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Abstract—We consider the problem of how to en-
able computer architects and algorithm designers to
reason directly and analytically about the relationship
between high-level architectural features and algo-
rithm characteristics. We propose a modeling frame-
work designed to help understand the long-term
and high-level impacts of algorithmic and technol-
ogy trends. This model connects abstract commu-
nication complexity analysis—with respect to both
the inter-core and inter-processor networks and the
memory hierarchy—with current technology proposals
and projections. We illustrate how one might use the
framework by instantiating a particular model for a
class of architectures and sample algorithms (three-
dimensional fast Fourier transforms, matrix multiply,
and three-dimensional stencil). Then, as a suggestive
demonstration, we analyze a number of what-if sce-
narios within the model in light of these trends to
suggest broader statements and alternative futures for
power-constrained architectures and algorithms.

I. INTRODUCTION

We seek a formal framework that explicitly re-
lates characteristics of an algorithm, such as its
inherent parallelism or memory behavior, with
parameters of an architecture, such as the number
of cores, structure of the memory hierarchy, or
network topology. Our ultimate goal is to say
precisely and analytically how high-level changes
to the architecture might affect the execution
time, scalability, accuracy, and power-efficiency
of a computation; and, conversely, identify what
classes of computation might best match a given
architecture. Our approach marries abstract al-
gorithmic complexity analysis with key physical
constraints, such as caps on power and die area,
that will be critical in the extreme scale systems of
2018 and beyond [1, 35]. We refer to our approach
as one of algorithm-architecture co-design.

We say “algorithm-architecture” rather than
“hardware-software,” so as to evoke a high-level
mathematical process that precedes and comple-
ments traditional methods based on detailed ar-
chitecture simulation of concrete benchmark code
artifacts and traces [9, 23, 27, 30, 48, 51]. Our ap-
proach takes inspiration from prior work on high-
level performance analysis and modeling [3, 26–

28, 44], as well as the classical theory of cir-
cuit models and the area-time trade-offs studied
in models based on very large-scale integration
(VLSI) [37, 49]. Our analysis is in many ways
most similar to several recent theoretical exascale
modeling studies [22, 47], combined with trends
analysis [34]. However, our specific methods re-
turn to higher-level I/O-centric complexity analy-
sis [4, 5, 10, 13, 21, 54], pushing it further by trying
to resolve analytical constants, which is necessary
to connect abstract complexity measures with the
physical constraints imposed by power and die
area. This approach necessarily will not yield cycle-
accurate performance estimates, and that is not our
aim. Rather, our hope is that a principled algorith-
mic analysis that accounts for major architectural
parameters will still yield interesting insights and
suggest new directions for improving performance
and scalability in the long run.

A formal framework. We pose the formal co-
design problem as follows. Let a be an algorithm
from a set A of algorithms that all perform the
same computation within the same desired level
of accuracy. The set A might contain different
algorithms, such as “A = {fast Fourier trans-
form, F-cycle multigrid},” for the Poisson model
problem [17, 41]. Or, A may be a set of tuning
parameters for one algorithm, such as the set of
tile sizes for matrix multiply. Next, let µ be a
machine architecture from a set M , and suppose
that each processor of µ has an area of χ(µ).
Lastly, let T (n; a, µ) be the time to execute a on
µ for a problem of size n, while using a maximum
instantaneous power of Φ(µ). Then, our goal is to
determine the algorithm a and architecture µ that
minimize time subject to constraints on total power
and processor die area, e.g.,

(a∗, µ∗) = argmin
(a∈A, µ∈M)

T (n; a, µ) (1)

subject to

Φ(µ∗) = Φmax (2)
χ(µ∗) = χmax, (3)
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multiply at some problem size (lighter is better)

Figure 1: (a) In our framework, a fixed die area (allocated between cores and cache) and a fixed power
budget (allocated between core frequency and bandwidth), define a space of possible machines. (b)
Different algorithms may perform differently on these machines. The marker is the approximate “location”
within this space of the NVIDIA Echelon GPU-like architecture proposed for the year 2017 [32]. In the
3D FFT example, the optimal configuration is 2.6 times faster than Echelon.

where Φmax and χmax are caps on power and die
area, respectively. The central research problem
is to determine the form of T (n; a, µ), Φ(µ), and
χ(µ). The significance and novelty of this analysis
framework is that it explicitly binds characteristics
of algorithms and architectures, Equation (1), with
physical hardware constraints, Equations (2)–(3).

