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Motivation

Aim: given 

p0(n)an+k + · · ·+ pk(n)an = 0, 0 62 p0(N), pi 2 Z[n]

a0, . . . , ak�1, predict the behaviour of asan n ! 1.

Simplified version: ``compute’’, when they exist,

K,↵,m, c 6= 0 such that an ⇠ cKnn↵
log

mn.

Message of this talk:
1. there are tools; 
2. c can be the hard part (ie, discarding a very small c); 
3. a full asymptotic expansion is not more difficult.
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Wimp-Zeilberger Approach

1. Compute a basis of formal asymptotic expansions

p0(n)an+k + · · ·+ pk(n)an = 0, 0 62 p0(N), pi 2 Z[n]

�1(n), . . . ,�k(n) (generally divergent)

2. Using the initial conditions compute values for large n 
and deduce approximate                s.t.c1, . . . , ck

an ⇡ c1�1(n) + · · ·+ ck�k(n)

3. In the (many) cases when                           are �2(n), . . . ,�k(n) o(�1(n))

and c1 is numerically nonzero, conclude
an ⇠ c1�1(n).
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Singularity Analysis
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counts the number 
of objects of size n

captures some 
structure(an) 7! A(z) :=

X

n�0

anz
n

an =
1

2⇡i

I
A(z)

zn+1
dz

Next: computation of ⇢,↵,m, c

A(z) ⇠
z!⇢

c
⇣
1� z

⇢

⌘↵
log

m 1
1� z

⇢

(↵ 62 N)

an ⇠
n!1

c ⇢�nn
�↵�1

�(�↵)
log

m n

full asymptotic expansion available

1. Locate dominant singularities 

2. Compute local behaviour 

3. Translate into asymptotics

A 3-Step Method:

a. singularities; b. dominant ones



P-recursivity & D-finiteness

More recently (M. Mezzarobba’s talk on Thursday):  
certified analytic continuation (→ c numerically).

(an) P-recursive A(z) D-finite

p0(n)an+k + · · ·+ pk(n)an = 0 q0(z)A
(`)(z) + · · ·+ q`(z)A(z) = 0

⟺

(an) 7! A(z) :=
X

n�0

anz
n

Classical properties of LDEs: 
1. singularities satisfy               ;  
2. one can compute a basis of formal solutions at (regular) 
singular points, of the form  
  ⇣

1� z
⇢

⌘↵
log

m
⇣

1
1� z

⇢

⌘
(1 + · · · ), ↵ 2 Q,m 2 N.

q0(⇢) = 0
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Ex: Pólya’s 3D Random Walk
Start from the origin in Zd;  

move one step along one of the axes; repeat. 
What is the probability pd of returning to 0?

c =

p
6

32⇡3
�

✓
1

24

◆
�

✓
5

24

◆
�

✓
7

24

◆
�

✓
11

24

◆
not accessible to the 
algorithms presented here.

Numerical approximation by analytic continuation:

[Koutschan et alii 13,16;Glasser-Zucker77]

P(3D-walk returns to 0 in 2n steps)un :=
(2n+3)(2n+1)(n+1)un�2(2n+3)(10n2+30n+23)un+1+36(n+2)3un+2 = 0

1. satisfies

converges slowly (1 is a singularity)an :=
nX

k=0

uk ! c :=
1

1� p3
2.

in 3 sec.A(z) ⇡ c

✓
1

1� z
+ · · ·

◆
+ c2

✓
1p
1� z

+ · · ·
◆
+ c3 (1 + · · · )

Given a0, a1, a2, NumGfun produces 100 digits of s.t.c, c2, c33.
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Asymptotics of D-Finite Combinatorial Sequences

a0+a1z+… D-finite, ai integers, radius in (0,∞), then 
its singular points are regular with rational exponents 

Thm. [Katz70,Chudnovsky85,André00]

an ⇠
X

(�,↵,k)2 finite set
in Q⇥Q⇥N

��nn↵
log

k
(n) f�,↵,k

✓
1

n

◆
.

