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Introduction

Examples of ldentities: Definite Sums, g-Sums, Integrals
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+ multiple sums/integrals
& many, many more in , e.g.,
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Introduction

Examples of Non- “Holonomic” ldentities
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Introduction
Computer Algebra Algorithms

@ Prove these identities automatically (fast?);

@ Compute the rhs given the lhs;

@ Explain why these identities exist.

Examples:
o 1st slide: Zeilberger's algorithm and e 2nd slide (1st 3): Majewicz,
variants (many people) Kauers, Chen & Sun;

@ last 3: new generalization of
previous ones.

Confinement in finite dimension + Creative telescoping.
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http://math.rutgers.edu/events/Z60/

Confinement

[l Confinement in Finite Dimension
and Closure Properties

—

Idea: confine a function and all its derivatives/shifts/. ..
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Confinement
Finite Dimension and Special Functions

@ Classical:
polynomials represent their roots better than radicals.
Algorithms: Euclidean division and algorithm, Grobner bases.

@ More Recent:
same for linear differential or recurrence equations.
Algorithms: non-commutative analogues & gen. func.

About 25% of Sloane’s encyclopedia, ENCYCLOPEDIA
60% of Abramowitz & Stegun. INTEGER

HANDBOOK OF

SEQUENCES

‘eqn—i—ini. cond.=data structure‘

NLJA SLOANE
SIMON PLOUFE

http://ddmf.msr-inria.inria.fr/
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Confinement

First Proof: Mehler’s Identity by Confinement

u\xy—u X2 2
o0 g1 exp (W)
E Hn(x)Hn(y)— =
= n! V1 —4u?

@ Definition of Hermite polynomials H,(t): recurrence of
order 2 « vector space of dimension 2 over Q(t, n);

@ Product: vector space over Q(x, y, n) generated by

Hn(x)Hn(y) Hnt1(x)Ha(y) Ha(x)Hn+1(y) Hnt1(x)Hn+1(y)

n! ’ n! ’ ’

n! n!
— recurrence of order at most 4; (confinement)

@ Translate into differential equation (and solve).
DAY
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Confinement

I. Definition
[> R={Hn+2)<(—2n—2)H(m)+2H(n+1)x, H0)=1,H(1)=2x} :

[> R2 :=sub:(H=H2,x=y,Rl);
R, = {HZ(O)ZI,HZ(n+2): (=2n—=2)H,(n)+2H,(n+1 )y,HZ(])ZZyI

II. Product
[> R, = gfun :-/7{)/[<)/‘00(H(n)‘ Hy(n)-v(n), [RI’RZ’ {vin+1)-(n+1)=v(n),v(l)=1} }, [H(n), H,(n), v(n)], c(n));

32 3 3
Ry= [(‘(O):I,c(l )=4xy, (‘(2):8,x2),'2+ 2 74)’274)(2. c(3)= 7,\'3}’3+ 24xy—16xy" — 16x"y, (16 n

+16)c(n)—16xyc(n+1)+ (78/1720+8)’2+8x2)c(n+2)f4xu(n+3)y+ (n+4)v(/1+4)]

I11. Differential Equation
[> gfun :- /'ut‘l()d[//ut/(Rs, c(n), f(u) );
[ (16143 — 16 ul),x7 4u+8 uy2+ 8 ux274xy] fu) + (16144f 8 u” + l) ( (%f(u)),/'(o): 1 }

> dsolve (%, f(u)); 2
—dxyu+ 2 + ¥
(; )

L\ B D Gar 1y
fu) =
T 2ut 1 J2u—1
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Confinement

Second Proof: Contiguity of Hypergeometric Series

F(a,b;c;z) = Z (‘ZZ')'E,[;)'” z",
n=0 ,

ant1 _ (a+n)(b+n)

(X)n == x(x+1)---(x+n—-1).

