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Computer Algebra

Effective mathematics: what can we compute exactly? 
And complexity: how fast? (also, how big is the result?)

50+ years of algorithmic progress
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Systems with several million users 

in computational mathematics!



Sources of Linear Differential Equations
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Classical elementary  
and special functions

(small order)

Generating functions  
in combinatorics

M. Bousquet-Mélou

A. Bostan

Periods

P. Lairez



LDEs as a Data-Structure

Linear 
Differential 
Equations

Numerical evaluation

Local and asymptotic 
expansions

Proofs of identities

Closed formsConversions

Polynomial equations

Diagonals

Definite sums 
and integrals

Solutions called differentially finite (abbrev. D-finite)
3/26

M. Singer



A. Using Linear Differential 
Equations Exactly



A. Using Linear Differential 
Equations Exactly

I. Numerical Values



Fast Computation with Linear Recurrences 
(70’s and 80’s)
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1. Multiplication of integers is fast (Fast Fourier Transform):  
    millions of digits ≪ 1sec.

2. n!

3. Linear recurrence: convert into 1st order recurrence 
on vectors and apply the same idea.

Ex: satisfies a 2nd order rec, computed via
✓

en
en�1

◆
=

1

n

✓
n+ 1 �1
n 0

◆

| {z }
A(n)

✓
en�1

en�2

◆
=

1

n!
A!(n)

✓
1
0

◆
.

en :=
nX

k=0

1

k!

Conclusion: Nth element in O(N) ops.̃

Notation: 
O(n) means 

O(n logkn) for 
some k

̃
̃in complexity O(n) by divide-and-conquer

n! := n⇥ · · ·⇥ dn/2e| {z }
size O(n logn)

⇥ (dn/2e � 1)⇥ · · ·⇥ 1| {z }
size O(n logn)



Numerical evaluation of solutions of LDEs

1. linear recurrence in N for the first sum (easy); 
2. tight bounds on the tail (technical); 
3. extend to ℂ by analytic continuation.

Principle:
f(x) =

NX

n=0

anx
n

| {z }
fast evaluation

+
1X

n=N+1

anx
n

| {z }
good bounds

5/26[Chudnovsky-Chudnovsky87;van der Hoeven99;Mezzarobba-S.10;Mezzarobba16]

Computation on integers. No roundoff errors.

Conclusion: value anywhere with    digits in           ops.N Õ(N)

M. MezzarobbaSage code available

f solution of a LDE with coeffs in ℚ(x)

arctan(1+i)



A. Using Linear Differential 
Equations Exactly

II. Local and Asymptotic Expansions



Dynamic Dictionary of 
Mathematical Functions

http://ddmf.msr-inria.inria.fr/

6/26[Benoit-Chyzak-Darrasse-Gerhold-Mezzarobba-S.2010]

• User need 
• Recent algorithmic progress 
• Maths on the web

http://ddmf.msr-inria.inria.fr/
http://ddmf.msr-inria.inria.fr


A. Using Linear Differential 
Equations Exactly

III. Proofs of Identities



Proof technique

> series(sin(x)^2+cos(x)^2-1,x,4);

O(x4)

Why is this a proof?

1. sin and cos satisfy a 2nd order LDE: y’’+y=0; 
2. their squares and their sum satisfy a 3rd order LDE; 
3. the constant -1 satisfies y’=0; 
4. thus sin2+cos2-1 satisfies a LDE of order at most 4; 
5. the Cauchy-Lipschitz theorem concludes.

Proofs of non-linear identities by linear algebra!

f satisfies a LDE 
⟺ 

f,f’,f’’,… live in a  
finite-dim. vector space
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Mehler’s identity for Hermite polynomials

1X

n=0

H
n

(x)H
n

(y)
un

n!
=

exp

⇣
4u(xy�u(x2+y

2))
1�4u

2

⌘

p
1� 4u2

1. Definition of Hermite polynomials:  
recurrence of order 2; 

2. Product by linear algebra: Hn+k(x)Hn+k(y)/(n+k)!, k∈ℕ 
generated over    (x,n) by  
 
 
→ recurrence of order at most 4; 

3. Translate into differential equation.

Q
Hn(x)Hn(y)

n!
,
Hn+1(x)Hn(y)

n!
,
Hn(x)Hn+1(y)

n!
,
Hn+1(x)Hn+1(y)

n!
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Guess & Prove Continued Fractions

arctan x =
x

1+
1
3x

2

1+
4
15x

2

1+
9
35x

2

1+ · · ·

1. Taylor expansion produces first terms (easy):

2. Guess a formula (easy): an =
n2

4n2 � 1
3. Prove that the CF with these an converges to arctan:

gfun[ContFrac]

9/26

show that 

Algo ≈ compute a LRE for Hn and simplify it.

