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Résumé – Dans les applications du monde moderne, les systèmes de grande taille sont en général monitorés par de nombreux
capteurs, impliquant l’analyse d’un grand nombre de signaux, souvent caractérisés par des dynamiques temporelles invariantes
d’échelle. Ce travail vise à construire et valider une procédure bootstrap permettant, à partir d’une seule observation de taille finie,
de tester l’unimodalité de la distribution associée des exposants de Hurst estimés. L’analyse de ces performances est conduite dans
un cadre d’asymptotique de grandes dimensions (nombre de composantes et taille d’échantillons croissent conjointement).

Abstract – In modern real-world applications, large systems are in general monitored by a large number of sensors, hence entailing
the joint analysis of numerous time series, often showing scale-free temporal dynamics. The present work aims to construct and
assess a bootstrap based procedure permitting to test, from a single finite size observation, the unimodality of the corresponding
distibution of estimated Hurst exponents. Performance analysis is conducted in high-dimensional asymptotic settings, where the
number of components and sample size increase jointly.

1 Introduction
Context. Scale-free dynamics are involved in a wide range
of applications. They imply that joint temporal dynamics of
several time series cannot be reduced to characteristic scales.
Instead, scale-free analysis focus on dependencies within a
wide range of scales and the key issue lies in the identification
of scaling exponents that govern the temporal dynamics within
that range of scales. Up to now, scale-free dynamics has
mostly been studied in a univariate setting whereas in modern
applications, one same system can be monitored by many
sensors resulting in a large number of time series that need
to be analyzed jointly, such as in neurosciences or climate
studies. To overcome this problem, multivariate self-similarity
analysis provides a collection of Hurst exponents that jointly
characterize multivariate scale-free time series. However, the
potentially large number of Hurst exponents raises the crucial
issue of testing unimodality vs. multimodality in estimated
Hurst exponents, i.e., the presence of one or several different
Hurst exponents. Furthermore, to be realistic with respect
to applications, the performance of such tests needs to be
assessed in high-dimensional settings, where the number of
time series is not fixed but grows with sample size.
Related works. Fractional Brownian motion (fBm), the most
common model for self-similarity, has recently been extended
to the multivariate setting by the so-called operator fractional
Brownian motion (ofBm) [2, 5]. Based on this model, a robust
eigen-wavelet estimation procedure for the Hurst exponent
vector provides a collection of as many estimates as the ob-
served time series constituting the data [1, 4, 9]. In practice, it
is often important to estimate whether one single or several dif-
ferent Hurst exponents are actually driving the joint dynamics
of the observations. A solution for testing Hurst unimodality

has been proposed in [9] and its performance studied in low-
dimensional settings where the number of components is fixed,
but sample-size increases. The proposed strategy combines
eigen-wavelet analysis with a block-bootstrap resampling. An
alternative test was proposed in [11], exploiting the properties
of large random covariance matrix eigenvalue distribution [3].
Its performance were assessed in a large dimensional settings.
Yet the weakness of that proposed procedure stemmed from the
fact that the properties of the corresponding test statistics were
estimated from multiple observations, thus excluding the use
of the test without prior benchmarking relying on simulated
ofbm.
Goals, contributions and outline. The present work aims to
design a bootstrap procedure to test Hurst unimodality from a
single observation of multivariate data adapted to the context
of high-dimensional asymptotic limits (number of components,
sample size and analysis scales go to infinity jointly). To that
end, Section 2 introduces a multivariate self-similarity model
(as a particular case of ofBm) and the corresponding multivari-
ate eigen-wavelet estimation procedure for the Hurst exponent
vector. Section 3 defines the high-dimensional asymptotic lim-
its and recalls the high-dimensional asymptotic behavior of the
distribution of the Hurst exponent vector estimator. The core
contribution of this work, described in Section 4, is to contruct
a test procedure for Hurst unimodality based on a wavelet-
domain block-bootstrap scheme. Section 5 reports test perfor-
mance assessment, in high dimensional settings, from Monte
Carlo experiments conducted on synthetic finite-size ofBm.
Reported simulations (i) explore numerically conditions where
high-dimensional asymptotic limits can be exploited, (ii) show
that the bootstrap procedure accurately reproduces the null
hypothesis of the test and (iii) quantify the power of the test.
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2 Multivariate self-similarity

2.1 Multivariate fractional Brownian motion
In the present work, we consider the M -fBm, a particu-

lar case of operator fractional Brownian motion (ofBm), a
reference model for multivariate self-similarity [5]. It con-
sists of a collection of M fBm X , {X1(t), . . . , XM (t)}t∈R

of covariance ΣX , with possibly different Hurst exponents
H = (H1, . . . ,HM ), mixed by a M×M real-valued invert-
ible matrix W ,