A demonstration. Suppose we wish to design
a manycore processor µ, which we represent by
the four-tuple (βmem, q, f, Z): βmem is the processor-
memory bandwidth (words per unit time), q is
the number of cores per processor, f is the clock
frequency of each core (cycles per unit time), and
Z is the total size of the aggregate on-chip cache
(in words), assuming just a two-level hierarchy
(cache and main memory). Further suppose that
the χmax = 141 mm2 of die area can be divided
between on-chip cache (Z) and cores (q). Lastly,
suppose the node power budget is constrained to
Φmax = 173 Watts, which can be used to increase
cycle-frequency (f ) or boost off-die memory band-
width (βmem). Figure 1a is a cartoon that suggests
how these parameters and constraints imply a
space of possible designs. Figure 1b shows how,
given a specific model of different algorithms on
this space of machines, we might then solve the op-
timization problem of Equations 1–3 to identify op-
timal systems. Unsurprisingly, a processor tuned
for a communication-intensive 3D fast Fourier
transform will devote more of a fixed power bud-

get (y-axis) to memory bandwidth, compared to
matrix multiply.

However, Figure 1b also suggests an intriguing
possibility. Observe that a die area configuration
(x-axis) that is good for matrix multiply will also
be good for an FFT; to make a system that can
perform “optimally” on both workloads, we would
need the ability to dynamically shift power from
the processor to memory bandwidth, by a large
factor of roughly 7×. That is, reconfigurability of
processor transistors may be relatively less im-
portant than extreme power reconfigurability with
respect to bandwidth. Whether one can build such
a system is a separate question; this demonstration
suggests and attempts to quantify the possibility.

The remainder of this paper formalizes this anal-
ysis. As a demonstration, we develop an analytical
model of these constraints, Φ(µ) and χ(µ), as well
as performance models, T (n; a, µ). To suggest the
possibilities of the framework, we develop models
for a full-system configuration, consisting of a dis-
tributed memory machine comprising any number
of manycore processors connected by a network, in
the case of distributed matrix multiply, distributed
3D FFTs, and distributed stencil algorithms. We do
not view any specific models and projections as the
main contribution of our work. Rather, we wish
to emphasize the basic framework, with the large
variety of potential detailed modeling strategies,
analyses, and projections as possibilities based on
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it.

II. BACKGROUND AND RELATED WORK

The principal challenge is how to connect power
(and implicitly, energy) and area constraints with
a complexity analysis. There are numerous ap-
proaches. The most widely-cited come from the
computer architecture community [11, 19, 25, 26,
40, 57]. In such approaches, the application or
algorithm is typically abstracted away through
an Amdahl’s Law style analysis, which means it
can be difficult to relate high-level algorithmic
characteristics to architectures precisely. Theorists
have also considered a variety of new complex-
ity models that incorporate energy as an explicit
cost [36, 42]. However, this body of work is very
abstract and focused purely on asymptotics, mak-
ing these models difficult to operationalize, in our
view. Lastly, there is a considerable body of work
from the embedded hardware/software commu-
nity, emphasizing analysis suitable for compiler-
and run-time systems [15, 33, 53]. However, this
work necessarily focuses on specific concrete code
and architecture implementations, and therefore
do not explicitly illuminate constraints due to
fundamental algorithmic and physical limits. It is
these limits that we seek to understand to make
forecasts about future algorithm and system be-
havior.

