Counting the number of different scaling exponents in multivariate scale-free dynamics: Clustering by bootstrap in the wavelet domain

ICASSP 2022, Singapore Charles-Gérard Lucas¹, Patrice Abry¹, Herwig Wendt², Gustavo Didier³

¹ENSL, CNRS, Laboratoire de physique, Lyon, France.
 ²IRIT, Univ. Toulouse, CNRS, Toulouse, France.
 ³Math. Dept., Tulane University, New Orleans, USA.

Multivariate self-similarity

1) Multivariate setting

 $B_H(t)$ characterized by 0 < H < 1

 \Rightarrow Multivariate self-similarity: $\underline{H} = (H_1, \dots, H_M)$

Multivariate self-similarity

1) Multivariate setting

 $B_H(t)$ characterized by 0 < H < 1

 \Rightarrow Multivariate self-similarity: $\underline{H} = (H_1, \dots, H_M)$

Goals:

• Count the number of H_m actually different

Multivariate self-similarity

1) Multivariate setting

 $B_H(t)$ characterized by 0 < H < 1

 \Rightarrow Multivariate self-similarity: $\underline{H} = (H_1, \dots, H_M)$

Goals:

- Count the number of H_m actually different
- Count the number of components with same H_m

Outline

Scaling exponent clustering procedure

- Multivariate self-similarity model
- Estimation
- Testing procedure

2 Does it work ?

- Half-normal statistic
- Bootstrap and half-normal law
- Clustering performance

Multivariate self-similarity model [Didier et al., 2011]

 $\underline{B}_{\underline{H},\Sigma}(t)$ characterized by the matrix $\underline{\underline{H}} = W \operatorname{diag}(\underline{H}) W^{-1}$

By convention: $0 < H_1 \leq \ldots \leq H_M < 1$

Step 1: estimation of $\underline{H} = (H_1, \ldots, H_M)$

Multivariate estimation

- Multivariate wavelet transform of $Y = W\underline{B}_{\underline{H},\Sigma}$:
 - ψ_0 : mother wavelet
 - $D_m(2^j, k) = \langle 2^{-j/2} \psi_0(2^{-j}t k) | Y_m(t) \rangle$ • $D(2^j, k) = (D_1(2^j, k), \dots, D_M(2^j, k))$

• Wavelet spectrum ($M \times M$ matrix):

$$S_{m_1,m_2}(2^j) = \frac{1}{N_j} \sum_{k=1}^{N_j} D_{m_1}(2^j,k) D_{m_2}(2^j,k)^*$$
, $N_j = \frac{N}{2^j}$, N: sample size

Multivariate estimation [Didier and Abry, 2018]

Eigenvalues of $S(2^{j})$:

$$S(2^j) = U(2^j)$$

• $Y = W\underline{B}_{\underline{H},\Sigma}$ self-similar \Rightarrow asymptotical power law: $\lambda_m(2^j) \propto 2^{j(2H_m+1)}$

• Linear regression on log-eigenvalues:

$$\hat{H}_{m} = \frac{1}{2} \sum_{j=j_{1}}^{j_{2}} \omega_{j} \log_{2} \lambda_{m}(2^{j}) - \frac{1}{2}$$

Multivariate estimation [Didier and Abry, 2018]

Issue:

Different numbers of wavelet coefficients to compute $S(2^j)$ between scales $2^j \Rightarrow \lambda_m(2^j)$ have different bias across scale 2^j

 \Rightarrow bias corrected estimation [Lucas et al., EUSIPCO 2021]

Testing $H_m = H_{m+1}$

By convention: $0 < \textit{H}_1 \leq \ldots \leq \textit{H}_M < 1$

- Test formulation:
 - M 1 hypotheses:

$$\mathcal{H}_0^{(m)}: H_m = H_{m+1}, \quad m = 1, \dots, M-1$$
• Estimates $\hat{H}_m \rightarrow$ sorting $\hat{H}_{\tau(1)} < \ldots < \hat{H}_{\tau(M)}$

Statistics

$$\tilde{\delta}_m = \hat{H}_{\tau(m+1)} - \hat{H}_{\tau(m)}$$

Testing $H_m = H_{m+1}$

By convention: $0 < \textit{H}_1 \leq \ldots \leq \textit{H}_M < 1$

- Test formulation:
 - *M* − 1 hypotheses:

$$\mathcal{H}_0^{(m)}: H_m = H_{m+1}, \quad m = 1, \dots, M-1$$
• Estimates $\hat{H}_m \to \text{ sorting } \hat{H}_{\tau(1)} < \dots < \hat{H}_{\tau(M)}$

