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Figure 3. (A) Experimental Hi-C contact map for the chromatin region
located between 23.05 and 24.36 Mb of chromosome 3R (from (11)). Epi-
genetic domains (from (1)) are given at the top and at the left borders of
the figure: active (orange), Polycomb (blue), HP-1 (green) and black chro-
matin. (B and C) Examples of predicted contact maps inside the multista-
bility region (Uns = Š 25 kBT, Us = Š 63 kBT) starting from a coil (B) or
a MPS (C) configuration (see insets). (D) Time-evolution of the distance
between the centers of masses of the active domains A0 and A1 along one
simulated trajectory. Insets represent typical conformations of the chain.

Figure 4. (A) Experimental Hi-C contact map for the chromatin region
located between 12.16 and 13.36 Mb of chromosome 3R (from (11)). Epi-
genetic domains (from (1)) are given at the top and at the left borders of
the figure: active (orange), Polycomb (blue), HP-1 (green) and black chro-
matin. (B, C and D) Examples of predicted contact maps inside the multi-
stability region (Uns = Š 40 kBT, Us = Š 44 kBT) starting from a coil (B),
a MPS (C) or a experimental-like (D) configuration (see insets).

mains to contact another active domain A0 (around 23.10
Mb) located 600 kb apart. In the context of a copolymer,
these experimental observations are consistent with MPS-
like conformations. Using the self-consistent approxima-

tion, we study the phase diagram of the region (modeled
by a chain of 131 beads with 10 kb per bead) (Supplemen-
tary Figure S4). Many stationary solutions exist, that are
consistent with the experimental Hi-C map. They are all lo-
cated within the multistability region (examples are given in
Figure 3B and C). In particular, we were able to reproduce
the pattern of inter-black domains interactions and some
long-range contacts between active domains (Figure 3C).
By scanning a small part of the multistability region using
full simulations, we find sets of parameter that catch qualita-
tively the average polymeric behavior of the chain as well as
the specificity of the experimental data (Supplementary Fig-
ure S5). Of note, this suggests that black chromatin forms a
compact metastable globule that transiently dissociates, and
that small active domains are expelled at the periphery of
the globule (insets Figure 3D). This localization allows dy-
namic interactions between the active regions (Figure 3D).

Long-range contacts between Polycomb domains. As an-
other example, we choose the chromatin region located be-
tween 12.16 and 13.36 Mb of chromosome 3R. The epige-
netic state is composed of a succession of black and Poly-
comb (blue) domains separated by short active regions (Fig-
ure 4A). The Hi-C map (Figure 4A) is made of internally
folded domains corresponding to the epigenetic domains.
Of particular interest are the long-range contacts observed
between the Polycomb domains centered around 12.23 Mb
(P1) and 12.65 Mb (P2), and the looping of the small ac-
tive region (around 13.22 Mb) out the dense globule of
black chromatin (B0) where it is embedded in. To inves-
tigate if the copolymer model is able to describe the ex-
perimental observations, we generate the phase diagram of
this region (modeled by a chain of 120 beads) (Supplemen-
tary Figure S4). We observe the same four regions with a
larger multistability area, consistent with the higher com-
plexity of the local epigenome. In this region, depending
on the initial conditions, many fixed points may be found
for a fixed set of parameters, characteristics of frustrated
phases that become dominant in copolymers with random
sequences of monomers (35). The lack of information on
chromatin organization in fly during mitosis does not al-
low to well defined the ‘true’ initial conditions. Like the
previous black chromatin region, we observe that experi-
ments are consistent with the multistability region. How-
ever, starting from coil, globular or MPS conformations,
we were not able to reproduce the full characteristics of
the experimental data (Supplementary Figure S6). While
the internal folding of epigenetic domains and the loop-
ing out of the small active region are well described, we
fail to mimic the inter-domain contacts, notably the simul-
taneous presence of contacts between P1 and P2 and ab-
sence of contacts between B0 and the black domain (B1)
centered around 12.39 Mb. However, if the initial condi-
tion mimics the experimental Hi-C maps (see Supplemen-
tary Notes), within a significant portion of the multistabil-
ity region, the system converges to a metastable state very
close to the observed data (Figure 4D). This underlines the
importance of initial conditions in the epigenome folding
and suggests possible memory effects with the maintenance
of long-range contacts already present in the mitotic chro-
matin organization. An alternative possibility to the mitotic
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reminiscence of long-range interactions is the existence of
heterogeneities in the strengths of specific interactions. In-
deed, assuming that Polycomb–Polycomb interactions are
stronger than intra-black–chromatin interactions also al-
lows to recapitulate the experimental data (Supplementary
Figure S7).

DISCUSSION

A simple theoretical framework for epigenome folding

In this article, we introduce a block copolymer model to in-
vestigate the folding properties of chromosomes as a func-
tion of the underlying epigenome. This model considers a
single input, namely the experimentally derived epigenome
that defines the primary sequence of the copolymer, and
only two control parameters, the non-specific and the spe-
cific monomer–monomer interactions. The former accounts
for a global compaction level, the latter for the effective at-
traction between monomers of same chromatin type. We
used an efficient computational approach that allows us
to derive expected contact maps and explore phase dia-
grams over a broad range of parameters. Remarkably, we
show that such a minimal model can account for the main
generic properties observed experimentally. Our approach
provides a simple, tractable and attractive theoretical frame-
work for interpreting the organization of the epigenome
at sub-chromosomal scale (from 10 kb to few Mb) and in
particular its spatial compartmentalization in TADs. Here,
folding of the genome is assumed to be mainly driven by ef-
fective attractive interactions between chromatin elements
of same epigenomic types. Self-association promotes inter-
nal folding and leads to spatial segregation and insulation
of adjacent epigenomic domains without the need to in-
troduce any bridging or anchoring activities at the TAD
boundaries. Increasing specific attraction essentially leads
to further compaction of the TADs and global confinement
promotes cross-talk between TADs of the same epigenomic
state. Compartmentalization might be a way of coordinat-
ing and reinforcing the functional output of genomic re-
gions by colocalization and mutualization of the same spe-
cific regulators.