Regarding area constraints, note that our frame-
work treats die area, χ(µ), as a function of ar-
chitecture µ only. Thus, to construct this function
we need to consider what architectural compo-
nents we will put on chip (e.g., cores, caches, on-
chip networks) and derive cost estimates for the
size of each component. Effectively, this choice
implies that we are most interested in still build-
ing architectures that can execute general-purpose
computations; however, the power and area al-
locations are tuned to specific workloads. Thus,
our approach stands in contrast to the classical
work on models of computation under very large-
scale integration (VLSI) [49, Chap. 12]. That body
of work also considers physical area-time trade-
offs [37, 45], with connections to energy [2, 55],
but does so for specific circuit structures that cor-
respond to specific computations. We imagine a
bridging between these two approaches but are
for the moment agnostic on the specific analytical
form of that bridge.

To develop cost models for both power and area,
we are mining the vast literature on models and
technology trends for everything from low-level
processor device physics, functional units, cores,

caches and memory systems, and on-chip and off-
chip networks [6, 7, 16, 24, 31, 35, 38, 50]. Since
our ultimate goal is to consider potential long-term
outcomes, we focus on recent projections of scaling
trends [6, 32, 34, 35, 50].

III. AN EXAMPLE OF INSTANTIATING A MODEL
WITHIN THE FRAMEWORK

This section explains how one might go about
constructing meaningful cost and constraint mod-
els within the framework. In particular, we in-
stantiate specific forms for T (n; a, µ), Φ(µ), and
χ(µ). These forms are meant to be illustrative, not
necessarily definitive. Armed with such a model,
Section IV then considers a variety of what-if
scenarios at exascale (roughly 1 exaflop/s capable
systems) expected in the 2017–2020 timeframe, to
illustrate the kinds of insights possible within the
framework.

A. Technological and architectural parameters

To guide parameter selection and model cali-
bration, we start with the basic technology trend
assumptions laid out in a recent description of the
proposed NVIDIA Echelon processor, scheduled
for release in approximately the year 2017 [32].

For our subsequent analysis and projections, we
will assume the technology constants that appear
in Table I. These values depend on specific as-
sumptions about technological capabilities in the
2017–2020 time frame, for which we borrow the
expectations used to design Echelon. We take those
projections as-is; debates about the accuracy of
these values are beyond the scope and intention
of this paper.

Our target system is a supercomputer. We pa-
rameterize the high-level architecture µ by the
following: the number of cores per processor (q),
cycle-frequency of each core (f ), the aggregate
on-chip cache capacity (Z), memory bandwidth
(βmem), on-chip network bandwidth (βnoc), off-chip
network link bandwidth (βnet), and total number
of nodes (p). By “node” we really mean a single
unit of distributed memory processing consisting
of a (manycore) processor, local memory, persistent
storage (disk). This definition constitutes a sim-
plification of how a real “node” might look in a
future system; however, we do model the power
required by such a node (see εnode in Table I). We
use the term “core” to represent the basic unit of
processing in the system. We endow a core with
general-purpose processing capabilities, e.g., ALU,
address generation, branch unit, register file; how-
ever, because the sample algorithms we analyze
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are floating-point intensive, we characterize the
core essentially by its peak rate of floating-point
instructions completed per cycle. The caches are
core-private but the value Z is aggregate over all
cores on a chip. We connect cores via a

√
q×√q 2D

Mesh with an on-chip link bandwidth of βnoc. The
on-chip cache is evenly distributed to all cores so
that each cores has a private cache of size Z

q . We
connect nodes by a p

1
3×p 1

3×p 1
3 3D torus with a link

bandwidth of βnet. As a reference point, the values
of these parameters as proposed for the Echelon
design appear in column 2 of Table II. (Columns 3
and 4 will be discussed in Section IV.)

Our specific algorithmic analyses will also as-
sume an abundance of parallelism. Though this
assumption seems strong, it is also a necessary
condition for any application that can hope to scale
to very large numbers of nodes relative to today’s
standards.

