Linear Differential Equations as a Data-Structure

Bruno Salvy

Inria \& ENS de Lyon
FoCM, July 14, 2017

Computer Algebra

Effective mathematics: what can we compute exactly? And complexity: how fast? (also, how big is the result?)

Systems with several million users

50+ years of algorithmic progress in computational mathematics!

Sources of Linear Differential Equations

Generating functions in combinatorics

Classical elementary and special functions (small order)

P. Lairez

A. Bostan

LDEs as a Data-Structure

Solutions called differentially finite (abbrev. D-finite)

A. Using Linear Differential Equations Exactly

A. Using Linear Differential Equations Exactly
 I. Numerical Values

Fast Computation with Linear Recurrences (70's and 80's)

1. Multiplication of integers is fast (Fast Fourier Transform): millions of digits < 1 sec .
2. n ! in complexity $\tilde{\mathrm{O}}(\mathrm{n})$ by divide-and-conquer

$$
n!:=\underbrace{n \times \cdots \times\lceil n / 2\rceil}_{\text {size } O(n \log n)} \times \underbrace{(\lceil n / 2\rceil-1) \times \cdots \times 1}_{\text {size } O(n \log n)}
$$

Notation:
Õ(n) means
$\mathrm{O}\left(\mathrm{n} \log ^{k} \mathrm{n}\right.$) for some k
3. Linear recurrence: convert into 1 st order recurrence on vectors and apply the same idea.

Ex: $e_{n}:=\sum_{k=0}^{n} \frac{1}{k!}$ satisfies a 2 nd order rec, computed via

$$
\binom{e_{n}}{e_{n-1}}=\frac{1}{n} \underbrace{\left(\begin{array}{cc}
n+1 & -1 \\
n & 0
\end{array}\right)}_{A(n)}\binom{e_{n-1}}{e_{n-2}}=\frac{1}{n!} A!(n)\binom{1}{0} .
$$

Conclusion: Nth element in $\tilde{\mathrm{O}}(\mathrm{N})$ ops.

Numerical evaluation of solutions of LDEs

Principle: $f(x)=\underbrace{\sum_{n=0}^{N} a_{n} x^{n}}_{\text {fast evaluation }}+\underbrace{\sum_{n=N+1}^{\infty} a_{n} x^{n}}_{\text {good bounds }}$ f solution of a LDE with coeffs in $\mathbb{Q}(x)$

1. linear recurrence in N for the first sum (easy);
2. tight bounds on the tail (technical);
3. extend to \mathbb{C} by analytic continuation.

Computation on integers. No roundoff errors.

Conclusion: value anywhere with N digits in $\tilde{O}(N)$ ops.

Sage code available

M. Mezzarobba

A. Using Linear Differential Equations Exactly

II. Local and Asymptotic Expansions

Dynamic Dictionary of Mathematical Functions

http://ddmf.msr-inria.inria.fr/

- User need
- Recent algorithmic progress
- Maths on the web

D. Dynamic Dictionary of Mathematical Functions

Home

Dynamic Dictionary of Mathematical Functions

$W_{\text {expansions, numerical evaluations, plots, and more. The functions currently presented }}^{\text {elcome to this interactive site }}$ expansions, numerical evaluations, plots, and more. The functions currently presented
are elementary functions and special functions of a single variable. More functions special functions with parameters, orthogonal polynomials, sequences - will be added with the project advances.

What's new? The main changes in this release 1.9.1, dated May 2013, are

- Proofs related to Taylor polynomial approximations.

Release history.

More on the project:

- Help on selecting and configuring the mathematical rendering
- DDMF developers list
- Article on the project at ICMS'2010
- Source code used to generate these pages
- List of related projects

The DDMF project (2008-2013) is hosted and supported by the Microsoft Research - INRIA Joint Centre.