[Bostan-Raschel-S.14]

Ex. The number an of walks from the origin taking n steps  
{N,S,E,W,NW} and staying in the first quadrant behaves 
like → not D-finite.C��nn↵ with

↵ = �1 +

⇡

arccos(u)
, 8u3 � 8u2

+ 6u� 1 = 0, u > 0.

↵ 62 Q
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Univariate Generating Functions

RATIONAL

ALGEBRAIC

DIAGONAL

D-FINITE

Def diagonal: R. Pemantle’s talk yesterday.

Aim: asymptotics of the 
coefficients, 

automatically.
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More structure 
→ 

more complete 
algorithm

Christol’s conjecture: All differentially finite power series with 
integer coefficients and radius of convergence in (0,∞) are diagonals.



I. Rational Generating Functions 
(Linear Recurrences 

with Constant Coefficients)



Conway’s sequence

Generating function for lengths: 
               f(z)=P(z)/Q(z) 
with deg Q=72.

Smallest singularity: 
𝜌≃0.7671198507

ℓn≃2.04216 ρ-n

c=𝜌-1 Res(f,𝜌)
remainder exponentially small

1,11,21,1211,111221,…

Fast univariate resolution: 
Sagraloff-Mehlhorn16
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Singularity Analysis for Rational Functions

1. Numerical resolution  
with sufficient precision  
+ algebraic manipulations
2. Local expansion (easy).

3. Easy.

an � 0 for all n ⟹ real positive dominant singularity.
Useful property [Pringsheim Borel]
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A 3-Step Method:

a. singularities; b. dominant ones
1. Locate dominant singularities 

2. Compute local behaviour 

3. Translate into asymptotics

17z3 � 9z2 � 7z + 8Ex:

dist 10-5



II. Algebraic Generating Functions

P (z, F (z)) = 0

withP (z, y) 2 Z[z, y] \ {0}



1a. Location of possible singularities  
Implicit Function Theorem:  
 

1b. Analytic continuation  
    finds the dominant ones  
2. Local behaviour (Puiseux):  
3. Translation: easy:

Algebraic Generating Functions
P (z, y(z)) = 0

P (z, y(z)) =
@P

@y
(z, y(z)) = 0

Numerical resolution 
with sufficient precision  
+ algebraic manipulations
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an ⇠
n!1

c ⇢�nn
�↵�1

�(�↵)

with c, ⇢ algebraic,↵ rational.

(discriminant)

(1� z/⇢)↵, (↵ 2 Q)



3-regular 2-connected Planar Graphs

U = 2G3+T+2U2 =
T

(1� U)3
, T = z(1+B)3, B =

G3 +B2

1 +B
+z

✓
B +

1

2
B2

◆

define power series U(z), G3(z), T (z), B(z).

The aim is to compute the asymptotic behaviour of [zn]B(z).

2. The discriminant has degree 20, but only one root in (0,1]:
⇢ ⇡ .102 root of 54z3 + 324z2 � 4265z + 432.

3. At z = ⇢, P has only 1 (double) real positive root: B(⇢)

1. Eliminating U,T,G3 gives P = 16B6z2 + · · ·+ z2(z2 + 11z � 1).

4. Computing more terms gives
with an explicit cB(z) = B(⇢) + c1

✓
1� z

⇢

◆
± c

✓
1� z

⇢

◆3/2

+ · · ·

5. Conclusion:
[zn]B(z) ⇠ 3c

4
p
⇡
n�5/2⇢�n.

Analytic continuation 
exploiting 

the combinatorial origin.
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Singularity Analysis of Algebraic Series

Exact analytic continuation for singularity analysis via LDE:

B. For all roots of disc(P), sorted by increasing modulus,
1. compute exactly the local branches; 
2. match with numerical continuation (MM’s code); 
3. if a singular behaviour is encountered, return it.

Prop. [Abel1827;Cockle1861;Harley1862;Tannery1875]  
Algebraic series are D-finite.

