An Introduction to Recent Algorithms Behind the DDMF

Bruno Salvy Inria & ENS de Lyon

SIAM Orthogonal Polynomials, Special Functions and Applications

June 2015

An Introduction to Recent Algorithms Behind the DDMF

Bruno Salvy Inria & ENS de Lyon

SIAM Orthogonal Polynomials, Special Functions and Applications June 2015

- 1. Fast computation at large precision
- 2. Continued fractions
- 3. Chebyshev expansions

I. Fast computation at large precision

From large integers to precise numerical values

Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). Two integers of n digits can be multiplied with O(n log(n) loglog(n)) bit operations.

Fast multiplication

Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). Two integers of n digits can be multiplied with O(n log(n) loglog(n)) bit operations.

Fast multiplication

Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). Two integers of n digits can be multiplied with O(n log(n) loglog(n)) bit operations.

Direct consequence (by Newton iteration):

Fast multiplication

Fast Fourier Transform (Gauss, Cooley-Tuckey, Schönhage-Strassen). Two integers of n digits can be multiplied with O(n log(n) loglog(n)) bit operations.

Direct consequence (by Newton iteration):

inverses, square-roots,...: same cost.

Binary Splitting for linear recurrences (70's and 80's)

n! by divide-and-conquer:

$$n! := \underbrace{n \times \cdots \times \lfloor n/2 \rfloor}_{\mathrm{size} \ O(n \log n)} \times \underbrace{(\lfloor n/2 \rfloor + 1) \times \cdots \times 1}_{\mathrm{size} \ O(n \log n)}$$

Cost: O(n log³n loglog n) using FFT

Binary Splitting for linear recurrences (70's and 80's)

n! by divide-and-conquer:

$$n! := \underbrace{n \times \cdots \times \lfloor n/2 \rfloor}_{\mathrm{size} \ O(n \log n)} \times \underbrace{(\lfloor n/2 \rfloor + 1) \times \cdots \times 1}_{\mathrm{size} \ O(n \log n)}$$

Cost: O(n log³n loglog n) using FFT

linear recurrences of order I reduce to

$$\mathbf{p!(n)} := (\mathbf{p(n)} \times \cdots \times \mathbf{p(\lfloor n/2 \rfloor)}) \times (\mathbf{p(\lfloor n/2 \rfloor + 1)} \times \cdots \times \mathbf{p(1)})$$

Binary Splitting for linear recurrences (70's and 80's)

n! by divide-and-conquer:

$$n! := \underbrace{n \times \cdots \times \lfloor n/2 \rfloor}_{\text{size } O(n \log n)} \times \underbrace{(\lfloor n/2 \rfloor + 1) \times \cdots \times 1}_{\text{size } O(n \log n)}$$

Cost: O(n log³n loglog n) using FFT

linear recurrences of order I reduce to

$$\mathbf{p!(n)} := (\mathsf{p(n)} \times \cdots \times \mathsf{p}(\lfloor \mathsf{n}/2 \rfloor)) \times (\mathsf{p}(\lfloor \mathsf{n}/2 \rfloor + 1) \times \cdots \times \mathsf{p}(1))$$

• arbitrary order: same idea, same cost (matrix factorial):

ex:
$$e_n := \sum_{k=0}^{n} \frac{1}{k!}$$
 satisfies a 2nd order rec, computed via

$$\begin{pmatrix} e_{\mathsf{n}} \\ e_{\mathsf{n}-1} \end{pmatrix} = \frac{1}{\mathsf{n}} \underbrace{\begin{pmatrix} \mathsf{n}+1 & -1 \\ \mathsf{n} & 0 \end{pmatrix}}_{\mathsf{A}(\mathsf{n})} \begin{pmatrix} e_{\mathsf{n}-1} \\ e_{\mathsf{n}-2} \end{pmatrix} = \frac{1}{\mathsf{n}!} \mathsf{A}!(\mathsf{n}) \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Numerical evaluation of solutions of LDEs

Principle:
$$f(x) = \sum_{n=0}^{N} a_n x^n + \sum_{n=N+1}^{\infty} a_n x^n$$
fast evaluation good bounds

f solution of a LDE with coeffs in $\mathbb{Q}(x)$ (our data-structure!)