Parameters 2018 (10 nm)
Value

System Power Cap: Φmax 20 MW
Chip Die Area: χmax 141.7 mm2

Cache Density: σcache .386 mm2/MB
Core Density: σcore .0105 mm2/MB

Memory BW Power: λmem 36 mW/GB
s

Network BW Power: λnet 36 mW/GB
s

On-Chip Network BW Energy: λnoc .75 pJ/mm Byte
Dynamic Power Coefficient: cdynamic 0.00129704

Short-Circuit Coefficient: cshort 0.0032426
Leakage Coefficient: cleakage 0.002026625

Node Overhead: εnode 2 W

Table I: Technology Constants: Projected values for
2018.

B. A model of physical constraints
We use the following models of power and area,

based on the parameters shown in Tables I and II.
The total system power comprises the power of

the cores (Pcomp), memory (Pmem), on-chip intercon-
nect (Pnoc), and the system network (Pnet). There is
also a nominal per node power cost (εnode) that rep-
resents the inherent overhead cost of maintaining
a node, e.g., power supply, chipset, disk.

Φ(µ) = p (Pcomp + Pmem + Pnoc + εnode) + Pnet (4)

Power consumption of CMOS circuits are fre-
quently modeled with a three term equation of the
form, P = ACV 2f + τAV If + V Ileakage, which ac-
counts for the dynamic power consumption, short-
circuit current, and leakage current [43]. The key
variables from our perspective are voltage V and
frequency f . Since the maximum operating fre-
quency f is roughly linearly related to the voltage

V , we can simplify the expression for the power
consumption of each core to be a function that is
cubic in f :

Pcomp = q
(
cdynamicf

3 + cshortf
2 + cleakagef

)
. (5)

We can obtain suitable coefficients by fitting this
equation to the different voltage, frequency, and
energy settings provided in the Echelon paper [32].

Bandwidth power (Joules/sec or Watts) is band-
width (Bytes / sec) times energy cost per byte
(Joules/Byte):

Pmem = βmem · λmem (6)
Pnet = βnet · Links(p) · λnet (7)

The die area dedicated to each core is Z
q σcache +

σcore. Assuming each core is square in shape, the
distance between the center of two neighboring
cores is

√
Z
q σcache + σcore, which we will use to ap-

proximate the length of the on-chip interconnect
links. Assuming a 2D mesh topology, which is the
most natural considering the current planar manu-
facturing process of modern processors—there are
a total of 4q−4

√
q links. The power of the on-chip

network is therefore

Pnoc = (4q − 4
√
q)

(√
Z

q
σcache + σcore

)
βnocλnoc. (8)

The limited processor die area constrains the
number of cores and cache that can be placed on
a single node. A larger cache capacity means there
is less space for cores and vice-versa. Thus, given
a total die area of Ωdie, we constrain total core and
cache capacity by requiring that

Ωdie = (q · σcore) + (Z · σcache) . (9)

C. Algorithmic cost models

Given the basic architectural model and param-
eters, the next step is to analyze an algorithm
or class of algorithms, so that we can compute
T (n; a, µ). We specifically consider the total execu-
tion time to be the maximum of four component
times:

T = max {Tcomp, Tnet, Tmem, Tnoc} (10)

where Tcomp is the time performing compute (flops),
Tnet is the time spent in network communica-
tion, Tmem is the time spent performing processor-
memory communication, and Tnoc is the time spent
in on-chip network communication. Below, we
give sample analyses for 2.5D matrix multiply, a
three-dimensional FFT, and a stencil computation.
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Parameters Ideal Ideal Ideal
Echelon Matrix Multiply FFT Stencil

Value Value Value Value
Cores: q 4,096 11,491 11,295 9,494

Frequency: f 2.0 GHz .275 GHz 3.0 GHz .280
Aggregate On-chip Cache: Z 256 MB 54.5 MB 59.8 MB 109 MB

Memory Bandwidth: βmem 1.6 TB/s .034 TB/s 29.5 TB/s .787 TB/s
On-chip Network Bandwidth: βnoc 4.0 GB/s .11 GB/s 38.2 GB/s .19 GB/s

Network Bandwidth: βnet 67 GB/s 11.4 GB/s 18,100 GB/s 12.5 GB/s
Number of nodes: p 102,500 1,280,000 3,400 480,000

Peak: 2qfp 1.7 EF/s 8.1 EF/s 230 PF/s 2.5 EF/s

Table II: Hardware Characteristics (µ).

