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Abstract— Current emerging embedded System-on-Chip plat- application as a sequential program, which is well undexto
forms are increasingly becoming multiprocessor architectures. even though such a specification is not suitable for mapping
System designers experience significant difficulties in program- 4, gnpjication onto a parallel multiprocessor platform.
ming these platforms. The applications are typically specified as This gap between between a sequential proaram and a
sequential programs that do not reveal the available parallelism IS gap W ; > quential prog
in an application, thereby hindering the efficient mapping of Parallel model of computation motivates us to research and
an application onto a parallel multiprocessor platform. In this develop compiler techniques that facilitate the migrafimm
paper we present our compiler techniques that facilitate the a sequential application specification to a parallel applic
migration from a sequential application specification to aparallel g specification. These compiler techniques depend on the

application specification using the Process Network model of . .
computation. Our work is inspired by a previous research project parallel model of computation used for parallel applicatio

called Compaan. With our technigues we address optimization SPecification. Although many parallel models of computa-
issues such as the generation of Process Networks with simplifiedtion exist [14], [15], in this paper we consider the Process
topology and communication without sacrificing the Process Network model of computation [12] because its operational
Networks performance. Moreover, we describe a technique for gamantics are simple, yet general enough, to conveniently

compile-time memory requirement estimation which we consider . . . . . .
as an important contribution of this paper. We demonstrate the specify stream-orientectiata processing that fits nicely with

usefulness of our techniques on several examples. the application domain we are interested in—multimedia and
signal processing applications. Moreover, for this aplon
|. INTRODUCTION AND MOTIVATION domain, many researchers [6]-[8], [11], [16], [18], [191],

The complexity of embedded multimedia and signal prd24] have already indicated that Process Networks are very
cessing applications has reached a point where the perfauitable for systematic and efficient mapping onto multipro
mance requirements of these applications can no longer dassor platforms.
supported by embedded system platforms based on a sink this paper we present our compiler techniques for deriv-
gle processor. Therefore, modern embedded Systems-gn-Ghg Process Network specifications for applications spegtifi
platforms have to be multiprocessor architectures. Ind¢eemt as static affine nested loop programs (SANLPs), therebybrid
years a lot of attention has been paid to building such muliirg the gap mentioned above in a particular way. SANLPs are
processor platforms. Fortunately, advances in chip tdolgyo important in Scientific, Matrix Computation and Multimedia
facilitate this activity. However, less attention has beaid and Adaptive Signal Processing applications. Our work is
to compiler techniques for efficient programming of multiinspired by previous research on Compaan [13], [20], [2BE T
processor platforms, i.e., the efficient mapping of appiices techniques presented in this paper can be seen as a sighifican
onto these platforms is becoming a key issue. Today, systeénprovement of the techniques developed in the Compaan
designers experience significant difficulties in programgni project in the following sense. The Compaan project has-iden
multiprocessor platforms because the way an applicationtiied the fundamental problems that have to be solved inrorde
specified by an application developer does not match tke derive Process Networks systematically and autométical
way multiprocessor platforms operate. The applicatiorss aand has proposed and implemented basic solutions to these
typically specified as sequential programs using impegatiproblems. However, many optimization issues that improve
programming languages such as C/C++ or Matlab. Specifyitite quality of the derived Process Networks have not been
an application as a sequential program is relatively easly afully addressed in Compaan. The techniques presentedsn thi
convenient for application developers, but the sequensnalre paper try to address optimization issues in four main aspect
of such specification does not reveal the available paisiel ~Given an application specified as a SANLP,
in an application. This fact makes the efficient mapping of 1) Derive (if possible) Process Networks (PN) with fewer
an application onto a parallel multiprocessor platformyver communication channels between different processes
difficult. By contrast, if an application is specified using compared to Compaan derived PNs without sacrificing
a parallel model of computation (MoC) then the mapping the PN performance
can be done in a systematic and transparent way using &) Derive (if possible) Process Networks (PN) with fewer
disciplined approach [17], but specifying an applicati@ng processes compared to Compaan derived PNs without
a parallel MoC is difficult, not well understood by applicati sacrificing the PN performance
developers, and a time consuming and error prone process3) Replace (if possible) reordering communication chan-
That is why application developers still prefer to specify a nels with simple FIFO channels without sacrificing the