Numerical evaluation of solutions of LDEs

Principle:
$$f(x) = \sum_{n=0}^{N} a_n x^n + \sum_{n=N+1}^{\infty} a_n x^n$$
fast evaluation good bounds

f solution of a LDE with coeffs in $\mathbb{Q}(x)$ (our data-structure!)

- 1. linear recurrence in N for the first sum (easy);
- 2. tight bounds on the tail (technical);
- 3. no numerical roundoff errors.

Code available: NumGfun [Mezzarobba 2010]

Numerical evaluation of solutions of LDEs

Principle:
$$f(x) = \sum_{n=0}^{N} a_n x^n + \sum_{n=N+1}^{\infty} a_n x^n$$
fast evaluation good bounds

f solution of a LDE with coeffs in $\mathbb{Q}(x)$ (our data-structure!)

- 1. linear recurrence in N for the first sum (easy);
- 2. tight bounds on the tail (technical);
- 3. no numerical roundoff errors.

The technique used for fast evaluation of constants like

$$\frac{1}{\pi} = \frac{12}{C^{3/2}} \sum_{n=0}^{\infty} \frac{(-1)^n (6n)! (A + nB)}{(3n)! n!^3 C^{3n}}$$
 with A=13591409, B=545140134, C=640320.

Code available: NumGfun [Mezzarobba 2010]

Analytic continuation

Compute $f(x), f'(x), \dots, f^{(d-1)}(x)$ as new initial conditions and handle error propagation: 1.5

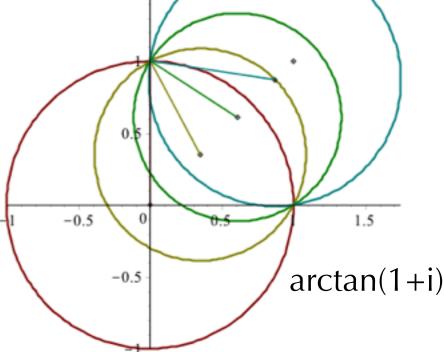
1.5

arctan(1+i)

