Automatic Proofs of Identities: Beyond A=B

Bruno Salvy
Bruno.Salvy@inria.fr

FPSAC, Linz, July 20, 2009 Joint work with F. Chyzak and M. Kauers

I Introduction

Examples of Identities: Definite Sums, q-Sums, Integrals

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{u^n}{n!} = \frac{\exp\left(\frac{4u(xy - u(x^2 + y^2))}{1 - 4u^2}\right)}{\sqrt{1 - 4u^2}}$$

$$\sum_{k=0}^{n} \frac{q^{k^2}}{(q;q)_k(q;q)_{n-k}} = \sum_{k=-n}^{n} \frac{(-1)^k q^{(5k^2-k)/2}}{(q;q)_{n-k}(q;q)_{n+k}}$$

$$\int_0^{+\infty} x J_1(ax) I_1(ax) Y_0(x) K_0(x) dx = -\frac{\ln(1-a^4)}{2\pi a^2}$$

$$\frac{1}{2\pi i} \oint \frac{(1+2xy+4y^2) \exp\left(\frac{4x^2y^2}{1+4y^2}\right)}{y^{n+1}(1+4y^2)^{\frac{3}{2}}} \, dy = \frac{H_n(x)}{\lfloor n/2 \rfloor!}$$

+ multiple sums/integrals

& many, many more in , e.g.,

[Mehler1866]

[Andrews1974]

[GlasserMontaldi1994]

[Doetsch1930]

Examples of Non-"Holonomic" Identities

$$\sum_{k=0}^{n} \binom{n}{k} i(k+i)^{k-1} (n-k+j)^{n-k} = (n+i+j)^n \quad [Abel1826]$$

$$\sum_{k=0}^{n} (-1)^{m-k} k! \binom{n-k}{m-k} \binom{n+1}{k+1} = \binom{n}{m} \quad [Frobenius1910]$$

$$\sum_{k=0}^{m} \binom{m}{k} B_{n+k} = (-1)^{m+n} \sum_{k=0}^{n} \binom{n}{k} B_{m+k} \quad [Gessel2003]$$

$$\int_{0}^{\infty} x^{k-1} \zeta(n, \alpha + \beta x) \, dx = \beta^{-k} B(k, n-k) \zeta(n-k, \alpha)$$

$$\int_{0}^{\infty} x^{\alpha-1} \operatorname{Li}_{n}(-xy) \, dx = \frac{\pi (-\alpha)^{n} y^{-\alpha}}{\sin(\alpha \pi)}$$

$$\int_{0}^{\infty} x^{s-1} \exp(xy) \Gamma(a, xy) \, dx = \frac{\pi y^{-s}}{\sin((a+s)\pi)} \frac{\Gamma(s)}{\Gamma(1-a)}$$

Computer Algebra Algorithms

Aim

- Prove these identities automatically (fast?);
- Compute the rhs given the lhs;
- Explain why these identities exist.

Examples:

• 1st slide: Zeilberger's algorithm and variants (many people)

- 2nd slide (1st 3): Majewicz, Kauers, Chen & Sun;
- last 3: new generalization of previous ones.

Ideas

Confinement in finite dimension + Creative telescoping.

II Confinement in Finite Dimension and Closure Properties

Idea: confine a function and all its derivatives/shifts/...

Finite Dimension and Special Functions

- Classical: polynomials represent their roots better than radicals.
 Algorithms: Euclidean division and algorithm, Gröbner bases.
- More Recent: same for linear differential or recurrence equations.
 Algorithms: non-commutative analogues & gen. func.

About 25% of Sloane's encyclopedia, 60% of Abramowitz & Stegun.

egn+ini. cond.=data structure

http://ddmf.msr-inria.inria.fr/

First Proof: Mehler's Identity by Confinement

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{u^n}{n!} = \frac{\exp\left(\frac{4u(xy - u(x^2 + y^2))}{1 - 4u^2}\right)}{\sqrt{1 - 4u^2}}$$

- **1** Definition of Hermite polynomials $H_n(t)$: recurrence of order $2 \leftrightarrow$ vector space of dimension 2 over $\mathbb{Q}(t, n)$;
- 2 Product: vector space over $\mathbb{Q}(x, y, n)$ generated by

$$\frac{H_n(x)H_n(y)}{n!}, \frac{H_{n+1}(x)H_n(y)}{n!}, \frac{H_n(x)H_{n+1}(y)}{n!}, \frac{H_{n+1}(x)H_{n+1}(y)}{n!}$$

- → recurrence of order at most 4; (confinement)
- Translate into differential equation (and solve).