PN performance assign an ordering to these integer vectors that correspond
4) Determine the size of the communication FIFO channetlse order in which the iterations of the loop nest are exetute
at compile time The problem of deriving efficient FIFO This order is called thdexicographical orderand will be
sizes has not been addressed by Compaan. Our tedénoted by<. A vectora € Z" is said to be lexicographically
niques for computing FIFO sizes constitute a startin@trictly) smaller tharb € Z" if for the first position: in which

point to overcome this problem. a andb differ, we havea; < b;, or, equivalently,
The rest of this paper is organized as follows. In Section II, " i1
we first introduce some concepts thgt we will ngeq throughout a<b= \/ a; < b; A /\ aj=b; | . 1)
this paper. We explain how to derive and optimize Process i1 =1

Networks in Section Ill and how to compute FIFO sizes

in Section IV. Detailed examples are given in Section N some integer sets, the variables appear in two (or more)
with a further comparison to Compaan-generated networ#Ups, sayi € Z"' andj € Z"2. Such sets can be seen
in Section VI. After a comparison to other related work is subsets of the Cartesian prodict x Z"2 and will be

Section VII, we conclude in Section VIII. calledinteger relations The constraints defining these sets or
relations may also involve additionatxistentially quantified
Il. PRELIMINARIES variablesa € Z™ as well as som@arametersp € Z" , i.e.,

In this section, we introduce the process network model aftd= {i € Z" | Ja € Z” : Ai+ Ba+Cp+c >0}, with

parametric integer programming, our main analysis tool. A € Z™*", Be Z™*", C € Z™*" andc € Z™.
Parametric integer programming [9] is a technique for com-

A. The Process Network Model puting the lexicographically smallest element of a paraimet

As the names suggests, a process network consists ohteger set. The result is a subdivision of the parameter
set of processesalso callednodes that communicate with space with for each cell of this subdivision a description
each other througbhannels Each process has a fixed internadf the corresponding unique minimal element as an affine
schedule, but there is no (a priori) global schedule thaatis combination of the parameters. This result can be described
the relative order of execution of the different processess a union of parametric integer sets, where each set in the
Rather, the relative execution order is solely determingd kinion contains a single point. Parametric integer progrargm
the channels through which the processes communicate.(liP) can be used to project out some of the variables in a
the special case of a Kahn Process Network (KPN), tiset. We simply compute the lexicographical minimum of these
communication channels are unbounded FIFOs that suppeatiables, treating all other variables as additional eters,
a blocking read. That is, a process that reads data fromaiad then discard the description of the minimal element.
channel will block until data is available and this is theyonl
way in which a process influences the execution of another
process. This section explains the conversion of static affine nested

In practice, FIFOs are not unbounded and so our procdsep programs (SANLPs) to Process Networks. We first dis-
network model also supports blocking writes. It is impottarcuss SANLPs and our internal representation in SectioA.lll-
then to ensure the FIFOs are large enough to avoid deadlockisen we recall how to perform dataflow analysis in Section IlI
Note that determining suitable channel sizes may not Beand how to determine channels types in Section IlI-C. In
possible in general, but it is possible for process networkection IlI-D we show how to extend the dataflow analysis to
derived from SANLPs as defined in Section IlI-A. We alsdletect reuse, reducing the number of channels between nodes
allow data to be written to a channel in an order that is diffier and in Section IlI-E we show we can enhance this effect by
from the order in which the data is read. Such channels ammoving (artificial) copy nodes.
calledreordering channeland could be implemented usinga = . ,
piece of addressable memory. Note that allowing reorderify Limitations on the Input and Internal Representation
channels does not extend the expressive power of the modeNVe impose the usual restrictions on the input programs we
since the process reading data from the channel could gqualiocess, i.e., the SANLPs. A SANLP consists of a set of
well be changed to read the data in the order in which it &atements, each possibly enclosed in loops and/or guasded