Analytic continuation

Compute $f(x), f'(x), \dots, f^{(d-1)}(x)$ as new initial

conditions and handle error propagation: 1.5

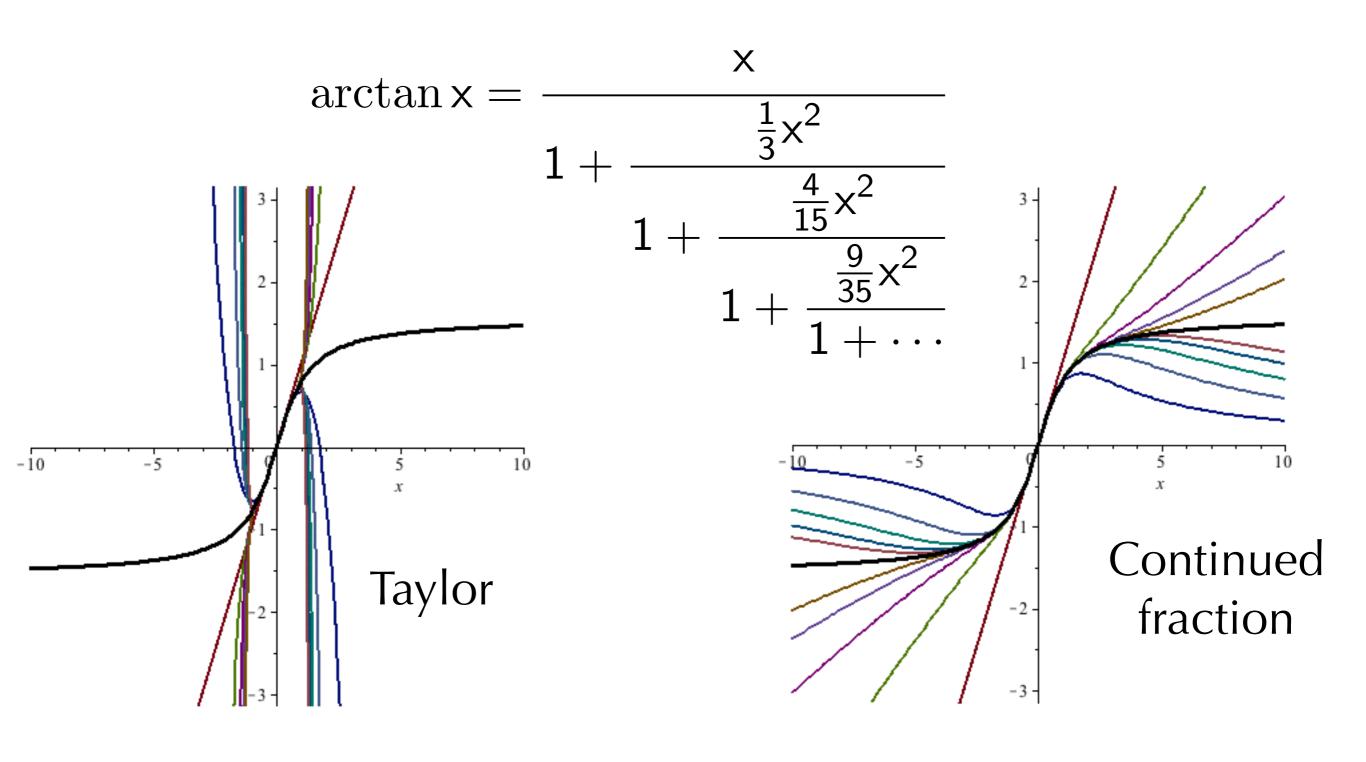


Ex: $erf(\pi)$ with 15 digits:

$$0 \xrightarrow[200 \text{ terms}]{} 3.1416 \xrightarrow[18 \text{ terms}]{} 3.1415927 \xrightarrow[6 \text{ terms}]{} 3.14159265358979$$

Again: computation on integers. No roundoff errors.

II. Continued Fractions



A guess & prove approach

(Maulat, S. 2015)

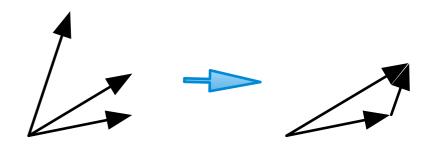
1. Differential equation produces first terms (easy):

$$\arctan x = \frac{x}{1 + \frac{\frac{1}{3}x^2}{1 + \frac{\frac{4}{15}x^2}{1 + \frac{\frac{9}{35}x^2}{1 + \cdots}}}}$$

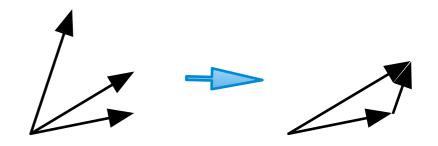
- 2. Guess a formula (easy): $a_n = \frac{n^2}{4n^2 1}$
- 3. Prove that the CF with these a_n satisfies the differential equation.

No human intervention needed.

Proof technique /____

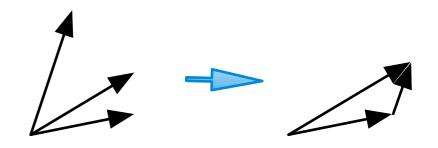


> series(sin(x)^2+cos(x)^2-1,x,4); $O(x^4)$



> series(sin(x)^2+cos(x)^2-1,x,4);

 $O(x^4)$

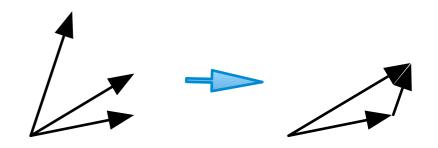


> series(sin(x)^2+cos(x)^2-1,x,4);

$$O(x^4)$$

Why is this a proof?