Hn := Q2
n

�
(x2 + 1)(Pn/Qn)

0 � 1
�
= O(xn)

where Pn/Qn is the nth convergent.

No human intervention needed.



It Works!

• This method has been applied to all explicit  
C-fractions in Cuyt et alii, starting from either: 
a Riccati equation:  

a q-Riccati equation:  

a difference Riccati equation:  

• It works in all cases, including Gauss’s CF, Heine’s q-
analogue and Brouncker’s CF for Gamma. 

• In all cases, Hn satisfies a recurrence of small order.

y0 = A(z) +B(z)y + C(z)y2

y(qz) = A(z) +B(z)y(z) + C(z)y(z)y(qz)

y(s+ 1) = A(s) +B(s)y(s) + C(s)y(s)y(s+ 1)

In progress: 1. explain why this method works so well,  
 2. classify the formulas it yields.

10/26[Maulat-S. 15,17]



B. Conversions (LDE → LDE) 



From equations to operators

Sn ↔ (n↦n+1) 

n ↔ mult by n 

product ↔ composition 

Snn=(n+1)Sn

Taylor morphism: Dx ↦ (n+1)Sn; x ↦ Sn
-1 

produces linear recurrence from LDE

Dx ↔ d/dx 
x↔ mult by x 

product ↔ composition 

Dxx=xDx+1

11/26

Ex. (erf): 
D

2
x

+2xD
x

7! (n+1)S
n

(n+1)S
n

+2S�1
n

(n+1)S
n

= (n+1)(n+2)S2
n

+2n



Chebyshev expansions

Taylor Chebyshev

2(
p
2+ 1)

✓
T1(x)

(2
p
2+ 3)

� T3(x)

3(2
p
2+ 3)2

+
T5(x)

5(2
p
2+ 3)3

+ · · ·
◆

arctan

z� 1

3
z3 +

1

5
z5 + · · ·

12/26

ck =
2

⇡

Z 1

�1

f(x)Tk(x)p
1� x

2
dx



B-1A=D-1C when bA=dC with bB=dD=LCLM(B,D).

Ore fractions
Generalize commutative case:

R=Q-1P with P & Q operators.

Algorithms for sum and product:

B-1A+D-1C=LCLM(B,D)-1(bA+dC), with bB=dD=LCLM(B,D)

B-1AD-1C=(aB)-1dC, with aA=dD=LCLM(A,D).

13/26[Ore1933]



Application: Chebyshev expansions

Taylor 
xn+1=x·xn ↔ x ↦ X:=S-1 

(xn)’=nxn-1 ↔ d/dx ↦ D:=(n+1)S

Chebyshev 
2xTn(x)=Tn+1(x)+Tn-1(x) 
↔ x ↦ X:=(Sn+Sn

-1)/2  
2(1-x2)Tn’(x)=-nTn+1(x)+nTn-1(x)  

 ↔ d/dx ↦ D:=(1-X2)-1n(Sn-Sn
-1)/2.

14/26[Benoit-S.09;Benoit12;BenoitJoldesMezzarobba17]

Applications to Validated Numerical Approximation

M. Joldes

> deqarctan:=(x^2+1)*diff(y(x),x)-1:
> diffeqToGFSRec(deqarctan,y(x),u(n),functions=ChebyshevT(n,x));

nu(n) + 6(n+ 2)u(n+ 2) + (n+ 4)u(n+ 4)

Prop. If y is a solution of L(x,d/dx), then its Chebyshev 
coefficients annihilate the numerator of L(X,D).



C. Computing Linear Differential 
Equations (Efficiently)



C. Computing Linear Differential 
Equations (Efficiently)

I. Algebraic Series and Questions of Size



Algebraic Series can be Computed Fast

P (X,Y (X)) = 0

P
x

(X,Y (X)) + P
y

(X,Y (X)) · Y 0(X) = 0

Y 0
(X) = (�P

x

P�1
y

mod P )(X,Y (X))

Y (X), Y 0(X), Y 00(X), . . . inVectQ(X)(1, Y, Y
2, . . . )

a polynomial

finite dimension (deg P)

Wanted: the first N Taylor coefficients of Y.