Mathematical Functions

- The Airy function of the first kind $\mathrm{Ai}(x)$ - The Airy function of the second kind $\operatorname{Bi}(x)$
- The Anger function $\mathbf{J}_{n}(x)$
- The inverse cosine $\arccos (x)$
- The inverse hyperbolic cosine $\operatorname{arccosh}(x)$
- The inverse cotangent arccot (x)
- The inverse hyperbolic cotangent $\operatorname{arccoth}(x)$

The inverse cosecant $\operatorname{arccsc}(x)$

- The inverse hyperbolic cosecant $\operatorname{arccsch}(x)$
- The inverse secant $\operatorname{arcsec}(x)$
- The inverse hyperbolic secant $\operatorname{arcsech}(x)$
- The inverse sine $\arcsin (x)$
- The inverse hyperbolic sine $\operatorname{arcsinh}(x)$
- The inverse tangent $\arctan (x)$
- The inverse hyperbolic tangent $\operatorname{arctanh}(x)$
- The modified Bessel function of the first kind $I_{\nu}(x)$
- The Bessel function of the first kind $J_{\nu}(x)$
- The modified Bessel function of the second kind $K_{\nu}(x)$
- The Bessel function of the second kind $Y_{\nu}(x)$
- The Chebyshev function of the first kind $T_{n}(x)$
- The Chebyshev function of the second kind $U_{n}(x)$
- The hyperbolic cosine integral $\mathrm{Chi}(x)$
- The cosine integral $\mathrm{Ci}(x)$

The cosine $\cos (x)$

- The hyperbolic cosine $\cosh (x)$
- The Coulomb function $F_{n}(l, x)$
- The Whittaker's parabolic function $D_{a}(x)$
- The parabolic cylinder function $U(a, x)$
- The parabolic cylinder function $V(a, x)$
- The differentiated Airy function of the first $\mathrm{kind} \mathrm{Ai}^{\prime}(x)$
- The differentiated Airy function of the second kind $\mathrm{Bi}^{\prime}(x)$
- The Dawson integral $D_{+}(x)$
- The dilogarithm dilog (x)

The exponential integral $\mathrm{Ei}(x)$

A. Using Linear Differential Equations Exactly
 III. Proofs of Identities

Proof technique

$>\operatorname{series}\left(\sin (x)^{\wedge} 2+\cos (x)^{\wedge} 2-1, x, 4\right)$;
f satisfies a LDE \Longleftrightarrow
$f, f^{\prime}, f^{\prime \prime}, \ldots$ live in a finite-dim. vector space

1. sin and cos satisfy a 2 nd order LDE: $y^{\prime \prime}+y=0$;
2. their squares and their sum satisfy a 3 rd order LDE;
3. the constant -1 satisfies $y^{\prime}=0$;
4. thus $\sin ^{2}+\cos ^{2}-1$ satisfies a LDE of order at most 4;
5. the Cauchy-Lipschitz theorem concludes.

Proofs of non-linear identities by linear algebra!

Mehler's identity for Hermite polynomials

$$
\sum_{n=0}^{\infty} H_{n}(x) H_{n}(y) \frac{u^{n}}{n!}=\frac{\exp \left(\frac{4 u\left(x y-u\left(x^{2}+y^{2}\right)\right)}{1-4 u^{2}}\right)}{\sqrt{1-4 u^{2}}}
$$

1. Definition of Hermite polynomials: recurrence of order 2;
2. Product by linear algebra: $H_{n+k}(x) H_{n+k}(y) /(n+k)!, k \in \mathbb{N}$ generated over $\mathbb{Q}(x, n)$ by

$$
\frac{H_{n}(x) H_{n}(y)}{n!}, \frac{H_{n+1}(x) H_{n}(y)}{n!}, \frac{H_{n}(x) H_{n+1}(y)}{n!}, \frac{H_{n+1}(x) H_{n+1}(y)}{n!}
$$

\rightarrow recurrence of order at most 4;
3. Translate into differential equation.

Guess \& Prove Continued Fractions

1. Taylor expansion produces first terms (easy):

$$
\arctan x=\frac{x}{1+\frac{\frac{1}{3} x^{2}}{1+\frac{\frac{4}{15} x^{2}}{1+\frac{\frac{9}{35} x^{2}}{1+\cdots}}}}
$$

2. Guess a formula (easy): $\quad a_{n}=\frac{n^{2}}{4 n^{2}-1}$
3. Prove that the CF with these a_{n} converges to arctan:
show that $H_{n}:=Q_{n}^{2}\left(\left(x^{2}+1\right)\left(P_{n} / Q_{n}\right)^{\prime}-1\right)=O\left(x^{n}\right)$
where P_{n} / Q_{n} is the nth convergent.
gfun [ContFrac] Algo \approx compute a LRE for H_{n} and simplify it.