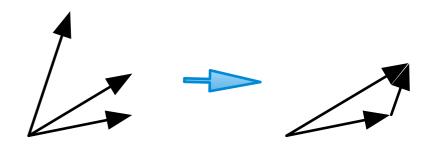
1. \sin and \cos satisfy a 2nd order LDE: y''+y=0;



> series(sin(x)^2+cos(x)^2-1,x,4);

 $O(x^4)$

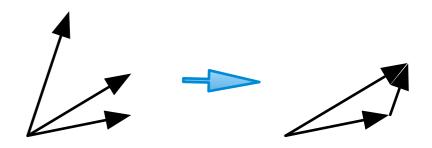
- 1. \sin and \cos satisfy a 2nd order LDE: y''+y=0;
- 2. their squares and their sum satisfy a 3rd order LDE;



> series(sin(x)^2+cos(x)^2-1,x,4);

 $O(x^4)$

- 1. \sin and \cos satisfy a 2nd order LDE: y''+y=0;
- 2. their squares and their sum satisfy a 3rd order LDE;
- 3. the constant -1 satisfies y'=0;



> series(sin(x)^2+cos(x)^2-1,x,4);

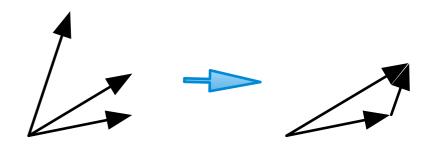
f satisfies a LDE

 \iff

f,f',f",... live in a finite-dim. vector space

 $O(x^4)$

- 1. \sin and \cos satisfy a 2nd order LDE: y''+y=0;
- 2. their squares and their sum satisfy a 3rd order LDE;
- 3. the constant -1 satisfies y'=0;
- 4. thus sin²+cos²-1 satisfies a LDE of order at most 4;



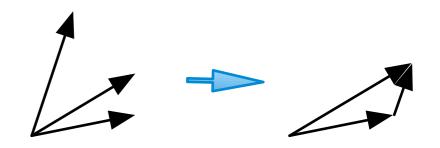
> series(sin(x)^2+cos(x)^2-1,x,4);

f satisfies a LDE

f,f',f",... live in a finite-dim. vector space

 $O(x^4)$

- 1. \sin and \cos satisfy a 2nd order LDE: y''+y=0;
- 2. their squares and their sum satisfy a 3rd order LDE;
- 3. the constant -1 satisfies y'=0;
- 4. thus sin²+cos²-1 satisfies a LDE of order at most 4;
- 5. Cauchy's theorem concludes.



> series(sin(x)^2+cos(x)^2-1,x,4);

f satisfies a LDE

 \Longrightarrow

f,f',f",... live in a finite-dim. vector space

 $O(x^4)$

Why is this a proof?

- 1. \sin and \cos satisfy a 2nd order LDE: y''+y=0;
- 2. their squares and their sum satisfy a 3rd order LDE;
- 3. the constant -1 satisfies y'=0;
- 4. thus sin²+cos²-1 satisfies a LDE of order at most 4;
- 5. Cauchy's theorem concludes.

Proofs of non-linear identities by linear algebra!

