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ABSTRACT

Multivariate selfsimilarity has become a classical tool to analyze col-
lections of time series recorded jointly on one same system. Often,
it amounts to estimating as many scaling exponents as time series.
However, this leaves open the important question how many such
scaling exponents are actually different. Elaborating on earlier work
aiming to test the hypothesis that all exponents are equal, we intend
here to count the number of different scaling exponents from a sin-
gle finite size multivariate time series. To this end, we devise an
original clustering procedure that combines a wavelet domain block
multivariate bootstrap scheme with a test strategy for a reduced set
of multiple hypotheses on the pairwise equality of scaling exponents
that are relevant to clustering. Monte Carlo simulations, making use
of synthetic reference multivariate selfsimilar processes, assess the
relevance and performance of the proposed procedure under differ-
ent scenarios and demonstrate that the proposed method yields prac-
tically satisfactory cluster number and size estimations.

Index Terms— Multivariate selfsimilarity, multivariate scaling
exponents, multivariate wavelet transform, bootstrap.

1. INTRODUCTION

Context. Modern real-world applications often entail the joint
analysis of multivariate times series, collected from one same sys-
tem by a (possibly large) number of sensors. Scale-free dynamics
has proven a fruitful paradigm to monitor the status of the system for
many applications very different in nature (cf. e.g., [1] for a review).
Multivariate scale-free analysis amounts to estimating the scaling
exponents of the data, and it is common practice to estimate as
many exponents as there are components in the collected data [2, 3].
However, to correctly interpret the status of a system, knowledge of
how many of the estimated scaling exponents actually correspond
to different values, and estimating how many components are con-
trolled by each of these distinct scaling exponent, is crucial. These
two issues have been rarely addressed in the context of multivariate
scale-free dynamics and constitute the core of this work.
Related works. Selfsimilarity, and fractional Brownian motion,
have long been recognized as relevant models for the scale-free
temporal dynamics of single time series [4–6]. In practice, the es-
timation of the scaling (or selfsimilarity) exponent is thus central
and can be efficiently and robustly performed by means of wavelet
transforms [7, 8]. The multivariate time series encountered in many
modern applications call both for multivariate selfsimilarity models,
such as the recently proposed operator fractional Brownian motion
(ofBm) [9–12], and for multivariate wavelet representation based
estimation procedures, such as those developed in [2, 3, 13, 14].

These estimation procedures output as many selfsimilarity param-
eter estimates as there are time series in the data. The actual and
relevant use of such collections of estimates for understanding the
system under study requires, as a first step, to determine how many
of the estimates are actually different. In earlier works [14, 15], we
proposed a wavelet-domain block-bootstrap strategy for deciding
whether all selfsimilarity exponents are equal or not. Yet, this leaves
untouched the critical issue of counting the number of equal self-
similarity exponents.
Goals, contributions and outline. The present work aims to
devise a clustering procedure that, from a single observation of finite
size multivariate data, is able to count the number of actually distinct
selfsimilarity exponents. To that end, the definition of multivariate
selfsimilarity is briefly recalled in Section 2 together with the eigen-
wavelet-based selfsimilarity parameter estimation procedure. The
proposed clustering procedure, the key contribution of the present
work, is then detailed in Section 3: Building up on [14, 15], the
clustering strategy consists in an original multiple hypothesis test
procedure for the equality of the reduced set of pairs of selfsimilar-
ity exponents which, after ordering from small to large values, are
neighbors. By construction, the so-obtained test decisions translate
directly into clustering results. To estimate the null distributions
of the test statistics, we also propose an original wavelet domain
time-scale-component-block bootstrap scheme. Monte Carlo exper-
iments using ofBm, reported in Section 4, are used to assess the
relevance and performance of the proposed clustering procedure.
Results demonstrate that the proposed bootstrap procedure accu-
rately approximates the null distributions, and that our procedure
yields satisfactory clustering performance under several scenarios,
with different sample sizes or number of components with identical
selfsimilarity exponents, both in terms of number of exponents that
are actually different, and in terms of the number of components
each of them control. OfBm synthesis, selfsimilarity exponent esti-
mation and test procedures are implemented by the authors and will
be made available upon publication.