▼ I. Definition

▼ II. Product

$$\begin{bmatrix} > R_3 := gfim :- politorec(H(n) \cdot H_2(n) \cdot v(n), [R_1, R_2, \{v(n+1) \cdot (n+1) = v(n), v(1) = 1\}], [H(n), H_2(n), v(n)], c(n) \}; \\ R_3 := \left\{ c(0) = 1, c(1) = 4xy, c(2) = 8x^2y^2 + 2 - 4y^2 - 4x^2, c(3) = \frac{32}{3}x^3y^3 + 24xy - 16xy^3 - 16x^3y, (16n) + 16 \right\} \\ + 16 c(n) - 16xyc(n+1) + \left(-8n - 20 + 8y^2 + 8x^2 \right)c(n+2) - 4xc(n+3)y + (n+4)c(n+4) \end{bmatrix}$$

▼ III. Differential Equation

$$\begin{cases} & \text{ sim :- rectodiffeq}(R_3, c(n), f(u)); \\ & \left\{ \left(16 u^3 - 16 u^2 y x - 4 u + 8 u y^2 + 8 u x^2 - 4 x y \right) f(u) + \left(16 u^4 - 8 u^2 + 1 \right) \left(\frac{d}{du} f(u) \right), f(0) = 1 \right\} \\ & = \frac{1}{e^{\left(-\frac{4xyu + y^2 + x^2}{(2u - 1)(2u + 1)} \right)}} \\ & = \frac{1}{e^{\left(-\frac{4xyu + y^2 + x^2}{(2u - 1)(2u + 1)} \right)}} \end{aligned}$$

Second Proof: Contiguity of Hypergeometric Series

$$F(a,b;c;z) = \sum_{n=0}^{\infty} \underbrace{\frac{(a)_n(b)_n}{(c)_n n!}}_{u_{a,n}} z^n, \qquad (x)_n := x(x+1)\cdots(x+n-1).$$

$$\frac{u_{a,n+1}}{u_{a,n}} = \underbrace{\frac{(a+n)(b+n)}{(c+n)(n+1)}}_{u_{a,n}} \xrightarrow{u_{a,n}} z(1-z) F'' + (c-(a+b+1)z)F' - abF = 0,$$

$$\frac{u_{a+1,n}}{u_{a,n}} = \frac{n}{a} + 1 \to S_a F(a,b,c;z) := F(a+1,b;c;z) = \frac{z}{a}F' + F.$$

Notation: Differential and Shift Operators

$$(a_m(z)D_z^m + \dots + a_0(z)) \cdot F = a_m(z)F^{(m)}(z) + \dots + a_0(z)F(z)$$

$$(b_p(k)S_k^p + \dots + b_0(k)) \cdot u_k = b_p(k)u_{k+p} + \dots + b_0(k)u_k.$$

 ∂ : any of S_m , D_x , q-shift,...

Second Proof: Contiguity of Hypergeometric Series

$$F(a,b;c;z) = \sum_{n=0}^{\infty} \underbrace{\frac{(a)_n(b)_n}{(c)_n n!}}_{u_{a,n}} z^n, \qquad (x)_n := x(x+1) \cdots (x+n-1).$$

$$\frac{u_{a,n+1}}{u_{a,n}} = \frac{(a+n)(b+n)}{(c+n)(n+1)} \rightarrow z(1-z)F'' + (c-(a+b+1)z)F' - abF = 0,$$

$$\frac{u_{a+1,n}}{u_{a,n}} = \frac{n}{a} + 1 \rightarrow S_a F(a,b,c;z) := F(a+1,b;c;z) = \frac{z}{a}F' + F.$$

Gauss 1812: contiguity relation. $\frac{\text{dim}=2}{\text{dim}=2} \Rightarrow S_a^2 \cdot F, S_a \cdot F, F \text{ linearly dependents}.$ (Coordinates in $\mathbb{Q}(a, b, c, z)$.)

