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l. Fast computation at
large precision

From large integers to precise numerical values
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Direct consequence (by Newton iteration):

iﬂVGI’SGS, square—roots,... . same Ccost.






Binary Splitting for linear
recurrences (/0’s and 80’)

* n! by divide-and-conquer:

nli=n>x..- X Ln/2jj><ﬂn/2j+1)><---><1/

size O(nlogn) size O(nlogn)

Cost: O(n log’n loglog n) using FFT
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Binary Splitting for linear
recurrences (/0’s and 80’)

* n! by divide-and-conquer:

nli=n>x..- X Ln/2jj><ﬂn/2j+1)><---><1/

size O(nlogn) size O(nlogn)

Cost: O(n log’n loglog n) using FFT
 linear recurrences of order | reduce to

p!(n) := (p(n) x --- < p([n/2])) x (p([n/2] +1) x--- x p(1))

- arbitrary order: same idea, same cost (matrix factorial):

n
1 : .
ex: e,:= Z o satisfies a 2nd order rec, computed via
k=0

(r) =2 (30 ) () = a0 (5)

\ .

~"

A(n)



Code available: [IMezzarobba 2010]



Numerical evaluation of solutions of LDEs

N 00
Principle:  f(x)= ) ax" + > ax"
n=0 n=N-+1

fast evaluation  good bounds

f solution of a LDE with coeffs in Q(x) (our data-structure!)

Code available: [IMezzarobba 2010]
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Numerical evaluation of solutions of LDEs

N 00
Principle:  f(x)= ) ax" + > ax"
=0

n— n=N-+1
—— N————
fast evaluation  good bounds

f solution of a LDE with coeffs in Q(x) (our data-structure!)

1. linear recurrence in N for the first sum (easy);
2. tight bounds on the tail (technical);
3. no numerical roundoff errors.

The technique used for fast evaluation of constants like

; c3/2 Z 3n 'n'3C3” B=545140134,
C=640320.

Code available: [IMezzarobba 2010]






Analytic continuation

Compute f(x), f'(x), ..., f97Y(x) as new initial
conditions and handle error propagation: ..

..............

arctan(1+1)




Analytic continuation

Compute f(x), f'(x), ..., f97Y(x) as new initial
conditions and handle error propagation: ..

arctan(1+1)

Ex: erf(m) with 15 digits:
0 > 3.1416 > 3.1415927 > 3.14159265358979

200 terms 18 terms 6 terms

Again: computation on integers. No roundoff errors.



[l. Continued Fractions

arctan x =

-10

Taylor

10

X
1.2
1 >
| 4 2
=X
1 | 15
| ixz
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Continued
fraction



A guess & prove approach

(Maulat, S. 2015)

1. Differential equation produces first terms (easy):

¢ X
arctanx =
1.0
14 ’
4.2
1. 5%
| 2X2
1 | 35
1 +-..
.
2. Guess a formula (easy): an = a2 1

3. Prove that the CF with these a, satisfies the
differential equation.

No human intervention needed.



Proof technique L:

> series(sin(x)”"2+cos(x)"2-1,%x,4)

O(x%)
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finite-dim. vector space
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Proof technique Le— s

> series(sin(x)"2+cos(x)"2-1,x%x,4);

f satisfies a LDE O(x*)
(——
f.ft7,... liveina : : >
finite-dim. vector space Why is this a pI’OOf.

. sin and cos satisfy a 2nd order LDE: y"'+y=0;

. their squares and their sum satisty a 3rd order LDE;
. the constant -1 satisfies y'=0;

. thus sin?+cos2-1 satisfies a LDE of order at most 4;
. Cauchy’s theorem concludes.

U1l &~ WO N —

Proofs of non-linear identities by linear algebra!
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Automatic Proof of the guessed CF

? X
arctan x =
: RHS satisfies (x*+1)y’-1=0; L n® 2
. Convergents P,/Q,where P, and Q, satisfy a LRE 1 4 4n°—1
(and Qu(0)#0); L+

- Define Hn:=(Qn)2((x*+ 1) (P-/Qn)’-1);

* Hh is a polynomial in P,,Qn and their derivatives;

- therefore, it satisfies a LRE that can be computed;

+ from it, H,=O(x") visible, ie lim P,/Qx soln;
P./Qn— arctan (check initial cond.). g

Continued
Fractions
. . for Special
More generally: this guess-and-proof approach applies  Functions
to CF for solutions of (g-)Ricatti equations e

— all explicit C-fractions in Cuyt et alii.
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1. Ore polynomials and
Chebyshev expansions



Chebyshev expansions

vvvvvvvv

2(V2 + 1)(

Chebyshev

T1 (X) T3 (X) T5 (X>

(2v2+3)  3(2v2+3)? " 5(2v/2 + 3)3

+)
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From equations to operators

D < d/dx S & (n>n+1)
x<> mult by x n < mult by n
product <> composition product <> composition

Dx=xD+1 Sn=(n+1)S

13



From equations to operators

D < d/dx S & (n>n+1)
x<> mult by x n < mult by n
product <> composition product <> composition
Dx=xD+1 Sn=(n+1)S

Taylor morphism: D » (n+1)S; X » S/
produces linear recurrence from LDE
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From equation

D < d/dx
x<> mult by x

product <> composition
Dx=xD+1

s to operators

S < (n—>n+1)
n <> mult by n
product < composition
Sn=(n+1)S

Taylor morphism: D » (n+1)S; X » S/
produces linear recurrence from LDE

Ore (1933): general framework for these non-commutative

polynomials.

Main property: deg AB=deg A+deg B.

Consequence 1: (non-commu
Consequence 2: (non-commu

ative)
ative)

Consequence 3: (non-commu

ative) 1
3



Application: Chebyshev expansions
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Taylor
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Application: Chebyshev expansions

Extend Taylor morphism to Chebyshev expansions

Taylor
XMtl=x-x" & x » X:=5"1
(x")'=nx"! < d/dx » D:=(n+1)S

1
erf: D24 2xD > (2571 — §)tn)2 4+ 2212 (51 _g)-1,

2
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Application: Chebyshev expansions

Extend Taylor morphism to Chebyshev expansions

Taylor
XM l=x.x" o x » X:=5"1
(x")'=nx"1 < d/dx » D:=(n+1)S

—1
25+S 5

erf: D?4+2xD — (2(S7t —=S)"th)? + > (St —S)"'n
= pol(n,S) " *(2(n 4+ 1)(n + 4)S* — 4(n +2)3S? + 2n(n + 3))
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Application: Chebyshev expansions

Extend Taylor morphism to Chebyshev expansions

Taylor
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N2 1 a2 2SS o
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Application: Chebyshev expansions

Extend Taylor morphism to Chebyshev expansions

Taylor
XM l=x.x" o x » X:=5"1
(x")'=nx"! & d/dx —» D:=(n+1)S

N2 1 a2 2SS o
erf: D+ 2xD — (2(S S)""n)" +2 > 2(S S)""'n

= pol(n,S) " *(2(n 4+ 1)(n + 4)S* — 4(n +2)3S? + 2n(n + 3))

See Benoit-Mezzarobba-Joldes for certified numerical
approximations on this basis.
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Conclusion



Summary

Linear differential equations and recurrences are a
great data-structure;

Numerous algorithms have been developed in
computer algebra;

Efficient code is available;

More is true (creative telescoping, diagonals,...);
More to come in DDMF, including formal proofs.
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