1) Example: Distributed 2.5D matrix multiply: The
2.5D matrix multiply algorithm of Solominik and
Demmel [52] is a particularly interesting case for
our framework. In particular, it contains a tuning
parameter that can be used to reduce communica-
tion at the cost of increasing memory capacity, a
trade-off that we subsequently analyze.

The 2.5D matrix multiplication algorithm de-
composes a n × n matrix multiply, distributed
across p nodes, into a sequence of (p/C)3/2 ma-
trix multiplies, each of size (n

√
C/p) × (n

√
C/p).

The value C is the tuning parameter that, when
increased, decreases communication at the cost of
increased (replicated) storage.

We take computation time to be that of the
conventional (non-Strassen) algorithm:

Tcomp =
2n3

pqf
. (11)

Network communication costs are based on the
asymptotically optimal bandwidth costs of the
2.5D algorithm [52]:

Tnet =
2n2√
Cpβnet

. (12)

Each node will compute (p1/2/C3/2) local ma-
trix multiplies of size

(
n
√

C
p

)
×
(
n
√

C
p

)
during

the computation. From this fact, we can calculate
the time spent locally transferring data between
the processor and memory, given the aggregate
cache of size Z. Assuming an asymptotically I/O-
optimal blocked algorithm with block size b =√

Z
3 , we obtain

Tmem =

(√
p

C
3
2

)(
n
√
C
√
p

)3(
2
√

3√
Zβmem

)
(13)

=
2
√

3n3

p
√
Zβmem

. (14)

Since we assume private caches and a 2D mesh
network, we can treat the local matrix multiply

as a distributed computation across the cores. We
estimate the on-chip network communication time
assuming the communication-optimal Cannon al-
gorithm [8],

Tnoc =

(√
p

C
3
2

)(
2n2C

p
√
qβnoc

)
=

2n2√
Cpqβnoc

, (15)

where the constants reflect the additional assump-
tion of the matrix operands being distributed in
“skew” order across the private caches.

2) Example: Distributed 3D FFTs: Our second ex-
ample is the 3D FFT. We assume a problem of size
N = n3 using the pencil decomposition [39]. The
algorithm consists of three computation phases
separated by two communication phases. Each
computation phase computes n2 1D FFTs of size
n in parallel. Each communication phase involves√
P independent P -node personalized all-to-all ex-

changes.
Each 1D FFT of size n is computed locally on

a node using Θ (n log n) floating point operations.
We assume the classic Cooley-Tukey radix-2 al-
gorithm, which requires approximately 5n log2 n
flops; thus,

Tcomp = 3× 5n3 log2 n

fpq
. (16)

During each of the two communication phases,
approximately n3 data points are transferred across
the network. Assuming a 3D torus network with
a bisection bandwidth of O

(
p

2
3 βnet

)
, the commu-

nication cost is approximately

Tnet = 2× n3

p
2
3 βnet

. (17)

During each of the three computation phases,
each node must compute n2

p 1D FFTs. The num-
ber of processor-memory transactions necessary to
compute each local 1D FFT depends on the total
cache capacity Z of the node. If the entire 1D
FFT can fit within the on-chip caches (n ≤ Z),
then memory transfers are limited to just O (n)
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compulsory cache misses. Otherwise, the compu-
tation will incur an additional Θ (n logZ n) capacity
misses [29]. We have previously estimated a lower-
bound on this constant to be 2.5 [14], using hard-
ware counters measurements of last-level cache
misses incurred by the highly-tuned FFTW [20].
Thus,

Tmem = 3× n2

p
× 2.5nmax(logZ n, 1)

βmem

(18)

=
7.5n3 max(logZ n, 1)

pβmem

, (19)

where the max function ensures that the transfers
include at least the compulsory misses.

