \left(\mathbf{H} (\mathbf{Y}^{[n]}) - \mathbf{Y}^{[n]} \right) \operatorname{mod} z^{2^{n+1}}. \end{cases}$$

Can be lifted combinatorially.

Also a numerical iteration!

⇒ Wanted: efficient exp.

From the Inverse to the Exponential

- Logarithm of power series: $\log f = \int (f'/f)$ (recall $Cyc(A) = \int A'Seq(A)$)
- 2 exponential of power series: $\phi(y) = a \log y$.

$$e^{[n+1]} = e^{[n]} + \frac{a - \log e^{[n]}}{1/e^{[n]}} \mod z^{2^{n+1}},$$
$$= e^{[n]} + e^{[n]} \left(a - \int e^{[n]'} / e^{[n]} \right) \mod z^{2^{n+1}}.$$

And $1/e^{[n]}$ is computed by Newton iteration too!

[Brent 1975; Hanrot-Zimmermann 2002]

$$F = t^{N} + a_{N-1}t^{N-1} + \dots + a_0 \leftrightarrow S_i = \sum_{F(\alpha)=0} \alpha^i, \quad i = 0, \dots, N.$$

$$F = t^{N} + a_{N-1}t^{N-1} + \dots + a_0 \leftrightarrow S_i = \sum_{F(\alpha)=0} \alpha^i, \quad i = 0, \dots, N.$$

Fast conversion using the generating series:

$$\frac{\operatorname{rev}(F)'}{\operatorname{rev}(F)} = -\sum_{i>0} S_{i+1} t^i \leftrightarrow \operatorname{rev}(F) = \exp\left(-\sum \frac{S_i}{i} t^i\right).$$

$$F = t^{N} + a_{N-1}t^{N-1} + \dots + a_0 \leftrightarrow S_i = \sum_{F(\alpha)=0} \alpha^i, \quad i = 0, \dots, N.$$

Fast conversion using the generating series:

$$\frac{\operatorname{rev}(F)'}{\operatorname{rev}(F)} = -\sum_{i>0} S_{i+1}t^i \leftrightarrow \operatorname{rev}(F) = \exp\left(-\sum \frac{S_i}{i}t^i\right).$$

Application: composed product and sums

$$(F,G)\mapsto \prod_{F(\alpha)=0,G(\beta)=0}(t-\alpha\beta) \quad \text{or} \quad \prod_{F(\alpha)=0,G(\beta)=0}(t-(\alpha+\beta)).$$

$$F = t^{N} + a_{N-1}t^{N-1} + \dots + a_0 \leftrightarrow S_i = \sum_{F(\alpha)=0} \alpha^i, \quad i = 0, \dots, N.$$

Fast conversion using the generating series:

$$\frac{\operatorname{rev}(F)'}{\operatorname{rev}(F)} = -\sum_{i>0} S_{i+1}t^i \leftrightarrow \operatorname{rev}(F) = \exp\left(-\sum \frac{S_i}{i}t^i\right).$$

Application: composed product and sums

$$(F,G)\mapsto \prod_{F(\alpha)=0,G(\beta)=0}(t-\alpha\beta) \quad \text{or} \quad \prod_{F(\alpha)=0,G(\beta)=0}(t-(\alpha+\beta)).$$

Easy in Newton representation: $\sum \alpha^s \sum \beta^s = \sum (\alpha \beta)^s$ and

$$\sum \frac{\sum (\alpha + \beta)^s}{s!} t^s = \left(\sum \frac{\sum \alpha^s}{s!} t^s\right) \left(\sum \frac{\sum \beta^s}{s!} t^s\right).$$

[Schönhage 1982; Bostan, Flajolet, Salvy, Schost 2006]

Timings

Applications (crypto): over finite fields, degree > 200000 expected.