D T B e arnrr -
Uan (c+n)(n+1)_>z( z (c—(a+b+1)z)F —abF =0,
Yatin _ N SN Nz

=241 (S) F(abiciz)i= Fla+ Lbiciz) = SF + F.

Ua.n

Notation: Differential and Shift Operators

(am(z)D + -+ + ag(2)) - F = am(2) FU™(2) + - - - + ao(2) F(2)
(bp(k)SE + -+ bo(k)) - ux = bp(k)ukrp + - -+ + bo(k)ux.

0: any of S,,, Dy, g-shift,. ..
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Confinement

Second Proof: Contiguity of Hypergeometric Series

F(a, b; c; z) Z " (X)) = x(x+1) - (x+n—1).

Uantl _ (a+n)(b+n) L (1-z
Uasn (c+n)(n+1)

ng-ﬁ-l Sa)F(a,b,c;z):

Uz n

(c—(a+b+1)z)F' — abF =0,

F(a+1,bic;z) = gF’JrF.

Gauss 1812: contiguity relation.
dim=2 = S2. F,S, - F,F linearly dependents
(Coordinates in Q(a, b, ¢, z).)

413 -4 >
?A‘ \ Dz
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Confinement

Grobner Bases: Generalize Euclidean Division and Ged

A

© Monomial ordering: total order < on the
monomials, compatible with product,
1 minimal.
@ Grobner basis of a (left) ideal Z wrt <:
generators of Z at the corners of its stairs.
@ Quotient modZ:
vector basis below the stairs W
(Vect{0* - f}).
@ Reduction of P mod Z:
Unique remainder written on this basis.

— An access to (finite dimensional)
vector spaces
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Confinement

Hilbert Dimension: a Handle on Infinite Dimension

Ms(Z) := Vect{m | m is below the stairs and of total degree < s}

Definition: Hilbert Dimension §(Z) =
9
dim My(T) = 0(s°?). NN
1
@ Finite measure of infinite-dimensional :: S
vector-spaces. :k \\
@ Can be obtained from a Grobner basis. Sdxeew

Definition (annihilator and O-finiteness)

o Annf:={P|P-f =0} J
o f is O-finite < 0(Annf) =0 I:
& linear dim. of quotient is finite. LIRS
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Confinement

Examples

Binomial coeffs (Z) wrt S, Sk; Bessel J,(x) wrt S, Dy;

Hypergeometric sequences: Orthogonal pols wrt S, Dy:
“I — _-I a >
6() =0, dimS/T =1 5(Z)=0,dimS/T =2
Stirling nbs wrt S, Sk Abel type wrt Sm, Sk, S, Se
‘T hgm(m, k)(k+r)k(m—k+s)’"_kk;r:
1 i
T J X |
4 e e !‘ PPN 7.‘
| (- —
d(Z)=1,dmS/IT = d(Z) = 2 in space of dim 4.
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Confinement
Closure Properties

Proposition

S(Ann(f + g)) < max(6(Ann f),5(Ann g)),
d(Ann(fg)) < 6(Annf) + §(Anng),
O(Ann(0 - f)) < §(Annf).

Algorithms by linear algebra (Grobner bases as Input/Output).
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Creative Telescoping

Il Creative Telescoping

— Closure under >~ and [ —

Input: GB (Annf)
Output: GB (Ann [ f) or GB(Ann " f) (or subideals).
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Creative Telescoping
Summation by Creative Telescoping

n
Goal: evaluate U, := Z (Z) to 2.

k=0

GIVEN Pascal's triangle rule:

(1) 0 ()0 ()0

Un+1 — 2Un

The initial condition Uy = 1 concludes the proof.
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Creative Telescoping

Creative Telescoping (Zeilberger 1990)

b
U,, = Z Un, k =7

k=a
GIVEN A(n,S,) and B(n, k, S, Sk) such that

(A(n7 Sn) - AkB(n, k7 Sna Sk)) : un,k — 07

then the sum “telescopes”, leading to

A(n7 Sn) . Un = [B(n7 k7 Sn-, Sk) up, k]k b+1 Often

b
Adapts easily to U(z) = Z uk(z)
k=a
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Creative Telescoping