Gröbner Bases: Generalize Euclidean Division and Gcd

- Monomial ordering: total order

 on the monomials, compatible with product,

 1 minimal.
- ② Gröbner basis of a (left) ideal \(\mathcal{I} \) wrt \(\neq \): generators of \(\mathcal{I} \) at the corners of its stairs.
- **Quotient** mod \mathcal{I} : vector basis below the stairs (Vect $\{\partial^{\alpha} \cdot f\}$).
- Reduction of P mod I: Unique remainder written on this basis.
 - → An access to (finite dimensional) vector spaces

Hilbert Dimension: a Handle on Infinite Dimension

 $M_s(\mathcal{I}) := \text{Vect}\{m \mid m \text{ is below the stairs} \text{ and of total degree} \leq s\}$

Definition: Hilbert Dimension $\delta(\mathcal{I})$

$$\dim M_s(\mathcal{I}) = O(s^{\delta(\mathcal{I})}).$$

- Finite measure of infinite-dimensional vector-spaces.
- Can be obtained from a Gröbner basis.

Definition (annihilator and ∂-finiteness)

- Ann $f := \{P \mid P \cdot f = 0\}$
- f is ∂ -finite $\Leftrightarrow \delta(\operatorname{Ann} f) = 0$ \Leftrightarrow linear dim. of quotient is finite.

Examples

Binomial coeffs $\binom{n}{k}$ wrt S_n , S_k ; Hypergeometric sequences:

$$\delta(\mathcal{I}) = 0$$
, dim $S/\mathcal{I} = 1$

Stirling nbs wrt S_n, S_k

$$\delta(\mathcal{I}) = 1$$
, dim $S/\mathcal{I} = \infty$

Bessel $J_{\nu}(x)$ wrt S_{ν} , D_{x} ; Orthogonal pols wrt S_{n} , D_{x} :

$$\delta(\mathcal{I}) = 0$$
, dim $S/\mathcal{I} = 2$

Abel type wrt S_m , S_k , S_r , S_s hgm $(m,k)(k+r)^k(m-k+s)^{m-k}\frac{r}{k+r}$:

 $\delta(\mathcal{I}) = 2$ in space of dim 4.

Closure Properties

Proposition

$$\delta(\mathsf{Ann}(f+g)) \leq \mathsf{max}(\delta(\mathsf{Ann}\,f), \delta(\mathsf{Ann}\,g)),$$

$$\delta(\mathsf{Ann}(fg)) \leq \delta(\mathsf{Ann}\,f) + \delta(\mathsf{Ann}\,g),$$

$$\delta(\mathsf{Ann}(\partial \cdot f)) \leq \delta(\mathsf{Ann}\,f).$$

Algorithms by linear algebra (Gröbner bases as Input/Output).

III Creative Telescoping — Closure under \sum and \int —

Input: GB(Ann f)

Output: GB (Ann $\int f$) or GB (Ann $\sum f$) (or subideals).

Summation by Creative Telescoping

Goal: evaluate
$$U_n := \sum_{k=0}^n \binom{n}{k}$$
 to 2^n .

GIVEN Pascal's triangle rule:

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} = 2\binom{n}{k} + \binom{n}{k-1} - \binom{n}{k},$$

summing over k gives

$$U_{n+1} = 2U_n$$
.

The initial condition $U_0 = 1$ concludes the proof.

Creative Telescoping (Zeilberger 1990)

$$U_n = \sum_{k=a}^b u_{n,k} =?$$

GIVEN $A(n, S_n)$ and $B(n, k, S_n, S_k)$ such that

$$(A(n,S_n)-\Delta_kB(n,k,S_n,S_k))\cdot u_{n,k}=0,$$

then the sum "telescopes", leading to

$$A(n, S_n) \cdot U_n = [B(n, k, S_n, S_k) \cdot u_{n,k}]_{k=a}^{k=b+1} \stackrel{\text{often}}{=} 0.$$

Adapts easily to
$$U(z) = \sum_{k=a}^{b} u_k(z)$$
.