Timings in seconds vs. output degree N, over \mathbb{F}_p , 26 bits prime p

Conclusion for Series-Parallel Graphs

$$\mathcal{G} = \mathcal{S} + \mathcal{P}, \quad \mathcal{S} = \operatorname{Seq}_{>0}(\mathcal{Z} + \mathcal{P}), \quad \mathcal{P} = \operatorname{Set}_{>1}(\mathcal{Z} + \mathcal{S})$$

compiles into the Newton iteration:

$$\begin{cases} i^{[n+1]} = i^{[n]} - i^{[n]} (e^{[n]} i^{[n]} - 1), \\ e^{[n+1]} = e^{[n]} - e^{[n]} \left(1 + \frac{d}{dz} S^{[n]} - \int (\frac{d}{dz} e^{[n]}) i^{[n]} \right), \\ v^{[n+1]} = v^{[n]} - v^{[n]} ((1 - z - P^{[n]}) v^{[n]} - 1), \\ \begin{cases} U^{[n+1]} = U^{[n]} + U^{[n]} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & v^{[n+1]^2} \\ 0 & e^{[n+1]} - 1 & 0 \end{pmatrix} \cdot U^{[n]} + \operatorname{Id} - U^{[n]} \end{pmatrix}, \\ \begin{pmatrix} G^{[n+1]} \\ S^{[n+1]} \\ P^{[n+1]} \end{pmatrix} = \begin{pmatrix} G^{[n]} \\ S^{[n]} \\ P^{[n]} \end{pmatrix} + U^{[n+1]} \cdot \begin{pmatrix} S^{[n]} + P^{[n]} - G^{[n]} \\ v^{[n+1]} - S^{[n]} \\ e^{[n+1]} - P^{[n]} \end{pmatrix} \mod z^{2^{n+1}}. \end{cases}$$

Computation reduced to products and linear ops.

Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,

$$a_r(t)y^{(r)}(t) + \cdots + a_0(t)y(t) = 0,$$

compute the first N terms of a basis of power series solutions.

Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,

$$a_r(t)y^{(r)}(t) + \cdots + a_0(t)y(t) = 0,$$

compute the first N terms of a basis of power series solutions.

Algorithm

- Convert into a system $\Phi: Y \mapsto Y' A(t)Y (D\Phi = \Phi);$
- **3** Variation of constants: $U = Y \int Y^{-1}(Y' AY)$;
- \circ Y^{-1} by Newton iteration too.

Special case: recover good exponential.

[Bostan, Chyzak, Ollivier, Salvy, Schost, Sedoglavic 2007]

Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,

$$a_r(t)y^{(r)}(t) + \cdots + a_0(t)y(t) = 0,$$

compute the first N terms of a basis of power series solutions.

Algorithm

- **①** Convert into a system $\Phi: Y \mapsto Y' A(t)Y (D\Phi = \Phi)$;
- 3 Variation of constants: $U = Y \int Y^{-1}(Y' AY)$;
- \circ Y^{-1} by Newton iteration too.

Special case: recover good exponential.

Lifts to integral equations for linear species.

[Bostan, Chyzak, Ollivier, Salvy, Schost, Sedoglavic 2007]

Timings

Polynomial matrix multiplication vs. solving Y' = AY.

Non-Linear Differential Equations

Example from cryptography:

$$\phi: y \mapsto (x^3 + Ax + B)y'^2 - (y^3 + \tilde{A}y + \tilde{B}).$$

Non-Linear Differential Equations

Example from cryptography:

$$\phi: y \mapsto (x^3 + Ax + B)y'^2 - (y^3 + \tilde{A}y + \tilde{B}).$$

Differential:

$$D\phi|_{y}: u \mapsto 2(x^{3} + Ax + B)y'u' - (3y^{2} + \tilde{A})u.$$

Solve the linear differential equation

$$D\phi|_{y} u = \phi(y)$$

at each iteration.

Again, quasi-linear complexity.

 $+B)y'u'-(3y^2+\tilde{A})u.$

IV Oracle

Exponential Generating Series

Combinatorial Specification

Combinatorial Newton iteration for ${\cal Y}$

Newton iteration for the gf Y(z) $((y_0, \ldots, y_N) \text{ fast})$

Numerical Newton iteration starting from 0 converges to the value of Y(x).