IIl. DERIVATION OF PROCESSNETWORKS

sent and to store it in an internal memory block. conditions. The loops need not be perfectly nested. All lowe
) ) and upper bounds of the loops as well as all expressions in
B. Parametric Integer Programming conditions and array accesses are (quasi-)affine combirsati

We will be dealing in this paper with sets of vectors 0bf enclosing loop iterators and parameters. The values of
integers defined by linear inequaliti€s= {i € Z™ | Ai+c > the parameters may not change during the execution of the
0}, with A € Z™*™ andc € Z™. We will call such sets program, or at least the part we analyze. The reason for these
simply integer setsThe elements of the vectors in these setestrictions is that they allow us to represent all relewdatt
could, for instance, refer to the iterators of a loop nesinf@ using integer sets and relations, as defined in Section II-B.
sequential program, with the linear inequalities corresiiag In particular, the set of iterator vectors for which a statein
to the lower and upper bounds of the loops. We will furthds executed is an integer set called ttegation domain These



iteration domains will form the basis of the description loét union of integer relations

nodes in our process network, as each node will correspond m

to a particular statement. The channels are determinedeby th U Dj(iy,iy) C Z™ x Z"2 )
array (or scalar) accesses in the corresponding statenféhts j=1

accesses that appear on the left hand side of an assignmenf,0f connect the specific iterations of the write and read

In-an aitljlreshs-ofgo expression are (?((j)nsu;ered to Weite ac- operations such that each iteration of a given read operatio
cessesAll other accesses are considered toréed accesses g iquely paired off to some write operation iteration.

Each of these accesses is represented bgcaerss relation

relating each iteration of the statement to the array elémén Determining Channel Types

accessed by the iteration, i.¢.(i,a) € I x A|a= Li+m}, In general, the channels we derived in the previous section

where [ is the iteration domainA is the array space andmay not be FIFOs. That is, data may be written to the channel

Li+m is the affine access function. The next section describi@san order that is different from the order in which data

how the channels are derived from these access relations.is read. We therefore need to check whether such reordering
occurs. This check can again be formulated as a (set of) PIP

B. Dataflow Analysis problem(s). Reordering occurs iff there exist two pairs dfav

To compute the channels between the nodes, we basic@Rfl read iterationgwy,r;) and(ws, ry), such that the order
need to perform dataflow analysis [10]. That is, for eac®f the write operations is different from the order of thedea
execution of a read operation of a given data element in tRBerations, i.e.w; - w, andr; < ry, or equivalently
sequential program, we need to find the corresponding write Wi — Wy >0 and 1, <. A3)
operation that wrote the data element. In the simplest case,
where a given array is written by a single statement in a logpiven a union of integer relations describing the channgl (2
nest that furthermore precedes the loop nest reading frem then for any pair of relations in this uniotpD;,, D;,), we
array, we need to find the last iteration of the write statemelfierefore need to solve, PIP problems
that writes to the array.element read by a given ite(ation Oflexmax { (w1 — wa, (W1,11), (W2, 12),p) |
the read statement. This can be formulated as a single PIP (W1,t1) € Dj, A (Wa,s) € Dy, ATy <13} 4
problem. In particular, we need to solve B b 202 g2 AL 20

wherer; < ry should be expanded according to Equation (1)
lexmax { iy € Iy | W(iw,a) A R(i;,a) Aiy € I }, to obtain then, problems. If any of these problems has a
) . solution and if it is lexicographically positive or unbowett
where W and R are the write and read access relations anf, the first, positions), then reordering occurs. Note that

