Drowsiness detection from polysomnographic data using multivariate self-similarity and eigen-wavelet analysis

EMBC 2022 Charles-Gérard Lucas¹, Patrice Abry¹, Herwig Wendt², Gustavo Didier³

¹ENSL, CNRS, Laboratoire de physique, Lyon, France.
 ²IRIT, Univ. Toulouse, CNRS, Toulouse, France.
 ³Math. Dept., Tulane University, New Orleans, USA.

Drowsiness detection

MIT-BIH Polysomnographic database

Annotation: awake or sleep stage 1

Description:

- from 16 male subjects
- resampling at 4Hz
- 2-minute long window of 480 samples:
 - 753 windows for "awake"
 - 561 windows for "sleep stage 1"

Goal: detection of "awake" vs. "sleep stage1"

Drowsiness and self-similarity

Characterized by 0 < H < 1

 \Rightarrow Multivariate self-similarity analysis: $\underline{H} = (H_1, \dots, H_M)$

Goal: detection of changes in \underline{H}

Multivariate self-similarity model [Didier et al., 2011]

 $\underline{B}_{\underline{H},\Sigma}(t)$ characterized by the matrix $\underline{\underline{H}} = W \text{diag}(\underline{H})W^{-1}$

Issue: estimation of <u>H</u>

Wavelet spectrum

- Multivariate wavelet transform of $Y = W\underline{B}_{\underline{H},\Sigma}$:
 - ψ_0 : mother wavelet
 - $D_m(2^j, k) = \langle 2^{-j/2} \psi_0(2^{-j}t k) | Y_m(t) \rangle$ • $D(2^j, k) = (D_1(2^j, k), \dots, D_M(2^j, k))$

• Wavelet spectrum ($M \times M$ matrix):

$$S_{m_1,m_2}(2^j) = \frac{1}{N_j} \sum_{k=1}^{N_j} D_{m_1}(2^j,k) D_{m_2}(2^j,k)^*$$
, $N_j = \frac{N}{2^j}$, N: sample size

Self-similarity parameter estimation

Wavelet spectrum:

$$S(2^{j}) = \begin{bmatrix} S_{1,1}(2^{j}) & S_{1,2}(2^{j}) & \cdots & \cdots & S_{1,M}(2^{j}) \\ S_{2,1}(2^{j}) & S_{2,2}(2^{j}) & \cdots & \cdots & S_{2,M}(2^{j}) \\ S_{3,1}(2^{j}) & S_{3,2}(2^{j}) & \ddots & \vdots \\ \vdots & \vdots & \ddots & S_{M-1,M}(2^{j}) \\ S_{M,1}(2^{j}) & S_{M,2}(2^{j}) & \cdots & S_{M,M-1}(2^{j}) & S_{M,M}(2^{j}) \end{bmatrix}$$

Eigenvalues of $S(2^j)$:

$$S(2^{j}) = U(2^{j}) \begin{bmatrix} \lambda_{1}(2^{j}) & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_{2}(2^{j}) & \cdots & \cdots & 0 \\ 0 & 0 & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \lambda_{M}(2^{j}) \end{bmatrix} U(2^{j})^{T}$$

Eigen-wavelet estimation [Didier and Abry, 2018]

$$S(2^{j}) = U(2^{j}) \begin{bmatrix} \lambda_{1}(2^{j}) & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_{2}(2^{j}) & \cdots & \cdots & 0 \\ 0 & 0 & \ddots & & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \lambda_{M}(2^{j}) \end{bmatrix} U(2^{j})^{T}$$

$$Y = W\underline{B}_{\underline{H},\Sigma} \text{ self-similar}$$

$$\Rightarrow \text{ asymptotical power law:}$$

$$\lambda_{m}(2^{j}) = \xi_{m}2^{j(2H_{m}+1)}$$

$$\text{ Linear regression on log-eigenvalues:}$$

$$\hat{H}_{m}^{M} = \frac{1}{2}\sum_{j=j_{1}}^{j_{2}} \omega_{j} \log_{2} \lambda_{m}(2^{j}) - \frac{1}{2}$$

• Y \Rightarrow

Eigen-wavelet estimation [Didier and Abry, 2018]

$$S(2^{j}) = U(2^{j}) \begin{bmatrix} \lambda_{1}(2^{j}) & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_{2}(2^{j}) & \cdots & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \lambda_{M}(2^{j}) \end{bmatrix} U(2^{j})^{T}$$

$$Y = W\underline{B}_{\underline{H},\Sigma} \text{ self-similar}$$

$$\Rightarrow \text{ asymptotical power law:}$$

$$\lambda_{m}(2^{j}) = \xi_{m}2^{j(2H_{m}+1)}$$
Linear regression on log-eigenvalues:
$$\hat{H}_{m}^{M} = \frac{1}{2}\sum_{j=j_{1}}^{j_{2}} \omega_{j} \log_{2} \lambda_{m}(2^{j}) - \frac{1}{2}$$