No human intervention needed.

It Works!

- This method has been applied to all explicit C-fractions in Cuyt et alii, starting from either: a Riccati equation:

$$
y^{\prime}=A(z)+B(z) y+C(z) y^{2}
$$

Handbook of

Continued

 Fractions for Special Functionsa q-Riccati equation:

$$
y(q z)=A(z)+B(z) y(z)+C(z) y(z) y(q z)
$$

a difference Riccati equation:

$$
y(s+1)=A(s)+B(s) y(s)+C(s) y(s) y(s+1)
$$

- It works in all cases, including Gauss's CF, Heine's q analogue and Brouncker's CF for Gamma.
- In all cases, H_{n} satisfies a recurrence of small order.

In progress: 1. explain why this method works so well, 2. classify the formulas it yields.

B. Conversions (LDE \rightarrow LDE)

From equations to operators

$$
\begin{gathered}
D_{x} \leftrightarrow \mathrm{~d} / \mathrm{dx} \\
\mathrm{x} \leftrightarrow \text { mult by } \mathrm{x}
\end{gathered}
$$

product \leftrightarrow composition

$$
D_{x} x=x D_{x}+1
$$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}} \leftrightarrow(\mathrm{n} \mapsto \mathrm{n}+1) \\
& \mathrm{n} \leftrightarrow \text { mult by } \mathrm{n}
\end{aligned}
$$

product \leftrightarrow composition

$$
S_{n} n=(n+1) S_{n}
$$

Taylor morphism: $\mathrm{D}_{\mathrm{x}} \mapsto(\mathrm{n}+1) \mathrm{S}_{\mathrm{n}} ; \mathrm{x} \mapsto \mathrm{S}_{\mathrm{n}}{ }^{-1}$ produces linear recurrence from LDE
Ex. (erf):

$$
D_{x}^{2}+2 x D_{x} \mapsto(n+1) S_{n}(n+1) S_{n}+2 S_{n}^{-1}(n+1) S_{n}=(n+1)(n+2) S_{n}^{2}+2 n
$$

Chebyshev expansions

$$
z-\frac{1}{3} z^{3}+\frac{1}{5} z^{5}+\cdots
$$

$$
2(\sqrt{2}+1)\left(\frac{T_{1}(x)}{(2 \sqrt{2}+3)}-\frac{T_{3}(x)}{3(2 \sqrt{2}+3)^{2}}+\frac{T_{5}(x)}{5(2 \sqrt{2}+3)^{3}}+\cdots\right)
$$

Ore fractions

Generalize commutative case:

$R=Q^{-1} P$ with $P \& Q$ operators.

$$
\mathrm{B}^{-1} \mathrm{~A}=\mathrm{D}^{-1} \mathrm{C} \text { when } \mathrm{bA}=\mathrm{dC} \text { with } \mathrm{bB}=\mathrm{dD}=\mathrm{LCLM}(\mathrm{~B}, \mathrm{D}) \text {. }
$$

Algorithms for sum and product:

$$
\begin{aligned}
& \mathrm{B}^{-1} \mathrm{~A}+\mathrm{D}^{-1} \mathrm{C}=\mathrm{LCLM}(\mathrm{~B}, \mathrm{D})^{-1}(\mathrm{bA}+\mathrm{dC}) \text {, with } \mathrm{bB}=\mathrm{dD}=\mathrm{LCLM}(\mathrm{~B}, \mathrm{D}) \\
& \mathrm{B}^{-1} \mathrm{AD}^{-1} \mathrm{C}=(\mathrm{aB})^{-1} \mathrm{dC} \text {, with } \mathrm{aA}=\mathrm{dD}=\mathrm{LCLM}(\mathrm{~A}, \mathrm{D}) .
\end{aligned}
$$

Application: Chebyshev expansions

$$
\begin{gathered}
\text { Taylor } \\
x^{n+1}=x \cdot x^{n} \leftrightarrow x \mapsto X:=S^{-1} \\
\left(x^{n}\right)^{\prime}=n x^{n-1} \leftrightarrow d / d x \mapsto D:=(n+1) S
\end{gathered}
$$