2. MULTIVARIATE SELFSIMILARITY

2.1. Model: Operator fractional Brownian motion

Fractional Brownian motion (fBm) is the only Gaussian, self-similar
stochastic process with stationary increments. It is classically used
as a paradigm for (univariate) selfsimilarity [4–6]. In the present
work, we use a collection, X , {XH1(t), . . . , XHM (t)}t∈R, of
M fBm, each with possibly different selfsimilarity exponents H =
(H1, . . . , HM ), 0 < H1 ≤ . . . ≤ HM < 1, made dependent via a
M×M covariance matrix ΣX . To model M -variate selfsimilarity,
these components are linearly mixed via a M×M real-valued and
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Fig. 1: Flowchart of the clustering strategy.

invertible mixing matrix W , referred to as M -fBm:

Y , {Y H,ΣX ,W
1 (t), . . . , Y

H,ΣX ,W
M (t)}t∈R ,

W {XH1(t), . . . , XHM (t)}t∈R = WX. (1)

M -fBm is a specific case of the more general and inspiring operator
fractional Brownian motion, constructed in [9–12], which indicates
that H and ΣX are dependent parameters that cannot be chosen in-
dependently [11].

2.2. Estimation: Wavelet analysis

The key step in selfsimilarity analysis lies in the estimation of the
H = (H1, . . . , HM ) from the M -variate time series Y . An estima-
tion procedure based on the multivariate discrete wavelet transform
(DWT) was proposed in [2,3]. LetDYm(2j , k) = 〈2−j/2ψ0(2−jt−
k)|Ym(t)〉, ∀k ∈ Z, ∀j ∈ {j1, . . . , j2} denote the univarite DWT
coefficients, with ψ0 the mother wavelet [16, 17]. Multivariate
DWT is defined by stacking of the univariate DWT, DY (2j , k) =
(DY1(2j , k), . . . , DYM (2j , k)), ∀k ∈ Z, ∀j ∈ {j1, . . . , j2}, with
∀m ∈ {1, . . . ,M}. The behaviors along scales 2j of the eigenval-
ues of the M ×M multvariate wavelet spectrum

S(2j) ,
1

nj

nj∑
k=1

DY (2j , k)DY (2j , k)∗ (2)

computed at scale 2j , provide relevant estimation of H .
Yet, this approach was shown to suffer from the so-called re-

pulsion effect in computing equal eigenvalues, thus inducing biased
estimates for H [14]. To limit the resulting bias, it was proposed
to compute modified wavelet spectra with equal number of wavelet
coefficients contributing at each scale:

S(w)(2j) ,
1

nj2

wnj2∑
k=1+(w−1)nj2

DY (2j , k)DY (2j , k)∗, (3)

for w = 1, . . . , 2j−j2 . The eigenvalues {λ(w)
1 (2j), . . . , λ

(w)
M (2j)}

are computed independently at each scale 2j and for each non-
overlapping window w, hence affected by a repulsion effect of
same intensity across all scales. Then, estimators Ĥ1, . . . , ĤM are
defined as linear regressions, against scales 2j1 , . . . , 2j2 , of the log-
arithms λ̄m(2j) , 2j2−j

∑2j−j2

w=1 log2(λ
(w)
m (2j)) averaged across

windows w:

Ĥm =

(
j2∑
j=j1

vj λ̄m(2j)

)/
2− 1

2
, ∀m = 1, . . . ,M, (4)

with vj classical regression weights verifying
∑
j jvj = 1 and∑

j vj = 0 (cf. [8]). The relevance of this estimation procedure
applied to M -fBm was assessed in [14].

3. MULTIVARIATE TIME SCALE BLOCK-BOOTSTRAP
BASED CLUSTERING

3.1. Testing multiple ordered pairwise hypotheses

For notational simplicity, assume that the vector H is sorted, ∀m =
1, . . . ,M−1, Hm+1 ≥ Hm. Our strategy for estimating the groups
of equal exponents among H consists in testing the equality of the
M − 1 pairs of components that are neighbors in H , with correc-
tion for multiple test decisions. The positions of the detected non-
equalities among theseM−1 pairs of ordered exponents, if any, then
defines the boundaries for the clusters for the distinct exponents.

The null hypotheses for these M − 1 pairwise tests are thus
defined as

H(m)
0 : Hm+1 = Hm, m = 1, . . . ,M − 1. (5)

To construct a test for each hypothesis, we first compute, from a sin-
gle observation of finite size M -variate data, the vector of M esti-
mates Ĥ as described in Section 2.2, and sort its entries in ascending
order, Ĥτ = (Ĥτ(1), . . . , Ĥτ(M)) with Ĥτ(m+1) ≥ Ĥτ(m), m =
1, . . . ,M − 1. We then compute the M − 1 test statistics defined as

δ̃m = Ĥτ(m+1) − Ĥτ(m). (6)

It can been shown that the entries of Ĥ are asymptotically Gaussian
and weakly dependent, which naturally leads to postulate that under
H(m)

0 , δ̃m follows a half-normal distribution, {
√

2/σm
√
π} exp(−δ2

m/2σ
2
m).