Statistics

$$\tilde{\delta}_m = \hat{H}_{\tau(m+1)} - \hat{H}_{\tau(m)}$$

 \bullet Test statistic: $\tilde{\delta}_{m}$, approximated by a half-normal distribution, under $\mathcal{H}_{0}^{(m)}$

$$f(\tilde{\delta}_m | H_m = H_{m+1}) = \frac{1}{\sigma_m} \sqrt{\frac{2}{\pi}} \exp\left(-\frac{\tilde{\delta}_m^2}{2\sigma_m^2}\right)$$

Testing $H_m = H_{m+1}$

By convention: $0 < \textit{H}_1 \leq \ldots \leq \textit{H}_M < 1$

- Test formulation:
 - M-1 hypotheses: $\mathcal{H}_0^{(m)}: H_m = H_{m+1}, \quad m = 1, \dots, M-1$ • Estimates $\hat{H}_m \rightarrow \text{sorting } \hat{H}_{\tau(1)} < \dots < \hat{H}_{\tau(M)}$ • Statistics $\tilde{\delta}_m = \hat{H}_{\tau(m+1)} - \hat{H}_{\tau(m)}$

• Test statistic: $\tilde{\delta}_m$, approximated by a half-normal distribution, under $\mathcal{H}_0^{(m)}$ $f(\tilde{\delta}_m | H_m = H_{m+1}) = \frac{1}{\sigma_m} \sqrt{\frac{2}{\pi}} \exp\left(-\frac{\tilde{\delta}_m^2}{2\sigma_m^2}\right)$

• Test decision:

rejects
$$\mathcal{H}_0^{(m)}$$
 if $\tilde{\delta}_m > \gamma_m(\sigma_m)$

 $\Rightarrow R \text{ wavelet coefficient resamples} \\ D^{*(r)} = (D_1^{*(r)}, \dots, D_M^{*(r)})$

Testing procedure

Multivariate wavelet block-bootstrap resamples

 $\Rightarrow R \text{ wavelet coefficient resamples} \\ D^{*(r)} = (D_1^{*(r)}, \dots, D_M^{*(r)}) \\ \downarrow \\ R \text{ Bootstrap estimates} \\ \underline{\hat{H}}^{*(r)} = (\hat{H}_1^{*(r)}, \dots, \hat{H}_M^{*(r)}) \end{aligned}$

 $\Rightarrow R \text{ wavelet coefficient resamples} \\ D^{*(r)} = (D_1^{*(r)}, \dots, D_M^{*(r)}) \\ \downarrow \\ R \text{ Bootstrap estimates} \\ \underline{\hat{H}}^{*(r)} = (\hat{H}_1^{*(r)}, \dots, \hat{H}_M^{*(r)}) \\ \downarrow \\ \text{Simulate half-normal hypotheses:} \\ \overline{H}_m^{*(r)} = \hat{H}_m^{*(r)} - \langle \hat{H}_m^* \rangle \end{aligned}$

Clustering strategy

• p-values:
$$p_m^* = 1 - F_{\mathcal{HN}} \left(\tilde{\delta}_m / \hat{\sigma}_m^* \right)$$

- Multiple hypothesis test (Benjamini-Hochberg) corrections:
 - α: false discovery rate
 - $p^*_{\pi(m)}$: sorted p-values of the test

•
$$d_{\alpha}^{(m)} = 1$$
 if $p_{\pi(m)}^* < \frac{\alpha}{M-1}m$

Clustering

Half-normal statistic

Null distribution of $\widetilde{\delta}_m$

- Monte Carlo simulations
 - $N_{MC} = 1000$ realizations
 - *M* = 6 components
 - sample size $N = 2^{16}$

Quantile-quantile plot: Monte Carlo $\tilde{\delta}_m$ against half-normal distribution

 \Rightarrow Under $H_m = H_{m+1}$, $\tilde{\delta}_m$ is half-normal

Bootstrap null distribution estimation

• Null hypothesis and alternative hypotheses:

Quantile-quantile: Bootstrap $\tilde{\delta}_m^*$ against half-normal distribution

 \Rightarrow Under both null hypothesis and alternative hypothesis, $\tilde{\delta}^*_m$ is half-normal

Bootstrap scale parameter estimation

- σ_m vs. $\hat{\sigma}_m^*$
- Null hypothesis for any pair: $H_1 = \ldots = H_M$
- $\bullet\,$ Monte Carlo average \pm standard deviation

	m = 1	<i>m</i> = 2	<i>m</i> = 3	<i>m</i> = 4	<i>m</i> = 5
σ_m	4.62	3.01	2.72	2.97	4.29
$\hat{\sigma}_m^*$	4.74	3.08	2.73	2.93	4.12
	±0.59	± 0.25	± 0.19	±0.20	±0.31

 \Rightarrow Bootstrap estimates $\hat{\sigma}_m^*$ well approximate σ_m

Clustering performance

Histograms of the estimated numbers of clusters for several $\boldsymbol{\alpha}$