$$\arctan x \stackrel{?}{=} \frac{x}{1 + \frac{1}{1 + \cdots}}$$

$$1 + \frac{\frac{n^2}{4n^2 - 1}x^2}{1 + \cdots}$$

$$\text{-} \arctan x \stackrel{?}{=} \frac{x}{1 + \frac{x}{1 + \frac{n^2}{1 + \cdots}}}$$

$$\arctan x \stackrel{?}{=} \frac{x}{1 + \frac{x}{2}}$$

- Aim: RHS satisfies $(x^2+1)y'-1=0;$ Convergents P_n/Q_n where P_n and Q_n satisfy a LRE $1+\frac{n^2}{1+\dots}$ (and $Q_n(0) \neq 0$);

$$\arctan x \stackrel{?}{=} \frac{x}{1 + \frac{x}{2}}$$

- Aim: RHS satisfies $(x^2+1)y$ '-I=0; $1+\frac{n^2}{4n^2-1}x^2$ Convergents P_n/Q_n where P_n and Q_n satisfy a LRE $1+\frac{n^2}{1+\cdots}$ (and $Q_n(0) \neq 0$);
- Define $H_n:=(Q_n)^2((x^2+1)(P_n/Q_n)'-1);$

$$\arctan x \stackrel{?}{=} \frac{x}{1 + \frac{x}{2}}$$

- Aim: RHS satisfies $(x^2+1)y'-1=0;$ Convergents P_n/Q_n where P_n and Q_n satisfy a LRE $1+\frac{n^2}{1+\dots}$ (and $Q_n(0) \neq 0$);
- Define $H_n:=(Q_n)^2((x^2+1)(P_n/Q_n)^2-1);$
- H_n is a polynomial in P_n , Q_n and their derivatives;

$$\arctan x \stackrel{?}{=} \frac{x}{1 + \frac{x}{n^2 + 2}}$$

- Aim: RHS satisfies $(x^2+1)y'-1=0;$ Convergents P_n/Q_n where P_n and Q_n satisfy a LRE $1+\frac{n^2}{1+\dots}$ (and $Q_n(0) \neq 0$);
- Define $H_n:=(Q_n)^2((x^2+1)(P_n/Q_n)'-1);$
- H_n is a polynomial in P_n , Q_n and their derivatives;
- therefore, it satisfies a LRE that can be computed;

$$\arctan x \stackrel{?}{=} \frac{x}{1 + \frac{x}{2}}$$

- Aim: RHS satisfies $(x^2+1)y'-1=0;$ $1+\frac{n^2}{4n^2-1}x^2$ Convergents P_n/Q_n where P_n and Q_n satisfy a LRE $1+\frac{n^2}{1+\dots}$ (and $Q_n(0) \neq 0$);
- Define $H_n:=(Q_n)^2((x^2+1)(P_n/Q_n)^2-1);$
- H_n is a polynomial in P_n , Q_n and their derivatives;
- therefore, it satisfies a LRE that can be computed;
- from it, $H_n=O(x^n)$ visible, ie $\lim P_n/Q_n$ soln;

$$\arctan x \stackrel{?}{=} \frac{x}{1 + \frac{x}{2}}$$

- Aim: RHS satisfies $(x^2+1)y'-1=0;$ $1+\frac{n^2}{4n^2-1}x^2$ Convergents P_n/Q_n where P_n and Q_n satisfy a LRE $1+\frac{n^2}{1+\dots}$ (and $Q_n(0) \neq 0$);
- Define $H_n:=(Q_n)^2((x^2+1)(P_n/Q_n)^2-1);$
- H_n is a polynomial in P_n , Q_n and their derivatives;
- therefore, it satisfies a LRE that can be computed;
- from it, $H_n=O(x^n)$ visible, ie $\lim P_n/Q_n$ soln;
- conclude $P_n/Q_n \rightarrow$ arctan (check initial cond.).

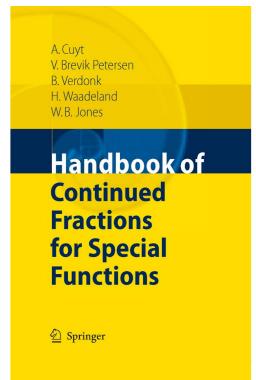
Automatic Proof of the guessed CF

$$\arctan x \stackrel{?}{=} \frac{x}{\cdots}$$

- Aim: RHS satisfies $(x^2+1)y$ '-1=0; $1+\frac{n^2}{4n^2-1}x^2$ Convergents P_n/Q_n where P_n and Q_n satisfy a LRE $1+\frac{n^2}{1+\dots}$ (and $Q_n(0) \neq 0$);
- Define $H_n:=(Q_n)^2((x^2+1)(P_n/Q_n)^2-1);$
- H_n is a polynomial in P_n , Q_n and their derivatives;
- therefore, it satisfies a LRE that can be computed;
- from it, $H_n=O(x^n)$ visible, ie $\lim P_n/Q_n$ soln;
- conclude $P_n/Q_n \rightarrow$ arctan (check initial cond.).