Our numerical simulations validate that this is a reasonable approxi-
mation, see Section 4.2 below. The tests for (5) can thus be computed
as

rejectH(m)
0 if δ̃m > γm, m = 1, . . . ,M − 1, (7)

where each γm is a rejection threshold. However, since the scale
parameters σm are unknown and a priori depend on H,ΣX and W ,
the values for γm are also unknown. In order to perform the tests,
we therefore propose to estimate σm using a bootstrap procedure
[18, 19] that is described next.

3.2. Multivariate wavelet domain bootstrap for δ̃m

Following schemes proposed in earlier works [14, 15], collections
of bootstrap resamples of the multivariate wavelet coefficients
D(2j , k), k = 1, . . . , nj are computed by a multivariate wavelet-
domain block-bootstrap procedure that preserves their scale-time
multivariate (cross-)dependence structure (while component-wise
resampling would, to the contrary, destroy the cross-component
dependencies [15, 18]).

Technically, at each scale 2j , R block bootstrap resamples
D
∗(r)
j = (D∗(r)(2j , 1), . . . , D∗(r)(2j , nj)), r = 1, . . . , R are

drawn with replacement from (D(2j , k), . . . , D(2j , k + LB − 1)),



k = 1, . . . , nj . The overlapping blocks have size LB in time, and
range across all scales and all components jointly. From each boot-
strap sample D∗(r)j , bootstrap estimates S∗(r,w)(2j) and Ĥ∗(r)m are
computed using Eqs. (3-4).

In order to obtain an approximation of the null distribution of
δ̃m, under any possible hypothesis (that is, for H(m)

0 true or not
true), the following further steps are required. First, the average
value is subtracted from each of the bootstrap resample components,
H̄
∗(r)
m = Ĥ

∗(r)
m − 〈Ĥ∗m〉, m = 1, . . . ,M, r = 1, . . . , R. Second,

the components H̄∗(r)m are ordered for each bootstrap resample indi-
vidually, H̄∗(r)τ∗ = (H̄

∗(r)
τ∗(r,1), . . . , H̄

∗(r)
τ∗(r,M)), with H̄∗(r)τ∗(r,m+1) ≥

H̄
∗(r)
τ∗(r,m), m = 1, . . . ,M − 1, r = 1, . . . , R. Then, the bootstrap

test statistics δ̃∗(r)m = H̄
∗(r)
τ∗(r,m+1) − H̄

∗(r)
τ∗(r,m), r = 1, . . . , R, are

computed and their bootstrap variance Var∗ can be used to obtain
estimates for the scale parameters σm under the null hypotheses

σ̂∗2m = Var∗(δ̃∗m)

(
1− 2

π

)
. (8)

Finally, the bootstrap estimated p-values associated with the re-
jection ofH(m)

0 , m = 1, . . . ,M − 1, are computed as

p∗m = 1− F
(
δ̃m
σ̂∗m

)
, (9)

where F is the cumulative density function of the standardized half-
normal distribution.

3.3. Multiple hypotheses test decisions and clustering

The bootstrap p-values (9) can now be used to perform the tests (7).
Specifically, to correct for multiple hypotheses, a decision d(m) to
reject or not independently each of the null hypothesis H(m)

0 at a
preset level of false discovery rate (FDR) α is taken using the the
Benjamini-Hochberg correction procedure [20],

d(m)
α = 1 : p∗m <

α

M − 1
π(m), (10)

where π(·) denotes the permutation that orders the p-values, pπ(1) <
. . . < pπ(M−1).

Finally, the vector of M − 1 decisions is an indicator vector
for the cluster boundaries for H: if there are P rejected hypotheses
H(m)

0 , there are P + 1 distinct selfsimilarity exponents and clusters.
The detected cluster labels for Hm are defined as

Cα(m) =

m∑
m′=1

Dα(m′) (11)

where Dα = (1, d
(1)
α , . . . , d

(M−1)
α ).

The whole clustering strategy described in Section 3 is summa-
rized in Fig. 1.