I, C Z™ and I, C Z" are the iteration domains of the o 4o not compute the maximum of; — w, in terms of
write and read operation respectively. Note that the itesat {1, parameters, but rather the maximum over all values

of the re_ad operation_ are treated as parameters in thismpblof the parameters. If reordering occurs for any value of
along with any possible structural parameters. The seiuto o parameters then we simply consider the channel to be

therefore a map from the read operation to the correspondirlgg)rdering_ Equation (4) therefore actually represent®m n

write operation. The array indexis also treated as a vector Ofparametric integer programming problem. The large majorit
parameters in the above formulation, but it can be ignored iR ihase problems will be trivially unsatisfiable.

the solution since it is uniquely identified by the read @@ The reordering test of this section is a variation of the

vector. reordering test of [23], where it is formulated as x n, PIP

If the read and write operation share one or more enclosigghplems for a channel described by a single integer relatio
loops, then we need to ensure that we only consider write Ofe simplified computation for specific types of relations
erations that are executed before the rea.d operation. HOWeyt [22] apply to pairs of the same relation and, with some
the lexicographical order that we need to impose is not @tineyqgifications, also to pairs of different relations.
constraint, but rather a disjunction aflinear constraints (1),
where n is the shared nesting level. We therefore need t Detecting Self Reuse
solve n + 1 PIP problems (the write and read operation The reordering check from the previous section is not
may also occur in the same iteration of the loop nest). Thefficient to determine whether a channel is a FIFO or not.
presence of multiple statements that write to the same ariayen if the data elements are read in the same order as they
complicates the analysis only slightly, since we now alsare written, they may be read multiple times. Rather than
have to impose lexicographical orderings between therdifie detecting and handling this multiplicity, we opt to remobe t
write operations to obtain the last of them. Our implemeatat multiplicity entirely by replacing the channel by two FIFOs
of this analysis is a variation of the algorithm outlined I9]. without any special cases. The added benefit of removing

In the end, we obtain pairs of write and read operatiomsultiplicity is that some channels which would be classified
such that some data flows from the write operation to ttees reordering, can also be decomposed into two FIFOs.
read operation. These pairs correspond to the channelsrin ouvA typical example of a situation where the removal of
process network. For each of these pairs, we further obtaimaltiplicity is very beneficial is the outer product of two



for (i =0; i <N ++i) for (i =0; i <N ++i)
a[i] = A(i); b[i] =f(i >0 ? ali-1] : a[i], a[i],
for (J =0; j <N +4) 3 i < N17?a[i+1] : a[i]);
b[i]1 = B(j); for (i =0; i <N ++i) {
for (i =0; i <N ++i) if (i >0
for (j =0, j <N +4) tnp = b[i-1];
clillil =ali]l » b[j]; el se _
8 tnp = b[i]
c[i] = g(tnp, b[i])
Fig. 1. Outer product source code. }
@ Fig. 4. Use of temporary variables to express border behavior
(@—©) determine the new channel. Iterations for which there is no
corresponding previous iteration continue to read from the
original source. For example, the channel with dependence
relation D,_.. (6) is split into a channel with relation
Fig. 2. Outer product dependence graph with multiplicity. D{,Hc = { (jb» imjc) | 1e=0AN0<jc<N—-1AJ=7jc }

and a self-loop channel with relation

vectors, shown in Figure 1. Figure 2 shows the result of D2 = {(i,j.,ic,jc) |1 <ic <N —1A
a straightforward application of the dataflow analysis from 0<jc<N-—1A (7)
Section 1lI-B. The left part of the figure shows the three J= e NiL =i —1}
nodes and two channels; the right part shows the data flow _ ST e e e '
between the individual iterations of the nodes. The iterati Rather than performing this analysis as a separate step, we