Chromatin organization is multistable and dynamic

One of the main outcomes of the copolymer model is the
existence of a multistability region inside the phase dia-
gram where epigenomic domains fold into topologically as-
sociated domains that interact transiently with each other.
The dynamics of these interactions depend on the strength
of the specific interactions, but also on the sizes of the
epigenomic domains. For example, small domains, like most
of the epigenomically active domains, would exhibit fast
and dynamic interactions, while bigger domains may form
long-lived metastable interactions. Comparison with exper-
imental Hi-C maps of Drosophila suggests that biological
situations are consistent with this multistability. This im-
plies that, in vivo, chromatin organization is being dynam-
ically and stochastically remodeled while conserving local
key features like the TADs. This prediction of the model
is in perfect agreement with recent single-cell Hi-C exper-
iments in mouse showing the conservation of TADs be-
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Figure 5. Evolution of the contact map for the chromatin region located
between 12.16 and 13.36 Mb as a function of time t (in arbitrary simulation
time-unit), starting from a coil-like conformation and ending at steady-
state in a MPS-like conformation. Legend color as in Figure 4.

tween cells and the high variability of inter-domain con-
tacts (14). Stochasticity in long-range inter-TAD interac-
tions may represent an important source of intrinsic noise
that may play an important role on the co-regulation of dis-
tant genes (46). However, during development or differenti-
ation, since noisy systems closed to criticality are very sensi-
tive to external stimuli (47,48), this variability might be use-
ful to respond efficiently to developmental cues that drive
the colocalization of distant loci (49).

Recent experiments performed on senescent cells have
shown the nuclear rearrangement of heterochromatic marks
into non-overlapping micro-domains (18). Within our for-
malism, this suggests that chromatin organization may re-
lax to microphase separation configuration in non-dividing
cell. Figure 5 shows the dynamic evolution of a contact map
predicted by the copolymer model starting from a coil state
and ending in a MPS steady-state. Interestingly, we observe
the very fast formation of TADs, followed by a long period
of slow compaction where long-range interactions are grad-
ually incorporated, until the copolymer experiences a very
fast transition to MPS. This intermediate slowing-down is
a signature of the glassy-like dynamics of copolymers when
crossing the multistability/frustrated region (35). These pre-
dictions are also consistent with recent Hi-C experiments
on synchronized HeLa cells (50) showing that the forma-
tion of TADs is already achieved in early G1 starting from
a mitotic conformation where the organization in TADs is
apparently lost, and that the Hi-C map remains fairly un-
changed throughout the cell cycle except during mitosis.
This suggests that in normal dividing cells, chromatin or-
ganization converges quickly to multistable conformations
and does not have the time to relax to a MPS-like state due
to the periodic reinitialization of the chromatin organiza-
tion at mitosis.

Toward inference and prediction

In this paper, we aimed at exploring the generic folding
properties of the chromatin fiber. Therefore, for simplicity,
we limit our approach to the simplest version of a block
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copolymer that we can build from the compartmentaliza-
tion of the epigenome. The model assumes that all spe-
cific interactions have the same strength whatever the chro-
matin type and whatever the location along the genome.
However, such two-parameter model needs to be refined
in order to gain in predictability. In particular, the current
model considers each domain as a homopolymer with uni-
form monomer–monomer interactions. This can only pro-
vide a coarse-grained understanding of epigenome folding
and cannot account for variation in contact frequency and
in particular for preferential pairwise (long-range) contact
between discrete genomic loci. Recent studies (9,12) have
proposed that these site- and lineage-specific contacts me-
diated by architectural proteins (insulators, cohesin and me-
diators) might indeed play a key role in the folding of chro-
mosomes at the sub-Mb scale. Along the same line, an-
choring at the membrane of particular sequence or/and
epigenomic domains (via their association with lamina or
nuclear pores) has been shown to be crucial for organiz-
ing chromatin inside the nucleus (30,51,52). In addition
to the global, non-site-specific, interactions investigated in
this study, focal large-scale looping and anchoring might
indeed contribute to spatial compartmentalization of do-
mains (11,12,53). Therefore, further improvements of the
model will require to augment the number of parameters
by allowing for variability of interaction at the monomer
scale, and to infer specific interaction strengths that predict
at best the observed contact maps.

The copolymer framework associated with the self-
consistent Gaussian approximation may represent an effi-
cient formalism to extract from the available experimen-
tal data the effective genomic and epigenomic interactions
between chromatin loci (54). As a promising outcome of
such inference process, would be a powerful tool to predict
the chromatin organization in various conditions, allow-
ing investigating in silico changes in TAD formations and
long-range contacts when altering the epigenome. In par-
ticular, during development, cell differentiation proceeds
by global and concomitant rearrangements of epigenomic
profile, chromatin organization and transcriptional activity
(49,55–57). Hence, our model may provide a very interest-
ing framework for understanding how epigenome regula-
tion (resp. deregulation) during development (resp. disease)
could lead to cell phenotypic variations via large-scale chro-
matin reorganization.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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