Creative Telescoping (Zeilberger 1990)

$$U(z) = \int_a^b u(z,t) dt = ?$$

GIVEN $A(x, D_x)$ and $B(x, y, D_x, D_y)$ such that

$$(A(z, D_z) - D_t B(z, t, D_z, D_t)) \cdot u(z, t) = 0,$$

then the integral "telescopes", leading to

$$A(z, D_z) \cdot U(z) = [B(z, t, D_z, D_t) \cdot u(z, t)]_{t=a}^{t=b} \stackrel{\text{often}}{=} 0.$$

Then I come along and try differentating under the integral sign, and often it worked. So I got a great reputation for doing integrals.

Richard P. Feynman 1985

Creative telescoping="differentiation" under integral+"integration" by parts

Diff. under \int + Integration by Parts \rightarrow Algorithm?

Ex.:
$$\int_{0}^{1} \frac{\cos zt}{\sqrt{1-t^{2}}} dt = \frac{\pi}{2} J_{0}(z), \quad \underbrace{(zJ_{0}'' + J_{0}' + zJ_{0})}_{A(z,D_{z}) \cdot J_{0}} = 0, \ J_{0}(0) = 1).$$

$$Ann \frac{\cos zt}{\sqrt{1-t^{2}}} \ni \underbrace{A(z,D_{z})}_{\text{no } t,D_{t}} - D_{t} \underbrace{\frac{t^{2}-1}{t}D_{z}}_{\text{anything}}$$

Specification for a Creative Telescoping Algorithm

Input: generators of (a subideal of) Ann f;

Output: A free of t, ∂_t , certificate B, such that $A - \partial_t B \in Ann f$.

Definition (Telescoping of \mathcal{I} wrt t)

$$T_t(\mathcal{I}) := (\mathcal{I} + \partial_t \mathbb{Q}(z, t) \langle \partial_z, \partial_t \rangle) \cap \mathbb{Q}(z) \langle \partial_z \rangle.$$

+ variants for multiple sum/int.

IV Algorithms

Example: Rediscovering Pascal's Triangle Rule

1 Gröbner basis for Ann $\binom{n}{k}$:

$$S_n \rightarrow \frac{n+1}{n+1-k} \mathbf{1}, \quad S_k \rightarrow \frac{n-k}{k+1} \mathbf{1}$$

over $\mathbb{Q}(n,k)$

② Reduce all monomials of degree $\leq s = 2$:

$$S_n^2 \to \frac{(n+2)(n+1)}{(n+2-k)(n+1-k)} \mathbf{1}, S_k^2 \to \frac{(n-k-1)(n-k)}{(k+2)(k+1)} \mathbf{1}, S_n S_k \to \frac{n+1}{k+1} \mathbf{1}.$$

3 Common denominator: $D_2 = (k+1)(k+2)(n+1-k)(n+2-k)$.

$$\begin{split} D_2, D_2 S_n, D_2 S_k, D_2 S_n^2, D_2 S_k^2, D_2 S_n S_k & \text{confined in} \\ & \text{Vect}_{\mathbb{Q}(n)} (\mathbf{1}, k\mathbf{1}, k^2\mathbf{1}, k^3\mathbf{1}, k^4\mathbf{1}) \\ & \to D_2 (S_n S_k - S_k - 1) \in \text{Ann} \, \binom{n}{k}. \end{split}$$

1 This has to happen for some degree: deg $D_s = O(s)$.

More Examples

Proper hypergeometric [Wilf & Zeilberger 1992]:

$$Q(n,k)\xi^{k}\frac{\prod_{i=1}^{u}(a_{i}n+b_{i}k+c_{i})!}{\prod_{i=1}^{v}(u_{i}n+v_{i}k+w_{i})!},$$

Q polynomial, $\xi \in \mathbb{C}$, a_i, b_i, u_i, v_i integers: essentially the same situation.