are executed top_down’ |eft_to_right. The channel betwaentan also combine it with the regular dataflow analySiS. Tﬂat i
andc is described by the relation for each iteration of a read access, we determine the previou

o ) access to the same data element that is either a arrideread
Dae = {(iayic, Jo) [0 <ie <N —1A 5) through the same read access. We can then apply the analysis
0<jc<N-1Ai,=1i.} from Section 1lI-C and since there is no more multiplicity

and would be classified as non-reordering, since the d %acr;y of the channels, any non-reordering channel will be a

elements are read (albeit multiple times) in the order inciwhi
they are produced. The channel betwbesndc, on the other
hand, is described by the relation

We can go one step further and not only consider reuse
through the same read access, but also through other read
accesses from the same statement. This analysis will not
Dy e = { (Jbyic,je) |0 <ic <N —1A affect the types of any of the channels, but it may reduce the

0<je<N-1Ajb=7jc} ©) communication volume between different nodes. An example

N ) ) of such a case will be explained in detail in Section V-A.
and would be classified as reordering, with the further comyig further analysis can again be integrated in the regular

plication that the same data element needs to be sent over §he s ow analysis. Finally, channels that result from déffe

channel multiple times. By simply letting noaeonly read a 54 accesses from the same statement to data written by the
data element from these channels the first time it needs the da, e write access are combined into a single channel if this

and from a newly introduced self-loop channel all other 8me.,mpination does not introduce reordering.
we obtain the network shown in Figure 3. In this network, all
channels, including the new self-loop channels, are FIFOs.E. Simple Copy Propagation
To obtain this decomposition, we simply perform a dataflow A typical multimedia application has one or more kernels
analysis on each read access. That is, for each iteration ahat uniformly manipulate a stream of data such as an image.
read access, we determine the previous iteration of the samehe borders of such data, however, the kernel will usually
read access reading the same data element. This relatibn dhave slightly differently. A common way to express such
border behavior is to use temporary variables, possibljianp
itly through the use of the ternary operat@: { in C. Both
@ an implicit and an explicit example are shown in Figure 4 on

a 1D data stream.
@ @’ A straightforward transformation of code such as that of
\ . Figure 4 would introduce extra nodes that simply copy the
data from the appropriate channel to the input channel of the

core node. Not only does this result in a network with more
nodes than needed, it also reduces the opportunity for eygply
Fig. 3. Outer product dependence graph without multiplicity the self reuse detection described in Section IlI-D.



Our solution is to first identify the statements that simplywhere again(D;,, D;,) is a pair of relations in the union
copy data to a temporary variable and to perform a dataflaescribing the channel and wharg~< r, should be expanded
analysis on those temporary variables in a first pass. We thaecording to Equation (1).
combine the (union of) dependence relation(s) between the . .
copy node and the core NodR(icopy. icore) With the corre- B. Uniform Self-Dependences on Rectangular Domains
sponding read access relatifi,y (icopy; ) of the copy node Another important special case occurs when the channel is
to obtain a new (union of) access relation{8),re (icore; ) represented by a single integer relation that in turn repmssa

for the core node that bypasses the copy node. That is, Waiform dependence over a rectangular domain. A dependence
compute is called uniform if the difference between the read andewrit

R (i a3 D . iteration vector is a (possibly parametric) constant over t
core = { (fcore, @) | Jcopy + Dlicopy; Leore) A (8) Whole relation. We call such a dependence a uniform depen-
Reopy (icopy, @) } dence over a rectangular domain if the set of iterationsimgad

by Combining the constraints dp and Rcopy and projecting from the Channel form a I’eCtangu|aI’ domain. (NOte that due
out the iteration vector of the copy nodg,. The regular 0 the dependence being uniform, also the write iteratioifis w

dataflow analysis is then performed using these adaptegscderm a rectangular domain in this case.) For example, the
functions. relationD?_, _ (7) from Section IlI-D is a uniform dependence

c—cC

As an example, consider the copy statement in line @/€r a rectangular domain since the difference between the
of Figure 4. Dataflow analysis yields the following relatiofead and write iteration vector i§c, jc) — (ic,jc) = (1,0)

between this statement and the statement in line 9: and since the projection onto the read iterations is thewngge
1<ic<N—-1A0<j.<N-—1.