→ a LDE by linear algebra

[Abel1827;Cockle1861;Harley1862;Tannery1875]

P irreducible

15/26

Note: 
F sol LDE  

⇒ F(Y(X)) sol LDE 

(same argument)



Order-Degree Curve
The cost of minimality

order

degree

O(D)

O(D^3)

O(D)

O(D^2)

O(D^2)O(D^2)order

degree

O(D)

O(D^3)

O(D)

O(D^2)

O(D^2)

O(D^2) order

degree

O(D)

O(D^3)

O(D)

O(D^2)

O(D^2)

O(D^2)

differential equations corresponding recurrences

D=deg P

minimal LDE

minimal recurrence

nice recurrence

16/26[Bostan-Chyzak-Lecerf-S.-Schost07;Chen-Kauers12;Chen-Jaroschek-Kauers-Singer13]



C. Computing Linear Differential 
Equations (Efficiently)

II. Creative Telescoping



Examples
nX

k=0

✓
n

k

◆2✓n+ k

k

◆2

=
nX

k=0

✓
n

k

◆✓
n+ k

k

◆ kX

j=0

✓
k

j

◆3

X

j,k

(�1)j+k

✓
j+ k

k+ l

◆✓
r

j

◆✓
n

k

◆✓
s+ n� j� k

m� j

◆
= (�1)l

✓
n+ r

n+ l

◆✓
s� r

m� n� l

◆

1. Prove them automatically 
2. Find the rhs given the lhs

Aims:
Note: at least one 

free variable

Z +1

0
xJ1(ax)I1(ax)Y0(x)K0(x) dx = � ln(1� a

4)

2⇡a2

1

2⇡i

I
(1+ 2xy + 4y2) exp

⇣
4x

2

y

2

1+4y

2

⌘

yn+1

(1+ 4y2)
3

2

dy =

H
n

(x)

bn/2c!

nX

k=0

qk
2

(q; q)k(q; q)n�k
=

nX

k=�n

(�1)kq(5k
2�k)/2

(q; q)n�k(q; q)n+k

First: find a LDE (or LRE) 17/26



Creative telescoping

Input: equations (differential for f or recurrence for u). 
Output: equations for the sum or the integral.

Aim: find A(n,Sn) and B(n,k,Sn,Sk) such that

then the sum telescopes, leading to A(n,Sn)⋅U(n)=0.

(A(n,Sn)+ΔkB(n,k,Sn,Sk))⋅u(n,k)=0,

I(x) =

Z
f(x, t) dt =? or U(n) =

X

k

u(n, k) =?

certificate

18/26
Integrals: differentiate under the ∫ sign and integrate by parts.

Def: ∆k:=Sk-1.

Ex.: Un :=
X

k

✓
n

k

◆

Un+1 � 2Un =
X

k

✓
n+ 1

k

◆
� 2

✓
n

k

◆
=

X

k

✓
n+ 1

k

◆
�

✓
n+ 1

k + 1

◆

| {z }
telescopes

+

✓
n

k + 1

◆
�
✓
n

k

◆

| {z }
telescopes



∂x

∂y

∂z

Telescoping Ideal

28

Tt(f) :=
⇣
Ann f + @tQ(x, t)h@

x

, @ti| {z }
int. by parts

⌘
\ Q(x)h@

x

i| {z }
di↵. under

R
.

19/26

Q(x)h@
x

, @ti

First generation of algorithms relying on holonomy

Restrict int. by parts to                      and use elimination.

(certificate)

[Zeilberger et alii 90,91,92;Chyzak00;Chyzak-Kauers-S.09]

F. Chyzak

Second generation: faster using better certificates & algorithms

Hypergeometric summation: dim=1 + param. Gosper.

Undetermined coefficients in finite dim, Ore algebras & GB.

∂x

∂t

X

k

c

k

(x)@k

x

� @

t

X

i,j2S
a

i,j

(x, t)@i

x

@

j

t

2 Ann f

Idem in infinite dim.