Y , {Y H,ΣX ,W
1 (t), . . . , Y

H,ΣX ,W
M (t)}t∈R ,WX. (1)

2.2 Multivariate wavelet eigenvalue regression
Estimating the Hurst exponent vector H = (H1, . . . ,HM )

from an observed M -variate time series Y , the core of mul-
tivariate self-similarity analysis, has been addressed in [1].
The methodology is based on multivariate discrete wavelet
transform (DWT). Technically, it lies in the computation of the
DWT coefficients of each component Ym of Y , DYm

(2j , k) =
〈2−j/2ψ0(2−jt−k)|Ym(t)〉, ∀k ∈ Z, ∀j ∈ {j1, . . . , j2}, with
the same mother wavelet ψ0 [10]. The multivariate DWT of Y
results from the concatenation of the DWT coefficients along
components, DY (2j , k) = (DY1(2j , k), . . . , DYM

(2j , k)).
The M ×M covariance matrices of multivariate DWT along
scales 2j , called wavelet spectrum, read

S(2j) ,
1

nj

nj∑
k=1

DY (2j , k)DY (2j , k)∗, (2)

with nj the number of available wavelet coefficients at scale 2j .
It can be shown that the eigenvalues λm(2j), m = 1, . . . ,M ,
of S(2j) asymptotically follow power laws with exponents
2Hm+1, naturally leading to estimateHm by linear regression
on the logarithm of λm(2j) against scales 2j , i.e.,

Ĥm =
1

2

j2∑
j=j1

vj log2 λm(2j)− 1

2
, ∀m = 1, . . . ,M, (3)

with weights vj verifying
∑
j jvj = 1 and

∑
j vj = 0.

This procedure is affected by the so-called repulsion ef-
fect [12], a finite-size scale-dependent bias that emerges when
the exponentsHm are close: the estimated eigenvalues λm(2j)
deviate more than the exact eigenvalues on average at scale
2j , especially as the number nj of available wavelet coef-
ficients to compute S(2j) is small. Since repulsion effects
between λm(2j) depends on scale 2j , this results in a bias in
the linear regressions to obtain Ĥm. A procedure to reduce
the impact of this bias in the linear regression, proposed in [9],
consists in computing wavelet spectra S(w)(2j) from several
non-overlapping time windows w = 1, . . . , 2j2−j of DWT
coefficients of same size nj2 along scales 2j , i.e.,

S(w)(2j) ,
1

nj2

wnj2∑
k=1+(w−1)nj2

DY (2j , k)DY (2j , k)∗, (4)

so that the eigenvalues λ(w)
m (2j), m = 1, . . . ,M , of S(w)(2j)

are affected by similar repulsion effects across scales 2j . Fi-
nally, the linear regressions are now performed on the loga-
rithms of λ(w)

m (2j) averaged across windows w,

log2 λ̄m(2j) , 2j−j2
2j2−j∑
w=1

log2 λ
(w)
m (2j), (5)

against scales 2j , as follows:

Ĥ(bc)
m =

1

2

j2∑
j=j1

vj log2 λ̄m(2j)−1

2
, ∀m = 1, . . . ,M. (6)

See [9] for the empirical assessment of this estimation proce-
dure on synthetic finite-size M -fBm.

3 High-dimensional asymptotics
We consider the following high-dimensional setting. First,

the Hurst exponent vectorH is not deterministic but is a vector
of M i.i.d. samples from a discrete distribution π(dH) with
support {H1, ...,HL}, 0 < H1 ≤ . . . ≤ HL < 1, L ∈ N.
Second, we consider that the number of components M is not
fixed but goes to infinity as sample size N goes to infinity.
In the context of wavelet analysis, it entails to perform the
linear regressions to estimate H on a range of analysis scales
2j1 ≤ 2j ≤ 2j2 also going to infinity as N → +∞ with
j2 − j1 constant. Specifically, the high-dimensional behavior
implies a three-way limit:

M

N/2j2
→ c ∈ [0,+∞) as M,N, j2 → +∞. (7)

As a consequence, since the number nj2 of available wavelet
coefficients at scale 2j2 approximately behaves as nj2 ≈
N/2j2 , the ratio M/nj2 is asymptotically constant.

In this setting, it has been shown in [11] that the num-
ber of modes in the distribution of the M estimates Ĥ =
(Ĥ1, . . . , ĤM ) obtained from Eq. (3) asymptotically tends
to the number of modes of π(dH) as N → +∞. We
can show that this result still holds for the M estimates
Ĥ

(bc)
= (Ĥ

(bc)
1 , . . . , Ĥ

(bc)
M ) obtained from Eq. (6). This

is assessed numerically in Section 5. In practice, this means
that π(dH) is unimodal if the distribution of Ĥ is unimodal,
and multimodal otherwise.