D = { (icopy; icore) | icopy = tcore N1 <copy < N —1}. The required buffer size is easily calculated in these cases
The read access in the copy statement from biharray is since in each (overlapping) iteration of any of the Ioopshie t
given by the relation loop nest, the number of data elements produced is exactly

the same as the number of elements consumed. The channel
Reopy = { (icopy; @) | @ = icopy — 1} will therefore never contain more data elements than right

and so the propagated access function is given by the nelatR?fore the first data ele_ment_ is read, or equivalendy, rgter :
the last data element is written. To compute the buffer size,

Reore = { (icore, @) | @ =icore — 1 A1 <icoe <N —1}.  we therefore simply need to take the first read iteration and
count the number of write iterations that are lexicograalhyc

) ) ) _ smaller than this read iteration. Although counting the bam
In this section, we explain how we compute the buffer siz@s clements in the resulting sets is very easy, we use the

for the FIFOs in our networks at compile-time. This computasa; vi nok library [30] to perform this counting. This library
tion may not be feasible for Process Networks in general, iedesigned for more complicated cases but also detects and
we are dealing here with the easier case of networks gederaé%propriately handles these easy cases. In the example, the

from static affine nested loop programs. We first considéf sefi st read operation occurs at iteratioh, 0) and so we need
loops, with two special cases in Section IV-A and Section 1\, compute

B, and the general case in Section IV-C. In Section IV-D,

IV. COMPUTING CHANNEL SIZES

we then explain how to reduce the general case of FIFOs to # (SN {(ic,je) [ic <1})+ (10)
self-loops by scheduling the network. #FSN{GL, ) iL=1A35.<0}),
A. Single-Register Self-loops with S the set of write iterations

We first consider a simple, but important special case of g — (i j/)|0<i, <N—-2A0<j.<N—-1}.
self-loop channels, namely the case where the channels hold . o
at most one data element throughout the execution of thBe result of this computation & +0 = N.
program. Such channels can be replaced by a single regisger.

T ) ; General Self-loop FIFOs
This situation occurs when for every pair of write and read )
iterations(w., r2), there is no other read iterations reading Ve currently do not have a completely satisfactory method

from the same channel in between. In other words, the sitff-computing the buffer sizes for the general case. One optio

tion doesnot occur iff there exist two pairs of write and read ©© compute the number of array elements in the original
iterations, (w1, r) and (wa, r»), such thatws < r; < ra, OF program that are_wrltten_ tq the_chanr_1e|. That is, we can
equivalentlyr, — w, > 0 andr; < r,. Notice the similarity intersect the domain of write iterations with the accesatianh

between this condition and the reordering condition (3)e TH"d Project onto the array space. The resulting (union of)

PIP problems that need to be solved to determine this conditS€S can be enumerated symbolically using a library such as
are therefore nearly identical to the problems (4), viz., bar vi nok. The result may however be a large overestimate
of the actual buffer size requirements.

lexmax { (r1 — wa, (W1,11), (W2,12), D) | (99  Theactual amount of data in a channel at any given iteration
(wi,r1) € Dj, A(Wa,r9) € Dj, Ary <3}, can be computed fairly easily. We simply compute the number