If an entire 1D FFT can fit in the private cache of
a single core (n < Z

q ), then no on-chip communi-
cation is necessary beyond the compulsory cache
misses to DRAM. Otherwise, the 1D FFT must be
distributed across q̂ = nq

Z cores, which requires
O
(

n√
q̂βnoc

)
time assuming a 2D mesh topology. In

total, each group must compute at least n3

pZ of these
distributed FFTs. Additionally, we only consider
large problems sizes (q � n) in this paper, so
that load balance should not be a significant factor.
Thus,

Tnoc = 3×
(
n3

pZ

)(
n
√
Z

βnoc

√
q
√
n

)
(20)

=
3n3
√
n

p
√
q
√
Zβnoc

. (21)

3) Example: Distributed 3D Stencil: Our final ex-
ample is a 3D stencil. For simplicity of demon-
stration, we will only consider a 3D cross-shaped
stencil of width w and total of 6w + 1 points, and
we will ignore the possibility of algorithms that
tile in time. We assume a problem of size N = n3.

The most direct method consists of 12w + 1
floating point operations per element; thus,

Tcomp =
n3(12w + 1)

fpq
. (22)

Assuming each node owns a n
3
√
p×

n
3
√
p×

n
3
√
p block

of the dataset, each node will need a n
3
√
p ×

n
3
√
p ×w

sub-block from each of the six adjacent nodes on
the 3D torus network. Therefore, the communica-
tion cost is approximately

Tnet =
6wn2

p
2
3 βnet

. (23)

Without reuse, the number of processor-memory
transactions necessary to compute each element is
6w + 2. A cache of size Z can be used to reduce

the total number of reads by a factor of O
(
Z

1
3

)
.

Thus,

Tmem =

(
n3

p

)(
6w

Z
1
3

+ 2

)(
1

βmem

)
, (24)

where n3

p is the number of elements processed on
each node.

We can approximate the amount of on-chip
communication by comparing the cache misses
incurred by a core with a private cache of size
Z
q with the number of cache misses incurred by a
processor with an aggregate cache of size Z. Thus,

Tnoc =

(
n3

p

)[(
6w

(Z
q )

1
3

+ 2

)
−
(

6w

Z
1
3

+ 2
)]

qβnoc

(25)

=
6wn3

(
q

1
3 − 1

)
Z

1
3 qpβnoc

. (26)

IV. ANALYSIS

Given the models and architectural parameters
of Section III, we can now carry out a series of
what-if analyses to gain some insight into possible
futures and high-level architectural designs, and
even compute solutions to Equation 1.

A. Ideal architectures

We solved the optimization problem of Equa-
tion 1 for the 3D FFT, matrix multiply, and sten-
cil algorithms. For this first analysis, we fixed
the matrix multiply algorithm to be the Cannon
(2D) algorithm, rather than the 2.5D algorithm
considered in the next section, and fix the stencil
width (w = 10). The ideal configuration for each
appears in columns 3-5 of Table II. Think of these
configurations as being the ones optimally tuned
for the corresponding algorithm, though recall that
the model is for a general-purpose system. Figure 2
shows how resources are allocated in each of these
tuned configurations, as well as in the proposed
Echelon configuration. Figure 3 shows execution
times for each of the hypothetical machines on the
3D FFT, stencil, and matrix multiply workloads.
We can make a number of observations about these
results.

Even under optimistic assumptions and an opti-
mal machine configuration, the ideal FFT machine
has a peak of only 230 petaflop/s (PF/s) with
20 MW of power, which is just 1/36 of the 8
exaflop/s (EF/s) possible on the ideal matrix mul-
tiply system. This means that relative to a matrix
multiplication, the FFT computation requires 36×
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Figure 2: Hardware configurations for the hypothetical machines. The subplots break down the power
and die area resource allocations.