4 Bootstrap unimodality testing
4.1 Dip test

Since the unimodality of the distribution of Ĥ
(bc)

=

(Ĥ
(bc)
1 , . . . , Ĥ

(bc)
M ) reproduces the unimodality of the distri-

bution π(dH) of the entries of H , we devise a test procedure
based on the distribution of the M estimates Ĥ(bc)

m to test the
null hypothesis

H0 : π(dH) is unimodal. (8)

There exists several unimodality test procedures. Following
[11], we use Hartigan’s dip test [6]. Let F̂ be the empirical
cumulative distribution function of the estimates Ĥ(bc)

m , i.e.,

F̂ (x) =
1

M

M∑
m=1

1{Ĥ(bc)
m <x}, ∀x ∈ R. (9)

Let U be the class of all unimodal cumulative distribution
functions. The dip statistic, defined as

d̂ = inf
G∈U

sup
x∈R
|F̂ (x)−G(x)|, (10)

measures the deviation of the empirical cumulative distribu-
tion function to a unimodal distribution function. The test
procedure reads

rejectH0 when d̂ > dα, (11)
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with α ∈ (0, 1) the significance level, defined in [8] by
α = supH0∈(0,1)P(d̂ > dα : supp(π(dH)) = H0). In [11],
dα is estimated for fixed α using the distribution of d̂ under
H0 across Monte Carlo realizations of synthetic ofBm. In
the present work, we propose to approximate dα from a sin-
gle observation of multivariate data using a time-scale block-
bootstrap procedure developed in [9].

4.2 Bootstrap resampling
A multivariate block-bootstrap resampling scheme is per-

formed in the wavelet domain. This approach allows to
preserve the time-scale multivariate dependence structure
as opposed to a resampling of the components indepen-
dently [7]. Technically, we perform sampling with replace-
ment of dnj/LBe possibly overlapping blocks of multivariate
DWT coefficients (D(2j , k), . . . , D(2j , k + LB − 1)), k =
1, . . . , nj , of size LB in time, at each scale 2j to obtainR boot-
strap resamples D∗(r)j = (D∗(r)(2j , 1), . . . , D∗(r)(2j , nj)),

r = 1, . . . , R. From each D∗(r)j , we successively compute es-
timates S∗(r,w)(2j), for all windows w = 1, . . . , 2j2−j , then
log2 λ̄

∗(r)
m (2j) and finally Ĥ∗(bc,r)

m using Eqs. (4-6). For sim-
plification of notations, Ĥ∗(bc,r)

m is replaced by Ĥ∗(r)m . The
bootstrap Hurst exponent estimates are then centered to re-
produce null hypothesis H0, H̄∗(r)m = Ĥ

∗(r)
m − 〈Ĥ∗m〉, with

〈Ĥ∗m〉 the average of bootstrap estimates over the samples,
〈Ĥ∗m〉 = 1/R

∑
r Ĥ
∗(r)
m .

For each r = 1, . . . , R, we expect the distribution of the
boostrap estimates H̄∗(r)m along components m = 1, . . . ,M
to be unimodal. We therefore compute the empirical cu-
mulative distribution function F̂ ∗(r) from estimates H̄∗(r)m ,
m = 1, . . . ,M , for each bootstrap resample r = 1, . . . , R
using Eq. (9) and then the resulting dip statistic d̂∗(r) as in
Eq. (10). Finally, the threshold dα for the dip test (11) is
estimated by d∗α = d̂∗(l) with l = 1, . . . , R such that

#{r = 1, . . . , R : d̂∗(r) > d̂∗(l)} = b(1− α)Rc, (12)

i.e., d̂∗(l) is approximately a α percentage of the bootstrap
dip statistics d̂∗(r), r = 1, . . . , R. The bootstrap dip test then
reads

rejectH0 when d̂ > d∗α. (13)

5 Performance assessment
5.1 Monte Carlo experiment setting

To evaluate the relevance of the bootstrap unimodality test
procedure, we conduct numerical experiments on NMC = 100
realizations of synthetic M -fBm. In the context of the three-
way limit (7), we consider several numbers of components
M ∈ {24, 25, 26} and the linear regressions for the estimation
are performed on scales 2j1 ≤ 2j ≤ 2j2 depending on M for
different sample sizes N such that c ,M 2j2/N is fixed. The
closer the value of c is to 1, the slower the convergence of the

high-dimensional asymptotic behavior of Ĥ
(bc)

described in
Section 3. We therefore consider two values of c ∈ {1/8, 1/4}.
Moreover, to explore various relations between M,N, j1 and
j2 for a same c, two ranges of analysis scales are examined
at a ratio c fixed: the linear regressions are performed either
from 2j1 = M/4 to 2j2 = M or from 2j1 = M/8 to 2j2 =
M/2. The M entries of the Hurst exponent vector H are

sampled uniformly from the support {H1, H2} where H1 =
0.6 and H2 = H1 + ∆H . The covariance matrix ΣX is set to
identity matrix and the mixing matrix W is randomly chosen
amongM×M orthogonal matrices and kept fixed for each set
(M,N). For the estimation procedure, the multivariate DWT
is computed using the Daubechies 2 mother wavelet. For the
test procedure, R = 500 block-bootstrap of size LB = 4 (size
of the wavelet support, following [13]) are resampled from the
multivariate wavelet coefficients.