or read iterations that are executed before a given reachopddote that unlike the case of loop fusion, we can ignore anti-
tion and subtract the resulting expression from the numba&ependences here, unless we want to use the declared size of
of write iterations that are executed before the given reath array as an estimate for the buffer size of the correspgndi
operation. This computation can again be performed entiralhannels. (Anti-dependences are ordering constraintseleet
symbolically and the result is a piecewise (quasi-)polyi@m reads and subsequent writes that ensure an array element is
in the read iterators and the parameters. The requiredrbuff@t overwritten before it is read.)
size is the maximum of this expression over all read iterstio  After the scheduling, we may consider all channels to be
Computing thisparametric maximum remains an obstacleself-loops of the common iteration space and we can apply
however. A possible approach is to use symbolic Bernstdime techniques from the previous sections with the follgwin
expansion [3], but to the best of our knowledge this techmiq@ualifications. We will not be able to compute the absolute
has not been implemented yet. minimum buffer sizes, but at best the minimum buffer sizes
For sufficiently regular problems, we can still compute thior the computed schedule. We cannot use the declared size
above maximum symbolically by performing some simplificaef an array as an estimate for the channel size, unless we have
tions and identifying some special cases. We will not discutaken into account anti-dependences. An estimate thatimsma
these issues any further here. Farn-parametricproblems, valid is the number of write iterations.
it is usually easier tosimulatethe communication channel. We have tacitly assumed above that all iteration domains
That is, we useCLo0G [1] to generate code that increment$iave the same dimension. If this is not the case, then we first
a counter for each iteration writing to the channel and decneeed to assign a dimension of the common (bigger) iteration
ments the counter for each read iteration. The maximum valsigace to each of the dimensions of the iteration domains of
attained by this counter is recorded and reflects the chanlwler dimension. For example, the single iterator of thet firs
size. loop of the program in Figure 1 would correspond to the outer
loop of the 2D common iteration space, whereas the single
D. Edge FIFOs iterator of the second loop would correspond to the innep,loo
Computing the sizes of self-loop channels is relativelyyeaas shown in Figure 2. We currently use a greedy heuristic to
because the order of execution within a node of the netwomkatch these dimensions, starting from domains with higher
is fixed. The relative order of iterations from different ®sd dimensions and matching dimensions that are related throug
is not known a priori, however, since this order is determiineone or more dependence relations. During this matching we
at run-time. Computing minimal deadlock-free buffer siies also, again greedily, take care of any scaling that may need
a non-trivial global optimizations problem. This problere-b to be performed to align the iteration domains. Although our
comes easier if we first compute a deadlock-free schedule dmliristics seem to perform relatively well on our examples,
then compute the buffer sizes for each channel individually is clear that we need a more general approach such as the
Note that this schedule is only computed for the purpose lifiear transformation algorithm of [28].
computing the buffer sizes and is discarded afterwards. The
schedule we compute may not be optimal and the resulting V. WORKED-OUT EXAMPLES
buffer sizes may not be valid for the optimal schedule. Our In this section, we show the results of applying our op-
computations do ensure, however, that a valid schedulésexigmization techniques to two image processing algorithms.
for the computed buffer sizes. The generated Process Networks (PN) enjoy a reduction in
The schedule is computed using a greedy approach. Ttie amount of data transferred between nodes and reduced
approach may not work for process networks in general, huemory requirements, resulting in a better performanee, i.
is does work for any network derived from a SANLP. The reduced execution time. The first algorithm is the Sobel
basic idea is to place all iteration domains in a commasperator, which estimates the gradient of a 2D image. This
iteration space at an offset that is computed by the scheglulalgorithm is used for edge detection in the pre-processames
algorithm. As in the individual iteration spaces, the exaru of computer vision systems. The second algorithm is a fatwar
order in this common iteration space is the lexicographicBliscrete Wavelet Transform (DWT). The Wavelet transform
order. By fixing the offsets of the iteration domain in thés a function for multi-scale analysis and has been used
common space, we have therefore fixed the relative order compact signal and image representations in de-nqising
between any pair of iterations from any pair of iteratiomompression, and feature detection processing problems fo
domains. The algorithm starts by computing for any pair about twenty years.
connected nodes, the minimal dependence distance vector, a )
distance vector being the difference between a read oparatf: SoPbel Edge Detection
and the corresponding write operation. Then the nodes aréThe Sobel edge detection algorithm is described by the
greedily combined, ensuring that all minimal distance @ext source code in Figure 5. To estimate the gradient of an image
are (lexicographically) positive. The end result is a scihed the algorithm performs a convolution between the image and
that ensures that every data element is written before it&s3x3 convolution mask. The mask is slid over the image, ma-
read. For more information on this algorithm, we refer taipulating a square of 9 pixels at a time, i.e., each time Q&na
[27], where it is applied to perform loop fusion on SANLPspixels are read and 1 value is produced. The value represents