Issue:

Different numbers of wavelet coefficients to compute $S(2^j)$ between scales $2^j \Rightarrow \lambda_m(2^j)$ have different bias across scale $2^j \Rightarrow$ bias corrected estimation [Lucas et al., EUSIPCO 2021]

Drowsiness detection

Results

4-variate data

Wavelet analysis scales: $2^{j_1} = 2^1$ to $2^{j_2} = 2^4 \Rightarrow$ Analysis frequencies: 1/8 to 2 Hz

• Classical multivariate self-similarity:

$$\hat{H}_{m,m'} = \frac{1}{2} \sum_{j=j_1}^{J^2} \omega_j \log_2 S_{m,m'}(2^j) - \frac{1}{2}$$

Cross-temporal dynamics \Rightarrow need for a multivariate approach

Results

4-variate data

Wavelet analysis scales: $2^{j_1} = 2^1$ to $2^{j_2} = 2^4 \Rightarrow$ Analysis frequencies: 1/8 to 2 Hz

• Classical multivariate self-similarity:

$$\hat{H}_{m,m'} = \frac{1}{2} \sum_{j=j_1}^{j_2} \omega_j \log_2 S_{m,m'}(2^j) - \frac{1}{2}$$

• Univariate self-similarity:

$$\hat{H}_m^U = \frac{1}{2} \sum_{j=j_1}^{j_2} \omega_j \log_2 S_{m,m}(2^j) - \frac{1}{2}$$
$$\Rightarrow \hat{H}_m^U = \hat{H}_{m,m}$$

Cross-temporal dynamics \Rightarrow need for a multivariate approach

Single-feature classification

Comparing \hat{H}_m^U to a threshold:

Low performance \Rightarrow need for a multi-feature approach

Multi-feature classification

Features:

- features1 (4): $\{\hat{H}_{m}^{U}\}_{m=1,...,4}$
- features2 (8): $\{\{\hat{H}_{m}^{U}\}_{m=1,...,4}, \{\hat{H}_{m,m'}\}_{m\neq m'}\}$
- features3 (10): $\{\{\hat{H}_m^U\}_{m=1,...,4}, \{\hat{H}_m^M\}_{m=1,...,4}\}$

where:

- $\hat{H}_{m,m'} = \frac{1}{2} \sum_{j=j_1}^{j_2} \omega_j \log_2 S_{m,m'}(2^j) \frac{1}{2}$
- $\hat{H}_m^U = \hat{H}_{m,m}$

•
$$\hat{H}_m^M = \frac{1}{2} \sum_{j=j_1}^{j_2} \omega_j \log_2 \lambda_m(2^j) - \frac{1}{2}$$

Multi-feature classification

Features:

- features1 (4): $\{\hat{H}_{m}^{U}\}_{m=1,...,4}$
- features2 (8): $\{\{\hat{H}_{m}^{U}\}_{m=1,...,4}, \{\hat{H}_{m,m'}\}_{m\neq m'}\}$
- features3 (10): $\{\{\hat{H}_m^U\}_{m=1,...,4}, \{\hat{H}_m^M\}_{m=1,...,4}\}$

Random Forest Classifiers: $N_{\text{trees}} \in \{10, 25, 50\}$

Conclusion

Self-similarity tools:

- multivariate self-similarity model
- eigen-wavelet approach
- multivariate self-similarity parameter estimation

Drowsiness detection:

- cross-temporal dynamics of physiological data
- sleep classification from multivariate parameter estimation

Repulsion effect

Gap between eigenvalues larger than expected at each scale

Few coefficients \Rightarrow repulsion effect: important bias when $H_1 = \ldots = H_M$ Issue: repulsion effect increases with scale 2^j

Bias corrected estimation

$$S^{(w)}(\mathbf{z}^{j}) \triangleq \frac{1}{n_{j_{2}}} \sum_{k=1+(w-1)n_{j_{2}}}^{wn_{j_{2}}} D(\mathbf{z}^{j}, k)D(\mathbf{z}^{j}, k)^{*}, w = 1, \dots, \mathbf{z}^{j-j_{2}}, \quad n_{j_{2}} = \frac{N}{\mathbf{z}^{j_{2}}}$$

Wavelet spectra for same numbers of wavelet coefficients

Eigenvalues of $S^{(w)}(2^j)$: $\{\lambda_1^{(w)}(2^j), \dots, \lambda_M^{(w)}(2^j)\}$ \rightarrow similar repulsion at all scales $j \in \{j_1, \dots, j_2\}$

Averaged log-eigenvalues:
$$\vartheta_m(2^j) \triangleq 2^{j_2-j} \sum_{w=1}^{2^{j-j_2}} \log_2(\lambda_m^{(w)}(2^j))$$

Linear regression on averaged log-eigenvalues $\vartheta_m(2^j)$