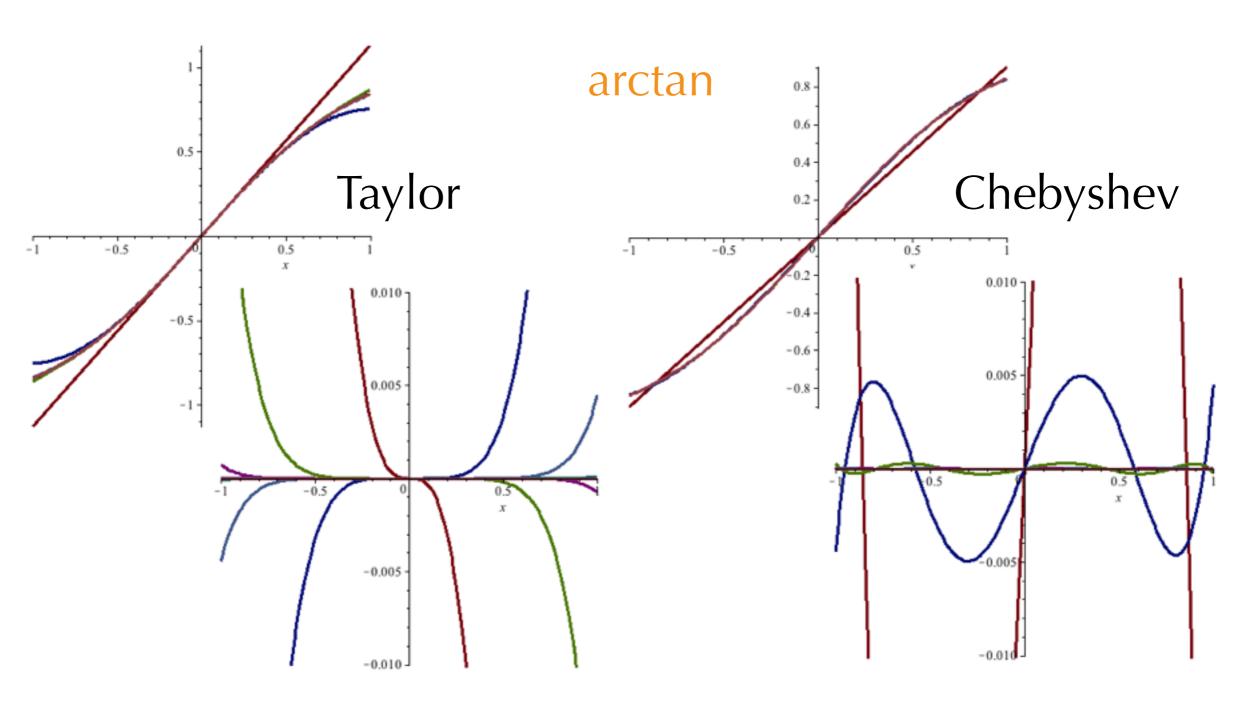
More generally: this guess-and-proof approach applies to CF for solutions of (q-)Ricatti equations

→ all explicit C-fractions in Cuyt et alii.