Creative Telescoping (Zeilberger 1990)

b
U(z) = / u(z, t) dt =7
GIVEN A(x, Dy) and B(x,y, Dy, D,) such that
(A(z,D;) — DyB(z,t,D,,D;)) - u(z,t) = 0,
then the integral “telescopes”, leading to

A(z,D.) - U(z) = [B(z, t, D, Dy) - u(z, t)]i=5 o

Then | come along and try differentating under the
integral sign, and often it worked. So | got a great
reputation for doing integrals.

Richard P. Feynman 1985

‘Creative telescoping="differentiation” under integral+ “integration” by parts[
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Creative Telescoping

Diff. under [ + Integration by Parts — Algorithm?

1
t
Ex.: / - gJo(z), (20 + Jy + zJo = 0, Jo(0) = 1).
0 ~—

1—t2
A(z,Dz)-Jo
2
cos zt t-—1
Ann > A(z, D;) — Dy D,
V1I— 12 ——
no t, Dt anything

Specification for a Creative Telescoping Algorithm

Input: generators of (a subideal of) Ann f;
Output: A free of t, 0;, certificate B, such that A— 0;8 € Annf.

Definition (Telescoping of Z wrt t)

T+(Z) := (Z + 0:Q(z, t)(0,0¢)) N Q(2)(0z).

+ variants for multiple sum/int.
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Algorithms

IV Algorithms
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Algorithms
Example: Rediscovering Pascal’'s Triangle Rule

© Grobner basis for Ann (Z)

n+1 n—k J‘J—*
Sp— — =1 1
" A IokY T ka1 I

@ Reduce all monomials of degree < s = 2: ove:' Q(n, k)
7 +(gji;§2 . - PR ("(215)3(11)” LSS~ gl
© Common denominator: Do = (k+1)(k+2)(n+1—k)(n+2— k).
D>, D>S,, D2Si, D252, D252, D»S,S) confined in
Vectqgn (L, k1, k21, k31, k*1)
— Dy(5,5« — Sk — 1) € Ann

n
i)
© This has to happen for some degree: deg Ds = O(s).
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Algorithms
More Examples

@ Proper hypergeometric [Wilf & Zeilberger 1992]:

u
. (ain+ bik + ¢;)! I
Qn. ke Uiz lom + bkt 6L 1
Hi:l (u,-n + V,'k + W,'). \4'
i,
Q polynomial, & € C, a;, b;, uj, v; integers:
essentially the same situation.
@ —: confinement in a space of dimension O(s?), I
n2 + k2 p ( ) ‘*‘
no elimination of k succeeds. ——
o f— a(z,tl,...,t,): D, — b,
b(z, t1,...,t,) ’
confinement in a space of dimension O(s!) over Q(z), I
elimination of ty,...,t, has to succeed. s

Base case of the proof that D-finite functions are “holonomic”.
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Algorithms
Polynomial Growth and

Definition (Polynomial Growth p)

There exists a sequence of polynomials Ps(z1, ..., zk, t), s.t.

la| + b < s = P03} - ~-8§’:8£’ — pol of degree O(s”) in t.

Theorem (Chyzak, Kauers & Salvy 2009)
IT(Z)) <max(6(Z) + p —1,0).

Corollary (Sufficient Condition for Creative Telescoping)
d(Z) + p — 1 < k = identities exist for the sum/int wrt t.

Proof. Same as above. Also an algorithm.
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Algorithms

Non-0-Finite Examples (both with p = 1)

@ Stirling: § =1 — for > 3 vars, e.g., Frobenius: T J

; ]
Sorw()E-) L

@ Abel type: § =2 — for > 4 vars, e.g., Abel:

i (:) i(k+0) (= k)" = (n+i+))". TJ ® TJH

k=0
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Algorithms
Algorithm |. Sister Celine Style

Polynomial growth + linear algebra — 7 :=Z N Q(2)(d;, O¢).

