Bootstrap for testing the equality of selfsimilarity exponents across multivariate time series

EUSIPCO 2021
Charles-Gérard Lucas, Patrice Abry, Herwig Wendt, Gustavo Didier

Laboratoire de Physique, ENS de Lyon
April 11, 2022

Univariate self-similarity

Scale-free dynamics

$$
\begin{aligned}
&\{X(t)\}_{t \in \mathbb{R}} \stackrel{f d d}{=}\left\{a^{H} X(t / a)\right\}_{t \in \mathbb{R}}, \forall a>0 \\
& 0
\end{aligned}
$$

Goal: estimation of H

Univariate estimation of H (Flandrin et al., 1992)

Univariate wavelet transform:

- $D_{X}\left(2^{j}, k\right)=\left\langle 2^{-j / 2} \psi_{0}\left(2^{-j} t-k\right) \mid X(t)\right\rangle$
- ψ_{0} : mother wavelet

Univariate signal

X self-similar
\Rightarrow power law: $S\left(2^{j}\right) \propto 2^{j(2 H+1)}$
Linear regression in a log-log diagram

Wavelet spectrum

$$
\begin{aligned}
S\left(2^{j}\right) & =\frac{1}{N_{j}} \sum_{k=1}^{N_{j}} D_{X}\left(2^{j}, k\right)^{2} \in \mathbb{R} \\
N_{j} & =\frac{N}{2^{j}}, N: \text { sample size }
\end{aligned}
$$

Multivariate self-similarity

Collection of signals

Multivariate self-similarity exponent

$$
\underline{H}=\left(H_{1}, \ldots, H_{M}\right)
$$

$$
\text { where } \overline{0}<H_{1} \leq \ldots \leq H_{M}<1
$$

Multivariate setting

Goal: testing $H_{1}=\ldots=H_{M}$

Multivariate self-similarity (Didier et al., 2011)

$$
\begin{aligned}
&\left\{\underline{\underline{B}}_{\underline{\underline{H}}, \Sigma}(t)\right\} \\
& t \in \mathbb{R} \stackrel{f d d}{=}\left\{a \underline{\underline{H}} \underline{\underline{B}}_{\underline{H}, \Sigma}(t / a)\right\}_{t \in \mathbb{R}}, \forall a>0 \\
& \underline{\underline{H}}=W \operatorname{diag}(\underline{H}) W^{-1}
\end{aligned}
$$

Goal: estimation of \underline{H}

Multivariate estimation

Multivariate wavelet transform of $Y=W \underline{B}_{\underline{H}, \Sigma}: D\left(2^{j}, k\right)=\left(D_{1}\left(2^{j}, k\right), \ldots, D_{M}\left(2^{j}, k\right)\right)$

Estimation of H (Didier and Abry, 2018)

Eigenvalue decomposition:

$$
S\left(2^{j}\right)=U\left(2^{j}\right)\left[\begin{array}{ccccc}
\lambda_{1}\left(2^{j}\right) & 0 & \cdots & \cdots & 0 \\
0 & \lambda_{2}\left(2^{j}\right) & \cdots & \cdots & 0 \\
0 & 0 & \ddots & & \vdots \\
\vdots & \vdots & & \ddots & 0 \\
0 & 0 & \cdots & 0 & \lambda_{M}\left(2^{j}\right)
\end{array}\right] U\left(2^{j}\right)^{T}
$$

$$
Y=W \underline{B}_{\underline{H}, \Sigma} \text { self-similar }
$$

$$
\Rightarrow \text { Asymptotical power law: }
$$

$$
\lambda_{m}\left(2^{j}\right) \propto 2^{j\left(2 H_{m}+1\right)}
$$

Linear regression on log-eigenvalues $\lambda_{m}\left(2^{j}\right)$:

$$
\hat{H}_{m}=\frac{1}{2} \sum_{j=j_{1}}^{j_{2}} \omega_{j} \log _{2} \lambda_{m}\left(2^{j}\right)-\frac{1}{2}
$$

Repulsion effect

Gap between eigenvalues larger than expected at each scale

Few coefficients \Rightarrow repulsion effect: important bias when $H_{1}=\ldots=H_{M}$ Issue: repulsion effect increases with scale 2^{j}

Bias corrected estimation

$$
s^{(w)}\left(\mathbf{2}^{j}\right) \triangleq \frac{\mathbf{1}}{n_{j_{2}}} \sum_{k=\mathbf{1}+(w-\mathbf{1}) n_{j_{2}}}^{w n_{j_{2}}} D\left(\mathbf{2}^{j}, k\right) D\left(\mathbf{2}^{j}, k\right)^{*}, w=\mathbf{1}, \ldots, \mathbf{2}^{j-j_{\mathbf{2}}}, \quad n_{j_{\mathbf{2}}}=\frac{N}{2^{j \mathbf{2}}}
$$