0

15

30

45

60

FFT MatMult Stencil

Ideal FFT Configuration

FFT MatMult Stencil

Ideal MatMult Configuration

FFT MatMult Stencil

Ideal Stencil Configuration

FFT MatMult Stencil

Echelon

Figure 3: Relative execution times for the hypothetical machines. The subplots show execution time
relative to the ieal FFT, Stencil, and MatMult configurations.

more energy per floating-point operation. How-
ever, tuning for a 3D FFT means we will necessar-
ily divert power resources (and, therefore, energy
efficiency) elsewhere in the system.

The Echelon design calls for 256 MB of on-chip
cache which is over four times more than the ideal
FFT and ideal MatMult. This is interesting because
relative to NVIDIA’s current GPU, the core count
increased by a factor of 16 (the scaling factor from

a 40nm to 10nm process technology) but the cache
capacity by 64 (4x more than the scaling factor).

It is interesting to further consider these config-
urations in light of our motivating demonstration
of Section I. There, we observed that a single-
processor system with extreme reconfigurability of
power—rather than die area—might lead to designs
capable of performing both a compute-intensive
matrix multiply and a communication-intensive
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3D FFT. The three ideal configurations, depicted in
Figure 2 and enumerated in Table II, are similarly
suggestive. From Figure 2, observe that the proces-
sor configurations for the three ideal systems are
not too dissimilar. Rather, the dramatic differences
come from shifting power allocations to processors
(Ideal MatMult), memory bandwidth (Ideal Sten-
cil), or network (Ideal FFT). The node counts also
different significantly (Table II). Thus, an intriguing
question is whether there is any way to engineer
a single system having the same processors but a
mechanism to perform dramatic power reconfig-
urations (drawing down or shutting off nodes as
needed, and diverting power to bandwidth).

B. Architecture trade-offs: lightweight vs. heavyweight
designs

Recent discussions surrounding the direction of
high-end systems often characterize design strate-
gies as either “lightweight” or “heavyweight.”
The key distinction between these two strategies
is node density. Lightweight designs, exempli-
fied by the Blue Gene-style processors, consist
of many lower power processors. Alternatively,
heavyweight designs, exemplified by Jaguar-class
machines, consists of fewer but more powerful
processors, each operating at high clock frequen-
cies.

Interestingly, these characterizations apply to the
ideal machine configurations in Figure 2. The ideal
matrix multiply configuration, “Ideal MatMult,”
reflects a lightweight strategy, whereas the ideal 3D
FFT configuration, “Ideal FFT,” resembles a heavy-
weight strategy. The difference is extreme: Ideal
FFT has only 3,400 nodes, which is 376× fewer
nodes than Ideal MatMult. Essentially, an FFT is
communication-bound and is therefore highly sen-
sitive to the decreased energy-efficiency of a large
network — on a 3D torus, the energy-efficiency
will decrease at a rate of O

(
(p2/3)/p

)
as p in-

creases. Unlike the FFT, matrix multiply benefits
from large node counts because it can exploit
the increased core count to make the computa-
tion more efficient with a lower clock frequency.
Figure 4 shows the stark contrast in performance
between the two computations as a function of
system density.

C. Algorithm trade-offs: computation v. communica-
tion

A convolution is an algorithmic pattern that can
capture the characteristics of many scientific com-
puting problems. We may interpret a convolution
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Figure 4: Node Density Plots.

as the application of a “filter” to a “signal.” Com-
putationally, a convolution may be implemented as
a stencil computation, when the filter is compact,
or alternatively by an FFT. A small value of the
stencil width w in our model (Section III-C3) corre-
sponds to our measure of compactness. In a stencil-
based approach, the computational complexity of
convolution will be O (wn). When the filter is
not compact, an FFT-based method may be more
suitable as it reduces computational complexity
to O (n log n). However, the FFT-based methods
have a higher communication cost. For moderate
sized stencils this results in a computation versus
communication trade-off: the FFT-based method
requires fewer floating point operations but more
data movement than the stencil method [12, 18].