Chebyshev
$2 x T_{n}(x)=T_{n+1}(x)+T_{n-1}(x)$

$$
\leftrightarrow x \mapsto X:=\left(S_{n}+S_{n}^{-1}\right) / 2
$$

$$
2\left(1-x^{2}\right) T_{n}^{\prime}(x)=-n T_{n+1}(x)+n T_{n-1}(x)
$$

$$
\left.\leftrightarrow d / d x \mapsto D:=:\left(1-X^{2}\right)^{-1}\right)\left(S_{n}-S_{n}^{-1}\right) / 2 .
$$

Prop. If y is a solution of $L(x, d / d x)$, then its Chebyshev coefficients annihilate the numerator of $L(X, D)$.
> deqarctan: $=(x \wedge 2+1) * \operatorname{diff}(y(x), x)-1$:
> diffeqToGFSRec(deqarctan, $y(x), u(n)$, functions=ChebyshevT($n, x)$);

$$
n u(n)+6(n+2) u(n+2)+(n+4) u(n+4)
$$

Applications to Validated Numerical Approximation

C. Computing Linear Differential Equations (Efficiently)

C. Computing Linear Differential Equations (Efficiently)

I. Algebraic Series and Questions of Size

Algebraic Series can be Computed Fast

$$
P(X, Y(X))=0 \quad P \text { irreducible }
$$

Wanted: the first N Taylor coefficients of Y.

$$
\begin{aligned}
& P_{x}(X, Y(X))+P_{y}(X, Y(X)) \cdot Y^{\prime}(X)=0 \\
& Y^{\prime}(X)=-\left(-P_{x} P_{y}^{-1} \bmod P\right)(X, Y(X)) \\
& \text { a polynomial }
\end{aligned}
$$

$$
\begin{gathered}
\text { Note: } \\
F \text { sol LDE } \\
\Rightarrow F(Y(X)) \text { sol LDE } \\
\text { (same argument) } \\
\hline
\end{gathered}
$$

finite dimension (deg P)
\rightarrow a LDE by linear algebra

Order-Degree Curve

The cost of minimality

$$
D=\operatorname{deg} P
$$

differential equations
corresponding recurrences

C. Computing Linear Differential Equations (Efficiently) II. Creative Telescoping

Examples

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} \\
\sum_{j, k}(-1)^{j+k}\binom{j+k}{k+1}\binom{r}{j}\binom{n}{k}\binom{s+n-j-k}{m-j}=(-1)^{1}\binom{n+r}{n+1}\binom{s-r}{m-n-I} \\
\int_{0}^{+\infty} x_{1}(a x) I_{1}(a x) Y_{0}(x) K_{0}(x) d x=-\frac{\ln \left(1-a^{4}\right)}{2 \pi a^{2}} \\
\\
\frac{1}{2 \pi i} \oint \frac{\left(1+2 x y+4 y^{2}\right) \exp \left(\frac{4 x^{2} y^{2}}{1+4 y^{2}}\right)}{y^{n+1}\left(1+4 y^{2}\right)^{\frac{3}{2}}} d y=\frac{H_{n}(x)}{\lfloor n / 2\rfloor!} \\
\sum_{k=0}^{n} \frac{q^{k^{2}}}{(q ; q)_{k}(q ; q)_{n-k}}=\sum_{k=-n}^{n} \frac{(-1)^{k} q^{\left(5 k^{2}-k\right) / 2}}{(q ; q)_{n-k}(q ; q)_{n+k}}
\end{gathered}
$$

Aims: 1. Prove them automatically
Note: at least one free variable
2. Find the rhs given the lhs

First: find a LDE (or LRE)

Creative telescoping

$$
\mathrm{I}(\mathrm{x})=\int \mathrm{f}(\mathrm{x}, \mathrm{t}) \mathrm{dt}=? \quad \text { or } \quad \mathrm{U}(\mathrm{n})=\sum_{\mathrm{k}} \mathrm{u}(\mathrm{n}, \mathrm{k})=?
$$

Input: equations (differential for f or recurrence for u).
Output: equations for the sum or the integral.

$$
\text { Ex.: } U_{n}:=\sum_{k}\binom{n}{k}
$$

$$
U_{n+1}-2 U_{n}=\sum_{k}\binom{n+1}{k}-2\binom{n}{k}=\sum_{k} \underbrace{\binom{n+1}{k}-\binom{n+1}{k+1}}_{\text {telescopes }}+\underbrace{\binom{n}{k+1}-\binom{n}{k}}_{\text {telescopes }}
$$