III. Ore polynomials and Chebyshev expansions

Chebyshev expansions



$$z - \frac{1}{3}z^3 + \frac{1}{5}z^5 + \cdots$$

$$2(\sqrt{2}+1)\left(\frac{T_1(x)}{(2\sqrt{2}+3)}-\frac{T_3(x)}{3(2\sqrt{2}+3)^2}+\frac{T_5(x)}{5(2\sqrt{2}+3)^3}+\cdots\right)_{1,2}$$

From equations to operators

```
D \leftrightarrow d/dx
x \leftrightarrow mult by x
product \leftrightarrow composition
Dx = xD + 1
```

```
S \leftrightarrow (n \mapsto n+1)

n \leftrightarrow mult by n

product \leftrightarrow composition

Sn=(n+1)S
```

From equations to operators

```
D \leftrightarrow d/dx
x \leftrightarrow mult by x
product \leftrightarrow composition
Dx = xD + 1
```

```
S \leftrightarrow (n \mapsto n+1)

n \leftrightarrow mult by n

product \leftrightarrow composition

Sn=(n+1)S
```

Taylor morphism: $D \mapsto (n+1)S; x \mapsto S^{-1}$ produces linear recurrence from LDE

From equations to operators

```
D \leftrightarrow d/dx
x \leftrightarrow mult by x
product \leftrightarrow composition
Dx = xD + 1
```

```
S \leftrightarrow (n \mapsto n+1)

n \leftrightarrow mult by n

product \leftrightarrow composition

Sn=(n+1)S
```

Taylor morphism: $D \mapsto (n+1)S; x \mapsto S^{-1}$ produces linear recurrence from LDE

Ore (1933): general framework for these non-commutative polynomials.

Main property: deg AB=deg A+deg B.

Consequence 1: (non-commutative) Euclidean division

Consequence 2: (non-commutative) Euclidean algorithm

Consequence 3: (non-commutative) fractions

Taylor
$$x^{n+1} = x \cdot x^n \leftrightarrow x \mapsto X := S^{-1}$$

$$(x^n)' = nx^{n-1} \leftrightarrow d/dx \mapsto D := (n+1)S$$

Taylor
$$x^{n+1} = x \cdot x^n \leftrightarrow x \mapsto X := S^{-1}$$
$$(x^n)' = nx^{n-1} \leftrightarrow d/dx \mapsto D := (n+1)S$$

Chebyshev
$$2xT_{n}(x) = T_{n+1}(x) + T_{n-1}(x)$$

$$\leftrightarrow x \mapsto X := (S+S^{-1})/2$$

$$2(1-x^{2})T_{n}'(x) = -nT_{n+1}(x) + nT_{n-1}(x)$$

$$\leftrightarrow d/dx \mapsto D := (1-X^{2})^{-1}n(S-S^{-1})/2.$$

Taylor
$$x^{n+1} = x \cdot x^n \leftrightarrow x \mapsto X := S^{-1}$$

$$(x^n)' = nx^{n-1} \leftrightarrow d/dx \mapsto D := (n+1)S$$

Chebyshev
$$2xT_{n}(x) = T_{n+1}(x) + T_{n-1}(x)$$

$$\leftrightarrow x \mapsto X := (S+S^{-1})/2$$

$$2(1-x^{2})T_{n}'(x) = -nT_{n+1}(x) + nT_{n-1}(x)$$

$$\leftrightarrow d/dx \mapsto D := (1-X^{2})^{-1}n(S-S^{-1})/2 .$$

Taylor
$$x^{n+1} = x \cdot x^n \leftrightarrow x \mapsto X := S^{-1}$$
$$(x^n)' = nx^{n-1} \leftrightarrow d/dx \mapsto D := (n+1)S$$

Chebyshev
$$2xT_{n}(x)=T_{n+1}(x)+T_{n-1}(x)$$
 $\leftrightarrow x \mapsto X := (S+S^{-1})/2$ $2(1-x^{2})T_{n}'(x)=-nT_{n+1}(x)+nT_{n-1}(x)$ $\leftrightarrow d/dx \mapsto D := (1-X^{2})^{-1}n(S-S^{-1})/2$.