In the case of a large 3D convolution (n = 217),
the FFT-based method will in our model become
more efficient when w ≥ 22. Figure 5 compares the
execute time of the stencil and FFT-based methods
over various stencil sizes. The results show that
an ideal stencil machine is actually much faster
than the ideal FFT machine until the stencil size is
significantly larger (w ≈ 600) than expected. The
reason for the discrepancy is the relative cost of a
floating-point operation versus data movement. As
expected trading communication for computation
is beneficial until the trade-offs become extreme.

D. Algorithm trade-offs: space vs communication

In Section IV-A, we found the ideal architecture
for Cannon’s matrix multiply algorithm (the “2D”
approach). While this algorithm is asymptotically
optimal when all of the available system memory
is utilized, the class of “2.5D” algorithms can fur-
ther reduce network communication by a factor
of
√
C by making an additional C copies of the

data. Based on historical trends, we estimate that
in 2018 increasing the system memory capacity
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Figure 5: Plot of the time to compute a convolution
using different stencil sizes. The figure compares
the Stencil method with an FFT based method in
the 3D case.

could require an extra watt of power for every
eight GB of additional DRAM [46, 56]. Thus, the
power consumed by the requisite memory capac-
ity, 3Cn2 nanowatts, increases as C increases. This
introduces a trade-off between memory utilization
and network communication. An interesting ques-
tion is to what extent replication can be used to
improve performance without increasing the total
power and energy costs.

To find the optimal balance, we solve Equation 1
for the optimal algorithm, a∗, and the correspond-
ing architecture, µ∗, considering the set of all 2.5D
implementations (i.e., values of the replication fac-
tor, C). Figure 6 shows the performance and re-
source allocation of these algorithms. The results
show that indeed, replication can slightly improve
upon Cannon’s algorithm under these conditions.
However, the optimal balance is not at one of the
extremes, but rather somewhere in-between.

E. Increasing the power budget

The U.S. Department of Energy, one of the pri-
mary customers of top-tier supercomputers, has
instituted a strict 20 MW power cap for future
supercomputers. This power constraint is one of
the dominant challenges to reaching exascale.

We can consider how much performance im-
proves if the power cap is relaxed a little by
changing the power constraint, Φmax, in Equa-
tion 1. Figure 7 compares the performance of an
’ideal’ machine, designed for a 20 MW power
budget, with a similar machine that is designed
for a larger power budget. As the figure shows,
communication-heavy applications like the FFT
will improve at a slower rate than applications
that are less dependent on communication. This is
because the most efficient way to scale the machine

is to increase the number of nodes, which in turn
increases the communication overheads.
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Figure 7: Plot of performance as a function of the
power budget. Performance values for the algo-
rithms are scaled to their performance at a 20 MW
power budget.

V. CONCLUSION

The ultimate goal of this work is to determine
whether alternative ways to allocate die area and
power might lead to better designs for specific
applications. Our proposed framework suggests
how to achieve this goal in a way that retains
analytical rigor while remaining sufficiently high-
level to yield insight. The suggestion of extreme
power reconfigurability in the architecture as a
mechanism that might support diverse applica-
tions is one forward-looking example.

Having said that, we emphasize the method-
ological contribution of our work over any spe-
cific quantitative predictions. The intent of this
paper is to suggest a different way of thinking
about the high-level directions for algorithms and
architectures to drive the subsequent detailed co-
design process, rather than to provide a compre-
hensive critique of exascale designs. We hope that
a much deeper exploration of our basic setup—
including more architectural details and consid-
eration of richer classes of algorithms and mixed
workloads—could produce a number of alterna-
tive futures, for both architecture and algorithm
design.
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