Scenario1 (1 cluster): $\underline{H} = (0.8, 0.8, 0.8, 0.8, 0.8, 0.8)$ Scenario2 (2 clusters): $\underline{H} = (0.6, 0.6, 0.6, 0.8, 0.8, 0.8)$ Scenario3 (3 clusters): $\underline{H} = (0.4, 0.4, 0.6, 0.6, 0.8, 0.8)$ Scenario4 (3 clusters): $\underline{H} = (0.4, 0.6, 0.6, 0.6, 0.8, 0.8)$

Clustering performance

Quantification

NMI: Normalized Mutual Information

(joint entropy of ground truth partition and estimated partition) ARI: Adjusted Rand Index

(pairs of elements correctly separated or correctly gathered)

Monte Carlo average \pm 95% confidence interval

$\alpha = 0.05$	Scenario1	Scenario2	Scenario3	Scenario4
NMI	n/a	0.66 ± 0.02	0.87 ± 0.01	0.79 ± 0.01
ARI	0.94 ± 0.02	0.60 ± 0.03	0.68 ± 0.02	0.59 ± 0.02

Scenario1 (1 cluster): $\underline{H} = (0.8, 0.8, 0.8, 0.8, 0.8, 0.8)$ Scenario2 (2 clusters): $\underline{H} = (0.6, 0.6, 0.6, 0.8, 0.8, 0.8)$ Scenario3 (3 clusters): $\underline{H} = (0.4, 0.4, 0.6, 0.6, 0.8, 0.8)$ Scenario4 (3 clusters): $\underline{H} = (0.4, 0.6, 0.6, 0.6, 0.8, 0.8)$

Conclusion

Achieved:

- From a single observation
- Testing procedure for M-1 pairwise hypotheses from ordered estimates
- Clustering of self-similarity exponents

Perspectives:

- Test based on comparing all pairs $(H_m, H_{m'})$
- $\bullet\,$ Large dimension: number of components M \approx sample size N
- Application to real data: drowsiness detection [Lucas et al., EMBC 2022]

Repulsion effect

Gap between eigenvalues larger than expected at each scale

Issue: Few coefficients at large scales

 \Rightarrow repulsion effect: important bias when $H_1 = \ldots = H_M$

 \Rightarrow repulsion effect increases with scale 2^{j}

Bias corrected estimation [Lucas et al., EUSIPCO 2021]

$$S^{(w)}(\mathbf{z}^{j}) \triangleq \frac{1}{n_{j_{2}}} \sum_{k=1+(w-1)n_{j_{2}}}^{wn_{j_{2}}} D(\mathbf{z}^{j}, k) D(\mathbf{z}^{j}, k)^{*}, \ w = 1, \dots, \mathbf{z}^{j-j_{2}}, \quad n_{j_{2}} = \frac{N}{2^{j_{2}}}$$

Wavelet spectra for same numbers of wavelet coefficients

- Eigenvalues of $S^{(w)}(2^j)$: $\{\lambda_1^{(w)}(2^j), \dots, \lambda_M^{(w)}(2^j)\}$ \rightarrow similar repulsion at all scales $j \in \{j_1, \dots, j_2\}$
- Averaged log-eigenvalues: $\vartheta_m(2^j) \triangleq 2^{j_2-j} \sum_{w=1}^{2^{j-j-2}} \log_2(\lambda_m^{(w)}(2^j))$
- Linear regression on averaged log-eigenvalues θ_m(2^j)

Adjusted Rand Index

2 partitions of $\mathcal{V} = \{1, \dots, M\}$: $U = \{U_1, U_2, \dots, U_R\}$, $V = \{V_1, V_2, \dots, V_C\}$.

$$RI = (a+b)/\binom{M}{2}$$

- a: number of pairs of elements of V in the same subset in V and in the same subset in U
- b: number of pairs of elements of \mathcal{V} in different subsets in V and in different subsets in U

$$ARI = rac{index - expected index}{maximum index - expected index}$$

where *index* = a + b.

Normalized mutual information

2 partitions of
$$\mathcal{V} = \{1, \dots, M\}$$
: $U = \{U_1, U_2, \dots, U_R\}$, $V = \{V_1, V_2, \dots, V_C\}$.

$$NMI = \frac{H(U) + H(V) - H(U, V)}{\sqrt{H(U)H(V)}}$$

where:

$$egin{aligned} & H(U) = -\sum_{i} q_{i,.} \log_2(q_{i,.}) \ & H(V) = -\sum_{j} q_{.,j} \log_2(q_{.,j}) \ & H(U,V) = -\sum_{i,j} q_{i,j} \log_2(q_{i,j}) \end{aligned}$$

with:

- q_{i,j} = P(U_i ∩ V_j) the proportion of elements both in U_i and V_j
 q_{i,.} = P(U_i) the proportion of elements in U_i
- $q_{.,j} = P(V_j)$ the proportion of elements in V_j