Exponential Generating Series

Combinatorial Specification

11

Combinatorial Newton iteration for ${\mathcal Y}$

Newton iteration for the gf $\,Y(z)\,$

$$((y_0,\ldots,y_N) \text{ fast})$$

Numerical Newton iteration starting from 0 converges to the value of Y(x).

① Combinatorial Equation: $\mathcal{Y} = \mathcal{Z} \cdot \text{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$

- **①** Combinatorial Equation: $\mathcal{Y} = \mathcal{Z} \cdot \operatorname{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- ② Combinatorial Newton iteration: $\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{SEQ}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) \setminus \mathcal{Y}^{[n]})$

- **①** Combinatorial Equation: $\mathcal{Y} = \mathcal{Z} \cdot \operatorname{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- ② Combinatorial Newton iteration: $\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{SEQ}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) \setminus \mathcal{Y}^{[n]})$
- **3** OGF equation: $\tilde{Y}(z) = H(z, \tilde{Y}(z))$ = $z \exp(\tilde{Y}(z) + \frac{1}{2}\tilde{Y}(z^2) + \frac{1}{3}\tilde{Y}(z^3) + \cdots)$

- Combinatorial Equation: $\mathcal{Y} = \mathcal{Z} \cdot \text{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- Combinatorial Newton iteration: $\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{Seq}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) \setminus \mathcal{Y}^{[n]})$
- **3** OGF equation: $\tilde{Y}(z) = H(z, \tilde{Y}(z))$ $= z \exp(\tilde{Y}(z) + \frac{1}{2}\tilde{Y}(z^2) + \frac{1}{2}\tilde{Y}(z^3) + \cdots)$
- **Newton for OGF**: $\tilde{Y}^{[n+1]} = \tilde{Y}^{[n]} + \frac{H(z,\tilde{Y}^{[n]}) \tilde{Y}^{[n]}}{1 H(z,\tilde{Y}^{[n]})}$

- **①** Combinatorial Equation: $\mathcal{Y} = \mathcal{Z} \cdot \text{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- ② Combinatorial Newton iteration: $\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{SEQ}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) \setminus \mathcal{Y}^{[n]})$
- **3** OGF equation: $\tilde{Y}(z) = H(z, \tilde{Y}(z))$ = $z \exp(\tilde{Y}(z) + \frac{1}{2}\tilde{Y}(z^2) + \frac{1}{3}\tilde{Y}(z^3) + \cdots)$
- Newton for OGF: $\tilde{Y}^{[n+1]} = \tilde{Y}^{[n]} + \frac{H(z,\tilde{Y}^{[n]}) \tilde{Y}^{[n]}}{1 H(z,\tilde{Y}^{[n]})}$
- Numerical iteration:

mumericai n		negiçai iteration.	~	~
	n	$\tilde{Y}^{[n]}(0.3)$	$\tilde{Y}^{[n]}(0.3^2)$	$\tilde{Y}^{[n]}(0.3^3)$
	0	0	0	0
	1	.43021322639	0.99370806338e-1	0.27759817516e-1
	2	. <mark>5</mark> 4875612912	0.99887132154e-1	0.27770629187e-1
	3	. <mark>557</mark> 09557053	0.99887147197e-1	0.27770629189e-1
	4	.55713907945	0.99887147198e-1	0.27770629189e-1
	5	.55713908064	0.99887147198e-1	0.27770629189e-1

V Conclusion

Conclusion

- Summary:
 - Newton iteration has good complexity;
 - Oracle: numerical Newton iteration that gives the values of ... power series that are the gfs of ... combinatorial iterates.

Conclusion

- Summary:
 - Newton iteration has good complexity;
 - Oracle: numerical Newton iteration that gives the values of ... power series that are the gfs of ...
 combinatorial iterates.
- Read the paper for:
 - Well-defined systems (with 1);
 - Majorant species;
 - PowerSet (it is not a species).

Conclusion

- Summary:
 - Newton iteration has good complexity;
 - Oracle: numerical Newton iteration that gives the values of ... power series that are the gfs of ...
 combinatorial iterates.
- Read the paper for:
 - Well-defined systems (with 1);
 - Majorant species;
 - PowerSet (it is not a species).

THE END