Aim: find $A\left(n, S_{n}\right)$ and $B\left(n, k, S_{n}, S_{k}\right)$ such that Def: $\Delta_{k}=S_{k}-1$.

$$
\left(A\left(n, S_{n}\right)+\Delta \cdot B\left(n, k, S_{n}, S_{k}\right) \cdot u(n, k)=0\right.
$$

certificate
then the sum telescopes, leading to $A\left(n, S_{n}\right) \cdot U(n)=0$.
Integrals: differentiate under the \int sign and integrate by parts.

Telescoping Ideal

$$
\mathrm{T}_{\mathrm{t}}(\mathrm{f}):=(\operatorname{Ann} \mathrm{f}+\underbrace{\partial_{t} \mathbb{Q}(\boldsymbol{x}, t)\left\langle\boldsymbol{\partial}_{\boldsymbol{x}}, \partial_{t}\right\rangle}_{\begin{array}{c}
\text { int. by parts } \\
\text { (certificate) }
\end{array}}) \cap \underbrace{\mathbb{Q}(\boldsymbol{x})\left\langle\boldsymbol{\partial}_{\boldsymbol{x}}\right\rangle}_{\text {diff. under } \int}
$$

First generation of algorithms relying on holonomy
Restrict int. by parts to $\mathbb{Q}(\boldsymbol{x})\left\langle\boldsymbol{\partial}_{\boldsymbol{x}}, \partial_{\mathrm{t}}\right\rangle$ and use elimination.
Second generation: faster using better certificates \& algorithms Hypergeometric summation: dim=1 + param. Gosper. Undetermined coefficients in finite dim, Ore algebras \& GB. Idem in infinite dim.

$$
\sum_{k} c_{k}(x) \partial_{x}^{k}-\partial_{t} \sum_{i, j \in \mathcal{S}} a_{i, j}(x, t) \partial_{x}^{i} \partial_{t}^{j} \in
$$

C. Computing Linear Differential Equations (Efficiently)

III. 3rd Generation Creative Telescoping

Certificates are big

$$
C_{n}:=\sum_{r, s} \underbrace{(-1)^{n+r+s}\binom{n}{r}\binom{n}{s}\binom{n+s}{s}\binom{n+r}{r}\binom{2 n-r-s}{n}}_{f_{n, r, s}}
$$

$$
(n+2)^{3} C_{n+2}-2(2 n+3)\left(3 n^{2}+9 n+7\right) C_{n+1}-(4 n+3)(4 n+4)(4 n+5) C_{n}=180 k B \simeq 2 \text { pages }
$$

$$
\mathrm{I}(\mathrm{z})=\oint \frac{\left(1+\mathrm{t}_{3}\right)^{2} \mathrm{dt}_{1} \mathrm{dt}_{2} \mathrm{dt}_{3}}{\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}\left(1+\mathrm{t}_{3}\left(1+\mathrm{t}_{1}\right)\right)\left(1+\mathrm{t}_{3}\left(1+\mathrm{t}_{2}\right)\right)+\mathrm{z}\left(1+\mathrm{t}_{1}\right)\left(1+\mathrm{t}_{2}\right)\left(1+\mathrm{t}_{3}\right)^{4}}
$$

$$
\left.z^{2}(4 z+1)(16 z-1) \prime^{\prime \prime \prime}(z)+3 z\left(128 z^{2}+18 z-1\right)\right)^{\prime \prime}(z)+\left(444 z^{2}+40 z-1\right) I^{\prime}(z)+2(30 z+1)!(z)=1080 \mathrm{kB}
$$

3rd-generation algorithms: avoid computing the certificate

Periods

$$
\begin{aligned}
& \mathrm{I}(\mathrm{t})=\oint \underbrace{\frac{\mathrm{P}(\mathrm{t}, \underline{\mathrm{x}})}{\mathrm{Q}^{\mathrm{m}(\mathrm{t}, \underline{\mathrm{x}})}} \mathrm{d} \underline{\mathrm{x}}}_{\in \in \mathbb{Q}(\mathrm{t}, \underline{\mathrm{x}})} \quad \begin{array}{l}
\text { Q square-free } \\
\text { Int. over a cycle } \\
\text { where } \mathrm{Q} \neq 0
\end{array} \\
& \mathrm{~N}:=\operatorname{deg}_{\underline{x}} \mathrm{Q}, \quad \mathrm{~d}_{\mathrm{t}}:=\max \left(\operatorname{deg}_{\mathrm{t}} \mathrm{Q}, \operatorname{deg}_{\mathrm{t}} \mathrm{P}\right)\left(x_{1}, \ldots, x_{n}\right) \\
& \operatorname{deg}_{\mathrm{x}} \mathrm{P} \text { not too big }
\end{aligned}
$$