4. PERFORMANCE ASSESSMENT

4.1. Numerical experiments set-up

Monte Carlo experiments. To assess the relevance of the proposed
multivariate wavelet domain block bootstrap-assisted clustering pro-
cedure defined in Section 3, and to quantify its performance, Monte
Carlo simulations are conducted, making use ofNMC = 1000 inde-
pendent copies of synthetic M = 6-variate M -fBm of sample size

H(1)
0 true H(3)

0 true H(5)
0 true .

Fig. 2: Distributions of the test statistics δ̃m. Standardized Monte
Carlo statistics δ̃m/σm against a standardized half-normal distribu-
tion under H1 = . . . = H6 = 0.8 (Scenario1).

N = 216. Four scenarios are considered:
— Scenario1 corresponds to all equal H1 = . . . = HM = 0.8 (i.e.,
1 cluster).
— Scenario2 consists of 2 clusters of similarity exponents of size 3

with values 0.6 and 0.8, such thatH(3)
0 is not true.

— Scenario3 consists of 3 clusters of equal size 2 with values 0.4,
0.6 and 0.8, such thatH(2)

0 andH(4)
0 are not true.

— Scenario4 consists of 3 clusters of different sizes 1, 3 and 2 with
values 0.4, 0.6 and 0.8, such thatH(1)

0 andH(4)
0 are not true.

The covariance matrix ΣX is chosen such that all diagonal en-
tries are set to 1 and all non-diagonal entries are set to r = 0.5. The
M × M invertible matrix W is randomly selected and kept fixed
for all experiments. Wavelet analysis is performed with the least
asymmetric Daubechies3 wavelet across analysis scales 2j1 = 28

to 2j2 = 211. R = 500 block-bootstrap resamples are drawn from
overlapping blocks of size LB = 6 (corresponding to the size of the
Daubechies3 mother-wavelet time support).
Clustering performance assessment. The adjusted random index
(NMI) and Normalized Mutual Information (NMI) [21] are used
to quantify clustering performance, i.e., how well components with
same H are grouped together and components with different H are
separated: ARI measures the number of pairs of elements that are
correctly grouped or separated, whereas NMI measures the joint en-
tropy of the distributions of estimated and correct clustering.

4.2. Empirical distributions of δ̃m and δ̃∗m

Distribution of δ̃m under H(m)
0 . Fig. 2 plots quantile-quantile

plots of the standardized half-normal distribution against the em-
pirical (Monte Carlo) distributions of the normalized test statistics
δ̃m/σ̂m under H(m)

0 . Here, σ̂m is the Monte Carlo estimate of the
standard deviation of δ̃m. It demonstrates that under the null hy-
pothesis, the distribution of the test statistic δ̃ can indeed be very
well approximated by a half-normal distribution.
Distributions of δ̃∗m under H(m)

0 and H(m)
1 . Fig. 3 depicts

quantile-quantile plots of the distribution of δ̃∗m/σ̂∗m for several m
against a standardized half-normal distribution for Scenario2: in this
case, the null hypothesis H(m)

0 is true for m = 1 and m = 5, but it
is not true for m = 3. The results clearly indicate that in all cases
(H(m)

0 true and H(m)
0 not true), the bootstrap distributions are in

good agreement with the half-normal distribution.
Bootstrap estimation of the scale parameter σm. Finally, Ta-
ble 1 reports the Monte Carlo estimates σ̂m for the scale parameter
σm and the Monte Carlo averages and standard deviations for the
corresponding bootstrap scale parameter estimates σ̂∗m under Sce-
nario1 (H(m)

0 is true for any m). The results confirm that the boot-
strap estimates σ̂∗m are in excellent agreement with σ̂m. Together
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Fig. 3: Distributions of bootstrap statistics δ̃∗m. Quantile-quantile-
plots of bootstrap standardized δ̃∗m/σ̂∗m for an arbitrarily chosen re-
alization against a standardized half-normal distribution under Sce-
nario2 (H(m)

0 is not true for m = 3 and is true for m 6= 3, and
M = 6); black solid lines correspond with identical quantiles,
dashed red lines join the first and third quantiles of the distributions.

Table 1: Monte Carlo estimates of scale parameters σm and boot-
strap scale parameter estimates σ̂∗m (Monte Carlo average and stan-
dard deviation) for H1 = . . . = HM = 0.8 (Scenario1).

m = 1 m = 2 m = 3 m = 4 m = 5
σ̂m × 102 1.65 1.16 1.01 1.06 1.49

σ̂∗m × 102 1.65 1.10 0.99 1.07 1.51
±0.13 ±0.07 ±0.06 ±0.06 ±0.09

with the above observations on the shape of the respective distri-
butions, this numerically validates the assumptions underlying the
proposed bootstrap based test procedure.