Algorithm: Eliminate t
For increasing s until §(7) < bound,
@ Reduce all 920° with |a| + b < s;

@ Normalize to a common denominator;

© Set up a linear system to cancel the
positive powers of t;

@ If a solution is found, it has the form
A(z,0;) + 0¢B(z,0;,0¢). Return it.

This computes in

(T N Q(2)(0z,0r)) + 0:Q(2)(dz, 0r)) N Q(2)(Dz),
not in

THZ) == (T + 0:Q(z, £)(0. ) N Q(2) (0%).



Algorithm Il. Zeilberger Style Extended to § > 0

Compute in T¢(Z) := (Z + 0:Q(z, t)(D,, 0¢)) N Q(2)(Dy)
Faster, more precise.
© Hypergeometric case: Zeilberger 1990;

Algorithm (Zeilberger & variants)

fors =0,1,2,..., until found:
© reduce A — 0;B with
A= "na(2)0% B = ¢(z,1),
a<s

for undetermined rational 7,(z), ¢(z, t).

at

=

© solve by an extended Gosper algorithm
return the pairs (A, B).
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Algorithm Il. Zeilberger Style Extended to § > 0

Compute in T¢(Z) := (Z + 0:Q(z, t)(9,, 9¢)) N Q(2)(0,)
Faster, more precise.

© Hypergeometric case: Zeilberger 1990;
@ O-finite case (6 = 0): Chyzak 2000;
Algorithm (Chyzak)

fors=0,1,2,..., until 0:
© reduce A — 0;B with

A= " na(2)0% B X(z, )07,
alal|<s
for undetermined rational 7,(z), ¢5(z
o. @ extract coeffs of e to form a linear
of first order w.r.t. Of

© solve and set J to the ideal of the A's
return the pairs (A, B).

Bruno Salvy Automatic Proofs of Identities: Beyond A=B



Algorithm Il. Zeilberger Style Extended to § > 0

Compute in T¢(Z) := (Z + 0:Q(z, t)(9,, 9¢)) N Q(2)(0,)
Faster, more precise.

© Hypergeometric case: Zeilberger 1990;
@ O-finite case (6 = 0): Chyzak 2000;

© Non-O-finite: Algorithm ()
fors=0,1,2,..., until 5(j)§
* Q reduce A — 9;B with

5(z, )0,

A= Z Na(2)0%, B := ¢
alal<s 4@
(A@(Z, t).

for undetermined rati WY,
@ extract coeffs of to form a linear
" system of first orde Ot

@ solve and set J to the ideal of the A’s
return the pairs (A, B).
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Final Example
n\ (k] [n—k £+ m n
(W= ()0

© Grobner bases for (Z) {g} {n;}k}:

{(k—n—=1)S,+n+1, (k+1)Sk+k—n, S;—1,Sp—1}, {SkSe—(€+1)Se—1,5,—1, S,
@ Product by closure:
{(k+1)(m+1)S5cSeSm~+(k—n) S+ (1+k) Sk Se+(14£) (k—n) S¢S, (14+k) Sk S Sh-

© Creative telescoping: s = 1,2 — nothing; s = 3: system 14 x 28

Kkt1) o (m+Dke o

A = SiSmSa—((+m+2)SSn—Sn—S5t, B = 15— Sty

Q@ 0 =2— stop
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Conclusion

V Conclusion
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Conclusion
Conclusion

@ Summary:
o Linear differential /recurrence equations as a data structure;
o Confinement in vector spaces + creative telescoping — identities;
e Input dimension + polynomial growth — output dimension.
o Also:
o Multiple summation/integration;
e Bounds — identities + their size + complexity.
@ Open questions:

Replace polynomial growth by something intrinsic;
Exploit symmetries;

Compute all of T(Z);

Structured Padé-Hermite approximants;
Understand non-minimality.
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