A. Compute a LDE starting from P;
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II. Diagonals



Main Properties

Prop. Algebraic series are the diagonals 
of bivariate rational functions.  
Diagonals are D-finite; they are closed 
under sum, product, Hadamard product; 
their coefficients are multiple binomial 
sums (and conversely).

rat.
alg.

diag.
D-finite

All these properties are effective, 
with good bounds and complexity.

[Pólya21,Furstenberg67,Christol84,BostanLairezS.13,Lairez16,BostanDumontS.17] 

Christol’s conjecture: All D- finite 
power series with integer coefficients 
and radius of convergence in (0,∞) 
are diagonals.

→ asymptotics from the LDE
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I(t) =

I
P(t, x)

Q

m(t, x)
dx Int. over a cycle 

where Q≠0.

Q square-free

LDE for Integrals: Griffiths-Dwork Method

1. While m>1, reduce modulo
Basic idea:

J := h@1Q, . . . , @nQi
and integrate by parts

P
Qm = r+v1@1Q+···+vn@nQ

Qm = r
Qm + P̃

Qm�1 + derivatives

2. Apply to I,I’,I’’,… until a linear dependency is found.

 [Griffiths70;Christol84;Bostan-Lairez-S.13;Lairez16] 

Thm. If P/Q has degree d in n variables, I(t) satisfies 
a LDE with order ≈dn, coeffs of degree dO(n).

+Algo in 
Õ(d8n)

Diagonals: F (z) =
G(z)

H(z)
) �F =

✓
1

2⇡i

◆n�1I
F

✓
z1, . . . , zn�1,

t

z1 · · · zn�1

◆
dz1 · · · dzn�1

z1 · · · zn�1
.

J becomes hz1@1H � zn@nH, . . . , zn�1@n�1H � zn@nHi.
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III. Analytic Combinatorics in 
Several Variables,  

with Computer Algebra

Solution: 
1. restrict to simplest class; 
2. avoid amoebas and  

deal only with polynomial systems; 
3. control all degrees & sizes.

Wanted: complete algorithms, good complexity,  
more cases with `explicit’ c.



Coefficients of Diagonals

1a. locate the critical points (algebraic condition);  
1b. find the minimal ones (semi-algebraic condition); 
2. translate (easy in simple cases).

A 3-step method

F (z) =
G(z)

H(z)
ck,...,k =

✓
1

2⇡i

◆n Z

T

G(z)

H(z)

dz1 · · · dzn
(z1 · · · zn)k+1

Critical points: minimize z1 · · · zn V = {z | H(z) = 0}on

Minimal ones: on the boundary of the domain of convergence.

z1
@H

@z1
= · · · = zn

@H

@zn
i.e.rank

 
@H
@z1

. . . @H
@zn

@(z1···zn)
@z1

. . . @(z1···zn)
@zn

!
 1
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Def. F(z1,…,zn) is combinatorial if every coefficient is ≥ 0.

Prop. [PemantleWilson] In the combinatorial case, one of the  
minimal critical points has positive real coordinates.

J from 
G-D 

method



Ex.: Central Binomial Coefficients
✓
2k

k

◆
:

1

1� x� y

= 1 + x+ y + 2xy + x

2 + y

2 + · · ·+ 6x2
y

2 + · · ·

(1). Critical points: 1� x� y = 0, x = y =) x = y = 1/2.

(2). Minimal ones. Easy.

⇡ 4

k+1

2⇡i

Z
exp(4(k + 1)(x� 1/2)

2
) dx ⇡ 4

k

p
k⇡

.

saddle-point approx

In general, this is the difficult step.
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(3). Analysis close to the minimal critical point:

ak =
1

(2⇡i)2

ZZ
1

1� x� y

dx dy

(xy)k+1
⇡ 1

2⇡i

Z
dx

(x(1� x))k+1

residue



System reduced to  
a univariate polynomial.