5.2 High-dimensional asymptotics for Ĥ

The behavior of the estimates Ĥ(bc)
m , m = 1, . . . ,M , of

the entries of the Hurst exponent vector H is examined in
different settings. Fig. 1 reports the histograms of the estimates
Ĥ

(bc)
m across entries m and Monte Carlo realizations for three

different distribution supports {H1, H2} of H and both values
of c with different dimensionsM , sample sizesN and analysis
octaves (j1, j2). These results first show that, when H1 6= H2

(H0 not true), several modes appear in the distribution of
Ĥ

(bc)
m as N , M , j1 and j2 are jointly increasing at c fixed,

corroborating the high-dimensional asymptotic behavior of
the M estimates Ĥ(bc)

m stated in Section 3. Moreover, it can
be observed that convergence of the estimated distributions
of Ĥ(bc)

m is faster for c = 1/8 compared to c = 1/4 for
comparable analysis octaves (j1, j2) (second and fifth rows)
and similar between the two values of c for comparable sample
sizes N (third and fifth rows).

5.3 Reproduction of the null hypothesis
To assess the bootstrap procedure, we first study the be-

havior of the test procedure under the null hypothesis H0

(H1 = H2). Fig. 2 reports the decisions d̂ > d∗α of the
bootstrap dip test to reject H0 averaged across Monte Carlo
realizations (with 95% confidence interval) as a function of the
preset significance level α for different three-way limits c re-
lated to different sample sizes N , dimensions M and analysis
octaves (j1, j2). For both values of c, the targeted significance
levels α are well reproduced by the bootstrap procedure.

5.4 Test power
We quantify the power of the test. Fig. 3 relates the empiri-

cal power (Monte Carlo average with 95% confidence interval)
as a function of the gap ∆H = H2 −H1 for a preset signif-
icance level α = 0.05 and different three-way limits c kept
fixed for different sample sizes N , dimensions M and anal-
ysis octaves (j1, j2). These results first show that, at a fixed
ratio c, power is increasing with sample size N . In addition,
at a ratio M/N fixed (i.e., comparing left black line with ‘+’
and right blue line with ‘∆’, and left blue line with ‘∆’ and
right red line with ‘o’), power is increasing with M , that is
for a larger number of samples used to compute the empirical
cumulative distribution function (9) involved in computing the
dip statistic.

6 Conclusion
The present work designs an original Hurst unimodality

test procedure for high-dimensional multivariate data based
on Hartigan’s dip statistic by combining an eigen-wavelet esti-
mation procedure and a time-scale block-bootstrap resampling

3



c = 1/8

c = 1/4

Figure 1 – Distribution of Ĥ(bc)
m in the high-dimensional

three-way limit. Histograms of Ĥ(bc)
m over Monte Carlo real-

izations and components m = 1, . . . ,M for different dimen-
sions M , sample sizes N and analysis octaves (j1, j2) such
that (first three lines) c = 1/8 and (last two lines) c = 1/4,
and for (dashed red lines) different values H1 and H2 of the
distribution support {H1, H2} of H .
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Figure 2 – Significance levels. Rejection decisions of the test
averaged over Monte Carlo realizations (with 95% confidence
interval) against the preset significance level α underH0 for
different dimensions M , sample sizes N and analysis octaves
(j1, j2) such that (left) c = 1/8 and (right) c = 1/4.

scheme. The relevance and performance of the test procedure
are assessed by Monte Carlo simulations of synthetic finite-
size M -fBm. Results first show that the distribution of the
Hurst exponent vector estimator is unimodal or multimodal
depending on the presence of a single or multiple Hurst ex-
ponents driving the M -fBm asymptotically, in the context of
a high-dimensional three-way limit as both dimension and
sample size increase. Results also confirm that the bootstrap
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Figure 3 – Test power. Proportions of rejections (Monte Carlo
average with 95% confidence interval) against the gap ∆H =
H2 −H1 between Hurst exponents of the distribution support
{H1, H2} of H for a preset significance level α = 0.05 and
different dimensions M , sample sizes N and analysis octaves
(j1, j2) such that (left) c = 1/8 and (right) c = 1/4.

procedure is powerful asymptotically, that is for realistic sam-
ple sizes N and large dimensions M . Future work could
include the identification of the number of modes in the Hurst
exponent vector when unimodality has been rejected. Matlab
routines will be made available at the time of publication.
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