4.3. Performance of the clustering strategy

We finally assess the clustering performance for the four scenarios
defined above. Fig. 4 reports the histograms of the estimated num-
ber of clusters for the different scenarios and three different levels
of false discovery rate α = (0.01, 0.05, 0.10). For Scenario1, for
which allM−1 = 5 null hypotheses are true, we obtain actual false
discovery rates of (0.02, 0.06, 0.11), respectively, which is in good
agreement with the preset values, thus further corroborates the above
numerical analysis on the relevance of our test and detection proce-
dure for null hypotheses. For Scenario2, Scenario3 and Scenario4,
for which more than one cluster are to be detected, our proposed
procedure detects the correct number of clusters in a majority of the
cases. This demonstrates, first, that our proposed test has practically
reasonable power (aka detection probability), and second, that our
clustering strategy leads to satisfactory results concerning the num-
ber of detected groups of equal Hm. As expected, the rate of clus-
ter number over-estimation (under-estimation) increases (decreases)
with increasing preset false discovery rate α, respectively.

Table 2 further quantifies this clustering performance analysis
and shows average values for NMI and ARI with 95% confidence
interval (obtained as averages across realizations) for all four sce-
narios and false discovery rate α = 0.05. The results indicate that
the proposed procedure overall leads to practically satisfactory per-
formance, with NMI values of up to 0.87, and ARI values of up to
0.94. It is interesting to note that Scenario4 is more difficult to clus-
ter than Scenario3, which contains the same number of clusters and
values for Hm but equi-sized clusters.

Overall, these results unambiguously validate the relevance
practically satisfactory performance of the proposed procedure.

(a) Scenario1 (b) Scenario2 (c) Scenario3 (d) Scenario4

Fig. 4: Estimated number of clusters. Histograms of the
estimated numbers of clusters for (a) 1 cluster, (b) 2 clusters
and (c-d) 3 clusters with M = 6.

Table 2: Clustering performance with 95% confidence inter-
val for significance level ↵ = 0.05.

Scenario1 Scenario2 Scenario3 Scenario4
NMI 0.66 ± 0.02 0.87 ± 0.01 0.79 ± 0.01
ARI 0.94 ± 0.02 0.60 ± 0.03 0.68 ± 0.02 0.59 ± 0.02

5. CONCLUSION

This work devises a clustering method to group identical self-
similarity exponents of multivariate time series from an es-
timation procedure. The proposed approached is based on a
pairwise bootstrap testing procedure which has been numeri-
cally assessed. The clustering strategy displays good perfor-
mances.
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Fig. 4: Estimated number of clusters. Histograms of the estimated
numbers of clusters for (a) 1 cluster, (b) 2 clusters and (c-d) 3 clusters
with M = 6.

Table 2: Clustering performance with 95% confidence interval for
significance level α = 0.05.

Scenario1 Scenario2 Scenario3 Scenario4
NMI n/a 0.66± 0.02 0.87± 0.01 0.79± 0.01
ARI 0.94± 0.02 0.60± 0.03 0.68± 0.02 0.59± 0.02

5. CONCLUSION AND PERSPECTIVES

The present work constitutes a first attempt to count the number of
scaling exponents, estimated from multivariate data, that are actually
different. It relies on combining a wavelet eigenvalues-based estima-
tion procedure, with a multivariate wavelet domain block bootstrap
scheme, and false discovery rate corrections for multiple hypotheses
testing. Monte Carlo experiments show that the bootstrap procedure
satisfactorily reproduces the real distributions of the test statistics
and that the overall procedure yields very satisfactory performance
in estimating the actual number of scaling exponents and in group-
ing identical ones together, under several scenarios with one, two or
three clusters, with clusters of possibly imbalanced size.

Matlab routines permitting the estimation of the multivariate
selfsimilarity exponents as well as their clustering are publicly avail-
able1 as part of our reproducible research effort.

Future investigations will include exploring whether the use of
M(M − 1)/2 non-sorted hypotheses further improves performance
compared to using M − 1 sorted pair hypotheses. Large dimension
issues (i.e., situations where the number of components grows at
fixed rate with the sample size) will also be investigated.
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