Algebraic part: ``compute’’ the solutions of the system

Kronecker Representation for the Critical Points

z1
@H

@z1
= · · · = zn

@H

@zn
H(z) = 0

[Giusti-Lecerf-S.01;Schost02;SafeySchost16]

Under genericity assumptions, a probabilistic algorithm running 
in               bit ops finds:

History and Background: 
see Castro, Pardo, Hägele, 

and Morais (2001)

If
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Example (Lattice Path Model)
The number of walks from the origin taking steps  

 {NW,NE,SE,SW} and staying in the first quadrant is

F (x, y, t) =
(1 + x)(1 + y)

1� t(1 + x

2 + y

2 + x

2
y

2)

Kronecker 
representation 
of the critical 
points:

ie, they are given by:

P (u) = 4u4 + 52u3 � 4339u2 + 9338u+ 403920

Q
x

(u) = 336u2 + 344u� 105898

Q
y

(u) = �160u2 + 2824u� 48982

Q
t

(u) = 4u3 + 39u2 � 4339u/2 + 4669/2

P (u) = 0, x =
Q

x

(u)

P

0(u)
, y =

Q

y

(u)

P

0(u)
, t =

Q

t

(u)

P

0(u)

Which one of these 4 is minimal?

�F,
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Testing Minimality

F =
1

H
=

1

(1� x� y)(20� x� 40y)� 1

Critical point equation

x(2x+ 41y � 21) = y(41x+ 80y � 60)

→ 4 critical points, 2 of which are real:

(x1, y1) = (0.2528, 9.9971), (x2, y2) = (0.30998, 0.54823)

x

@H
@x = y

@H
@y :

AddH(tx, ty) = 0 and compute a Kronecker representation:

P (u) = 0, x = Q
x

(u)
P 0(u) , y = Q

y

(u)
P 0(u) , t = Q

t

(u)
P 0(u)
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Solve numerically and keep the real positive sols:

(0.31, 0.55, 0.99), (0.31, 0.55, 1.71), (0.25, 9.99, 0.09), (0.25, 0.99, 0.99)

(x2, y2) is.(x1, y1) is not minimal,



Algorithm and Complexity

Thm. If       is combinatorial, then under regularity conditions, 
 the points contributing to dominant diagonal asymptotics can be  
 determined in                bit operations. Each contribution has the  
 form  

 T, C can be found to         precision in                             bit ops.

This result covers the easiest cases.  
All conditions hold generically and can be checked 
within the same complexity, except combinatoriality.

F (z)

Ak =
⇣
T�kk(1�n)/2(2⇡)(1�n)/2

⌘
(C +O(1/k))

2� Õ(h(dD)3 +D)

[Melczer-S.16]

Õ(hd5D4)
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explicit 
algebraic 
numbers

half-integer



Example: Apéry's sequence
1

1� t(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)
= 1 + · · ·+ 5xyzt+ · · ·

Kronecker representation of the critical points:

 There are two real critical points, and one is positive. After  
 testing minimality, one has proved asymptotics

P (u) = u

2 � 366u� 17711

x =
2u� 1006

P

0(u)
, y = z = � 320

P

0(u)
, t = �164u+ 7108

P

0(u)
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Example: Restricted Words in Factors

F (x, y) =
1� x

3
y

6 + x

3
y

4 + x

2
y

4 + x

2
y

3

1� x� y + x

2
y

3 � x

3
y

3 � x

4
y

4 � x

3
y

6 + x

4
y

6

words over {0,1} without 10101101 or 1110101
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• In many cases, LDE + certified analytic continuation works. 
• Don’t miss Marc’s talk (and bring your computer). 
• Diagonals are a nice and important class of generating 

functions for which  we now have many good algorithms. 
• ACSV can be made effective (at least in simple cases) and 

recovers explicit constants. 
• Complexity issues become clearer. 

 

rat.
alg.

diag.
D-finite

Summary & Conclusion

The End
Work in progress: extend beyond some of the assumptions 

(see Melczer’s  talk & thesis).
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