Wavelet spectra for same numbers of wavelet coefficients

Eigenvalues of $S^{(w)}\left(2^{j}\right):\left\{\lambda_{1}^{(w)}\left(2^{j}\right), \ldots, \lambda_{M}^{(w)}\left(2^{j}\right)\right\}$
\rightarrow similar repulsion at all scales $j \in\left\{j_{1}, \ldots, j_{2}\right\}$
Averaged log-eigenvalues: $\vartheta_{m}\left(2^{j}\right) \triangleq 2^{j_{2}-j} \sum_{w=1}^{2^{j-j_{2}}} \log _{2}\left(\lambda_{m}^{(w)}\left(2^{j}\right)\right)$
Linear regression on averaged log-eigenvalues $\vartheta_{m}\left(2^{j}\right)$

Testing the equality of H_{1}, \ldots, H_{M}

Single observation $\underline{H}=\left(H_{1}, \ldots, H_{M}\right)$
Fluctuation of the estimator: maybe $H_{i}=H_{j}$ despite $\hat{H}_{i} \neq \hat{H}_{j}$

$$
\text { Testing } H_{1}=\ldots=H_{M}
$$

Asymptotic joint normality of $\underline{\hat{H}}=\left(\hat{H}_{1}, \ldots, \hat{H}_{M}\right)$
$\rightarrow \chi^{2}$ statistic:

$$
T=\left(\underline{\hat{H}}-\left\langle\hat{H}_{m}\right\rangle_{m}\right)^{T} \Sigma_{\underline{\hat{H}}}^{-1}\left(\underline{\hat{H}}-\left\langle\hat{H}_{m}\right\rangle_{m}\right) .
$$

Issue: single observation $\Rightarrow \Sigma_{\underline{\hat{H}}}$ unknown
\longrightarrow estimation of $\Sigma_{\underline{\hat{H}}}$ by Bootstrap resampling

Multivariate wavelet block-bootstrap resamples

R Bootstrap estimates

$$
\begin{gathered}
\underline{\hat{H}}^{*(r)}=\left(\hat{H}_{1}^{*(r)}, \ldots, \hat{H}_{M}^{*(r)}\right) \\
\quad \text { computed from }
\end{gathered}
$$

the R wavelet coefficient resamples

$$
D^{*(r)}=\left(D_{1}^{*(r)}, \ldots, D_{M}^{*(r)}\right)
$$

$$
\Rightarrow \hat{\Sigma}_{\underline{\hat{H}}}^{*}=\operatorname{cov}\left(\underline{\hat{H}}^{*}\right)
$$

Bootstrap test statistic

$$
T^{*}=\left(\underline{\hat{H}}-\left\langle\hat{H}_{m}\right\rangle_{m}\right)^{T}{\hat{\sum_{\underline{H}}}}_{\underline{\hat{H}}}-1\left(\underline{\hat{H}}-\left\langle\hat{H}_{m}\right\rangle_{m}\right)
$$

Testing procedure

Algorithm for testing $H_{1}=\ldots=H_{M}$

χ^{2} statistic under null hypothesis $H_{1}=\ldots=H_{M}$

Monte Carlo simulations

Quantile-quantile plot under $H_{1}=\ldots=H_{M}$
T^{*} against χ^{2} distribution with $M-1$ degrees of freedom
N : sample size

Significance level under null hypothesis $H_{1}=\ldots=H_{M}$

averaged test decisions $\hat{\alpha} \approx$ significance level α \Rightarrow Significance level well reproduced

Power of the test

$$
\begin{gathered}
\underline{H}=(\underbrace{H_{1}, \ldots, H_{1}}_{M_{1}}, \underbrace{H_{2}, \ldots, H_{2}}_{M_{2}}, \underbrace{H_{3}, \ldots, H_{3}}_{M_{3}}, \underbrace{H_{4}, \ldots, H_{4}}_{M_{4}}) \\
\text { where } H_{m}=H_{m-1}+\Delta H
\end{gathered}
$$

Conclusion

Achieved:

- bias corrected estimation of multivariate self-similarity exponents
- multivariate wavelet domain bootstrap procedure
- testing procedure for the equality exponents from a single observation

Perspectives:

- how many different values for \underline{H} ?
- large dimension: number of components $\mathrm{M} \approx$ sample size N