•
$$f = \frac{a(z, t_1, \dots, t_r)}{b(z, t_1, \dots, t_r)}$$
: $D_s = b^s$,

confinement in a space of dimension $O(s^1)$ over $\mathbb{Q}(z)$, elimination of t_1, \ldots, t_r has to succeed.

Base case of the proof that D-finite functions are "holonomic".

Polynomial Growth and Creative Telescoping when $\delta>0$

Definition (Polynomial Growth p)

There exists a sequence of polynomials $P_s(z_1, \ldots, z_k, t)$, s.t.

$$|a| + b \le s \Rightarrow P_s \partial_{z_1}^{a_1} \cdots \partial_{z_k}^{a_k} \partial_t^b \to \text{pol of degree } O(s^p) \text{ in } t.$$

Theorem (Chyzak, Kauers & Salvy 2009)

$$\delta(T_t(\mathcal{I})) \leq \max(\delta(\mathcal{I}) + p - 1, 0).$$

Corollary (Sufficient Condition for Creative Telescoping)

$$\delta(\mathcal{I}) + p - 1 < k \Rightarrow identities exist for the sum/int wrt t.$$

Proof. Same as above. Also an algorithm.

Non- ∂ -Finite Examples (both with p=1)

• Stirling: $\delta = 1 \rightarrow$ for ≥ 3 vars, e.g., Frobenius:

$$\sum_{k=0}^{n} (-1)^{m-k} k! \binom{n-k}{m-k} \begin{Bmatrix} n+1 \\ k+1 \end{Bmatrix} = \binom{n}{m}.$$

• Abel type: $\delta = 2 \rightarrow \text{for} > 4 \text{ vars, e.g., Abel:}$

$$\sum_{k=0}^{n} \binom{n}{k} i(k+i)^{k-1} (n-k+j)^{n-k} = (n+i+j)^{n}.$$

Algorithm I. Sister Celine Style

Polynomial growth + linear algebra $\to \mathcal{J} := \mathcal{I} \cap \mathbb{Q}(z) \langle \partial_z, \partial_t \rangle$.

Algorithm: Eliminate t

For increasing s until $\delta(\mathcal{J}) \leq \text{bound}$,

- Reduce all $\partial_z^a \partial_t^b$ with $|a| + b \le s$;
- Normalize to a common denominator:
- Set up a linear system to cancel the positive powers of t;
- If a solution is found, it has the form $A(z, \partial_z) + \partial_t B(z, \partial_z, \partial_t)$. Return it.

This computes in

$$((\mathcal{I} \cap \mathbb{Q}(z)\langle \partial_z, \partial_t \rangle) + \partial_t \mathbb{Q}(z)\langle \partial_z, \partial_t \rangle) \cap \mathbb{Q}(z)\langle \partial_z \rangle,$$

not in

$$T_t(\mathcal{I}) := (\mathcal{I} + \partial_t \mathbb{Q}(z, t) \langle \partial_z, \partial_t \rangle) \cap \mathbb{Q}(z) \langle \partial_z \rangle.$$

Algorithm II. Zeilberger Style Extended to $\delta > 0$

Compute in
$$T_t(\mathcal{I}) := (\mathcal{I} + \partial_t \mathbb{Q}(z, t) \langle \partial_z, \partial_t \rangle) \cap \mathbb{Q}(z) \langle \partial_z \rangle$$

Faster, more precise.

• Hypergeometric case: Zeilberger 1990;

Algorithm (Zeilberger & variants)

for $s = 0, 1, 2, \ldots$, until found:

• reduce $A - \partial_t B$ with

$$m{A} := \sum_{\alpha \le s} \eta_{lpha}(z) \partial^{lpha}, m{B} := \phi(z,t),$$

for **undetermined** rational $\eta_{\alpha}(z)$, $\phi(z, t)$.

3 solve by an extended Gosper algorithm return the pairs (A, B).

Algorithm II. Zeilberger Style Extended to $\delta>0$

Compute in
$$T_t(\mathcal{I}) := (\mathcal{I} + \partial_t \mathbb{Q}(z, t) \langle \partial_z, \partial_t \rangle) \cap \mathbb{Q}(z) \langle \partial_z \rangle$$

Faster, more precise.