erf:
$$D^2 + 2xD \mapsto (2(S^{-1} - S)^{-1}n)^2 + 2\frac{S + S^{-1}}{2}2(S^{-1} - S)^{-1}n$$

Taylor
$$x^{n+1} = x \cdot x^n \leftrightarrow x \mapsto X := S^{-1}$$
$$(x^n)' = nx^{n-1} \leftrightarrow d/dx \mapsto D := (n+1)S$$

Chebyshev
$$2xT_{n}(x) = T_{n+1}(x) + T_{n-1}(x)$$

$$\leftrightarrow x \mapsto X := (S+S^{-1})/2$$

$$2(1-x^{2})T_{n}'(x) = -nT_{n+1}(x) + nT_{n-1}(x)$$

$$\leftrightarrow d/dx \mapsto D := (1-X^{2})^{-1}n(S-S^{-1})/2 .$$

erf:
$$D^2 + 2xD \mapsto (2(S^{-1} - S)^{-1}n)^2 + 2\frac{S + S^{-1}}{2}2(S^{-1} - S)^{-1}n$$

= $pol(n, S)^{-1}(2(n+1)(n+4)S^4 - 4(n+2)^3S^2 + 2n(n+3))$

Extend Taylor morphism to Chebyshev expansions

Taylor
$$x^{n+1} = x \cdot x^n \leftrightarrow x \mapsto X := S^{-1}$$

$$(x^n)' = nx^{n-1} \leftrightarrow d/dx \mapsto D := (n+1)S$$

Chebyshev
$$2xT_{n}(x)=T_{n+1}(x)+T_{n-1}(x)$$
 $\leftrightarrow x \mapsto X := (S+S^{-1})/2$ $2(1-x^{2})T_{n}'(x)=-nT_{n+1}(x)+nT_{n-1}(x)$ $\leftrightarrow d/dx \mapsto D := (1-X^{2})^{-1}n(S-S^{-1})/2$.

erf:
$$D^2 + 2xD \mapsto (2(S^{-1} - S)^{-1}n)^2 + 2\frac{S + S^{-1}}{2}2(S^{-1} - S)^{-1}n$$

= $pol(n, S)^{-1}(2(n + 1)(n + 4)S^4 - 4(n + 2)^3S^2 + 2n(n + 3))$

Prop. [Benoit, S (2009)] If y is a solution of L(x,d/dx), then its Chebyshev coefficients annihilate the numerator of L(X,D).

Extend Taylor morphism to Chebyshev expansions

Taylor
$$x^{n+1} = x \cdot x^n \leftrightarrow x \mapsto X := S^{-1}$$

$$(x^n)' = nx^{n-1} \leftrightarrow d/dx \mapsto D := (n+1)S$$

Chebyshev
$$2xT_{n}(x)=T_{n+1}(x)+T_{n-1}(x)$$
 $\leftrightarrow x \mapsto X := (S+S^{-1})/2$ $2(1-x^{2})T_{n}'(x)=-nT_{n+1}(x)+nT_{n-1}(x)$ $\leftrightarrow d/dx \mapsto D := (1-X^{2})^{-1}n(S-S^{-1})/2$.

erf:
$$D^2 + 2xD \mapsto (2(S^{-1} - S)^{-1}n)^2 + 2\frac{S + S^{-1}}{2}2(S^{-1} - S)^{-1}n$$

= $pol(n, S)^{-1}(2(n+1)(n+4)S^4 - 4(n+2)^3S^2 + 2n(n+3))$

Prop. [Benoit, S (2009)] If y is a solution of L(x,d/dx), then its Chebyshev coefficients annihilate the numerator of L(X,D).

See Benoit-Mezzarobba-Joldes for certified numerical approximations on this basis.

Conclusion

Summary

- Linear differential equations and recurrences are a great data-structure;
- Numerous algorithms have been developed in computer algebra;
- Efficient code is available;
- More is true (creative telescoping, diagonals,...);
- More to come in DDMF, including formal proofs.