∂x

∂y

∂z



C. Computing Linear Differential 
Equations (Efficiently)

III. 3rd Generation Creative Telescoping



Certificates are big

Cn :=
X

r,s

(�1)n+r+s

✓
n

r

◆✓
n

s

◆✓
n+ s

s

◆✓
n+ r

r

◆✓
2n� r � s

n

◆

| {z }
fn,r,s

(n+ 2)3Cn+2 � 2(2n+ 3)(3n2 + 9n+ 7)Cn+1 � (4n+ 3)(4n+ 4)(4n+ 5)Cn = 180 kB ' 2 pages

I(z) =

I
(1+ t3)2dt1dt2dt3

t1t2t3(1+ t3(1+ t1))(1+ t3(1+ t2)) + z(1+ t1)(1+ t2)(1+ t3)4

z2(4z+ 1)(16z� 1)I000(z) + 3z(128z2 + 18z� 1)I00(z) + (444z2 + 40z� 1)I0(z) + 2(30z+ 1)I(z) = 1 080 kB

' 12 pages

3rd-generation algorithms: avoid computing the certificate
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Periods

I(t) =

I
P(t, x)

Q

m(t, x)| {z }
2Q(t,x)

dx

N := deg

x

Q, d
t

:= max(deg

t

Q, deg
t

P)

Thm. A linear differential equation for I(t) can be computed 
in O(e3nN8ndt) operations in ℚ.   
It has order ≤Nn and degree O(enN3ndt).

Note: generically, the certificate has at least        monomials.Nn2/2

degxP not too big

tight

Applications to diagonals  
& to multiple binomial sums.

21/26[Picard1902;Dwork62;Griffiths69;Christol85;Bostan-Lairez-Salvy13;Lairez16]

Int. over a cycle 
where Q≠0.

Q square-free

x = (x1, . . . , xn)



Diagonals

is a multivariate rational function with Taylor expansion

its diagonal is 

If F (z) =
G(z)

H(z)

F (z) =
X

i2Nn

ciz
i,

�F (t) =
X

k2N
ck,k,...,kt

k.

✓
2k

k

◆
:

1

1� x� y

= 1 + x+ y + 2xy + x

2 + y

2 + · · ·+ 6x2
y

2 + · · ·

1

k + 1

✓
2k

k

◆
:

1� 2x

(1� x� y)(1� x)
= 1+y+1xy�x

2+y

2+· · ·+2x2
y

2+· · ·

Apéry’s ak : 1

1� t(1 + x)(1 + y)(1 + z)(1 + y + z + yz + xyz)
= 1 + · · ·+ 5xyzt+ · · ·

in this talk

Christol’s conjecture: All differentially finite power series with 
integer coefficients and radius of convergence in (0,∞) are diagonals.
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Diagonals are Differentially Finite 
[Christol84,Lipshitz88]

rat.
alg.

diag.
D-finite

Thm. If F has degree d in n variables,  
ΔF satisfies a LDE with

order coeffs of degree⇡ dn, dO(n).

+ algo in ops.Õ(d8n)

 [Bostan-Lairez-S.13;Lairez16] 

�F (z1, . . . , zd) =

✓
1

2⇡i

◆d�1 I
F

✓
t

z2 · · · zd
, z2, . . . , zd

◆
dz2
z2

· · · dzd
zd

Univariate power series
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Multiple Binomial Sums

[Bostan-Lairez-S.17]

> BinomSums[sumtores](S,u): (…)
1

1� t(1 + u1)(1 + u2)(1� u1u3)(1� u2u3)

Thm. Diagonals ≡ binomial sums with 1 free index.

Ex. Sn =
X

r�0

X

s�0

(�1)n+r+s

✓
n

r

◆✓
n

s

◆✓
n+ s

s

◆✓
n+ r

r

◆✓
2n� r � s

n

◆
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defined properly

has for diagonal the generating function of Sn 

→LDE→LRE



 (Non-)Commercial

�x

�y

�z

Algorithmes E�caces

en Calcul Formel

Alin Bostan

Frédéric Chyzak

Marc Giusti

Romain Lebreton

Grégoire Lecerf

Bruno Salvy

Éric Schost

New book (≈700p.), based on our course. 
Freely available from our web pages, forever. 
Paper version before the end of 2017.

25/26



Conclusion
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Linear 
Differential 
Equations

+ 
Computer Algebra

Combinatorics

Special 
Functions

Approximation

Your 
Work?The End