- Hypergeometric case: Zeilberger 1990;
- ② ∂ -finite case ($\delta = 0$): Chyzak 2000;

Algorithm (Chyzak)

for $s = 0, 1, 2, \ldots$, until $\delta(\mathcal{J}) \neq 0$:

• reduce $A - \partial_t B$ with

$$egin{aligned} egin{aligned} A := & \sum_{lpha |lpha| \leq \mathfrak{s}} \eta_lpha(\mathsf{z}) \partial^lpha, \ egin{aligned} egin{aligned} E = & \sum_{eta \in ullet} \phi_eta(\mathsf{z},t) \partial^eta, \end{aligned}$$

for **undetermined** rational $\eta_{\alpha}(z)$, $\phi_{\beta}(z,t)$.

- extract coeffs of ullet to form a linear system of first order w.r.t. ∂_t
 - **3** solve and set \mathcal{J} to the ideal of the A's return the pairs (A, B).

Algorithm II. Zeilberger Style Extended to $\delta > 0$

Compute in
$$T_t(\mathcal{I}) := (\mathcal{I} + \partial_t \mathbb{Q}(z, t) \langle \partial_z, \partial_t \rangle) \cap \mathbb{Q}(z) \langle \partial_z \rangle$$

Faster, more precise.

- Hypergeometric case: Zeilberger 1990;
- ② ∂ -finite case ($\delta = 0$): Chyzak 2000;
- **1** Non- ∂ -finite:

Algorithm (new)

for
$$s=0,1,2,\ldots$$
, until $\delta(\mathcal{J})\leq$ bound;

• reduce $A - \partial_t B$ with

for **undetermined** rational $\eta_{\chi}(z)$, $\phi_{\beta}(z,t)$.

- extract coeffs of $M_{s+1}(\mathcal{I})$ to form a linear system of first order w.r.t. ∂_t
- 3 solve and set \mathcal{J} to the ideal of the A's return the pairs (A, B).

Final Example

$$\sum_{k} \binom{n}{k} \begin{Bmatrix} k \\ \ell \end{Bmatrix} \begin{Bmatrix} n-k \\ m \end{Bmatrix} = \binom{\ell+m}{\ell} \begin{Bmatrix} n \\ m+\ell \end{Bmatrix}$$

• Gröbner bases for $\binom{n}{k}$, $\binom{k}{\ell}$, $\binom{n-k}{m}$:

$$\{(k-n-1)S_n+n+1,(k+1)S_k+k-n,S_m-1,S_{\ell}-1\},\{S_kS_{\ell}-(\ell+1)S_{\ell}-1,S_n-1,S_m-1\},\{S_kS_{\ell}-(\ell+1)S_{\ell}$$

Product by closure:

$$\{(k+1)(m+1)S_kS_{\ell}S_m+(k-n)S_m+(1+k)S_kS_{\ell}+(1+\ell)(k-n)S_{\ell}S_m,(1+k)S_kS_{\ell}S_m-(1+k)S_kS_{\ell}S_m\}$$

3 Creative telescoping: $s = 1, 2 \rightarrow \text{nothing}$; s = 3: system 14×28

$$A = S_{\ell}S_{m}S_{n} - (\ell + m + 2)S_{\ell}S_{m} - S_{m} - S_{\ell}, B = \frac{k(k+1)}{k^{2} - 1 - n - kn}S_{\ell} + \frac{(m+1)k}{k - n - 1}S_{m}S_{\ell}$$

 $\delta = 2 \rightarrow \text{stop}$

20 / 20

V Conclusion

Conclusion

- Summary:
 - Linear differential/recurrence equations as a data structure;
 - $\bullet \ \ \text{Confinement in vector spaces} + \text{creative telescoping} \to \text{identities}; \\$
 - ullet Input dimension + polynomial growth o output dimension.
- Also:
 - Multiple summation/integration;
 - Bounds \rightarrow identities + their size + complexity.
- Open questions:
 - Replace polynomial growth by something intrinsic;
 - Exploit symmetries;
 - Compute all of $T_t(\mathcal{I})$;
 - Structured Padé-Hermite approximants;
 - Understand non-minimality.