Thm. A linear differential equation for $I(t)$ can be computed in $\mathrm{O}\left(\mathrm{e}^{3 \mathrm{n}} \mathrm{N}^{8 n} \mathrm{~d}_{+}\right)$operations in \mathbb{Q}.
It has order $\left(\leq N^{n}\right)$ and degree $\mathrm{O}\left(e^{n} N^{3 n} d_{t}\right)$.
tight
Note: generically, the certificate has at least $\mathrm{N}^{2} / 2$ monomials.

> Applications to diagonals \& to multiple binomial sums.

Diagonals

If $F(\boldsymbol{z})=\frac{G(\boldsymbol{z})}{H(\boldsymbol{z})}$ is a multivariate rational function with Taylor expansion

$$
F(\boldsymbol{z})=\sum_{\boldsymbol{i} \in \mathbb{N}^{n}} c_{\boldsymbol{i}} \boldsymbol{z}^{\boldsymbol{i}}
$$

its diagonal is $\Delta F(t)=\sum_{k \in \mathbb{N}} c_{k, k, \ldots, k} t^{k}$.

$\binom{2 k}{k}: \quad \frac{1}{1-x-y}=(1)+x+y+(2) x y+x^{2}+y^{2}+\cdots+(6) x^{2} y^{2}+\cdots$
$\frac{1}{k+1}\binom{2 k}{k}: \quad \frac{1-2 x}{(1-x-y)(1-x)}=(1)+y+(1) y-x^{2}+y^{2}+\cdots+(2) x^{2} y^{2}+\cdots$
Apéry's $a_{k}: \frac{1}{1-t(1+x)(1+y)(1+z)(1+y+z+y z+x y z)}=$ (1) $+\cdots+$ (5) $y y z t+\cdots$
Christol's conjecture: All differentially finite power series with integer coefficients and radius of convergence in $(0, \infty)$ are diagonals.

Diagonals are Differentially Finite [Christol84,Lipshitz88]

$$
\Delta F\left(z_{1}, \ldots, z_{d}\right)=\left(\frac{1}{2 \pi i}\right)^{d-1} \oint F\left(\frac{t}{z_{2} \cdots z_{d}}, z_{2}, \ldots, z_{d}\right) \frac{d z_{2}}{z_{2}} \cdots \frac{d z_{d}}{z_{d}}
$$

Thm. If F has degree d in n variables, ΔF satisfies a LDE with order $\approx d^{n}$, coeffs of degree $d^{O(n)}$.

rat.

$$
+ \text { algo in } \tilde{O}\left(d^{8 n}\right) \text { ops. }
$$

Multiple Binomial Sums

Ex. $S_{n}=\sum_{r \geq 0} \sum_{s \geq 0}(-1)^{n+r+s}\binom{n}{r}\binom{n}{s}\binom{n+s}{s}\binom{n+r}{r}\binom{2 n-r-s}{n}$
Thm. Diagonals =binomial sums with 1 free index.
defined properly
> BinomSums[sumtores](S,u): (...)

$$
\frac{1}{1-t\left(1+u_{1}\right)\left(1+u_{2}\right)\left(1-u_{1} u_{3}\right)\left(1-u_{2} u_{3}\right)}
$$

has for diagonal the generating function of S_{n}

$$
\rightarrow \mathrm{LDE} \rightarrow \mathrm{LRE}
$$

(Non-)Commercial

Algorithmes Efficaces en Calcul Formel

Alin Bostan Frédéric Chyzak Marc Giusti Romain Lebreton Grégoire Lecerf Bruno Salvy Éric Schost

New book (≈ 700 p.), based on our course. Freely available from our web pages, forever. Paper version before the end of 2017.

Conclusion