f =0; j < Nrw | m
oI N
a[j1[i] = Readlnage(;: )
for (j=1; j < Nrw1; j++)
for (|:1' i< Nel-1; i++)
Sbl[]][l]:SobeI(a 10 - 1 al j i-l a[j+1][i-1],
] 1 af|ll. 1 a[] +1 il,
al]-1 |+1 alj][i+1], a[j+1][i+1]);
) ) Fig. 7. The generated Process Network for the Sobel exampig tie self
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Fig. 8. Modified source code of the Sobel edge detection exampl

the approximated gradient in the center of the processegema
area. Applying the regular dataflow analysis on this examglean a FIFO channel. Another important issue (in both SW
using Compaan results in the Process Network (PN) depictaad HW systems) is the memory requirement. For the PN
in Figure 6. It contains 2 nodes (representing®ead| mage in Figure 6 the total amount of memory required is 2304
andSobel functions) and 9 channels (representing the parahecations, while the PN in Figure 7 requires only 1033 (for a
eters of theSobel function). Each channel is marked with256x256 image). This shows that the detection of self reuse
a number showing the buffer size it requires. These numbeesluces the memory requirements by a factor of more than 2.
were obtained by running a simulation processing an imageln principle, the three remaining channels between the two
of 256x256 pixels Kr w=Nc| =256). TheReadl nage node nodes could be combined into a single channel, but, due to
reads the input image from memory pixel by pixel and sendi®undary conditions, the order in which data would be read
it to the Sobel node through the 9 channels. Since the 9 pixélom this channel is different from the order in which it is
values are read in parallel, the executions of $obel node written and we would therefore have a reordering channel
can start after reading 2 lines and 3 pixels from memory. (see Section IlI-C). Since the implementation of a reortdgri
After detecting self reuse through read accesses from gfg@nnel is much more expensive than that of a FIFO channel,
same statement as described in Section IlI-D, we obtain tWe do not want to introduce such reordering. The reason we
PN in Figure 7. Again, the numbers next to each chanrglill have 9 channels (7 of which are combined into a single
specify the buffer sizes of the channels. We calculated therhannel) after reuse detection, is that each access rebdsat
at compile time using the techniques described in Section Isome data for the first time. We can change this behavior
The number of channels between the nodes is reduced frbphextending the loops with a few iterations, while still ynl
9 to 3 while several self-loops are introduced. Reducing ttieading the same data as in the original program. All dath wil
communication load between nodes is an important isstien be read for the first time by accedg +1] [i +1] only,
since it influences the overall performance of the final impléesulting in a single FIFO between the two nodes. To ensure
mentation. Each data element transferred between two notleat we only read the required data, some of the extra itersiti
introduces a communication overhead which depends on tfethe accesses do not read any data. We can effectuate this
architecture of the system executing the PN. For exampt#iange in C by using (implicit) temporary variables and,
if a PN is mapped onto a multiprocessor system with @depending on the index expressions, reading fromi‘se”,
shared bus architecture, then the 9 pixel values are traiedfe as shown in Figure 8. By using the simple copy propagation
sequentially through the shared bus, even though in the F@¢hnique of Section IlI-E, these modifications do not iases
model they are specified as 9 (parallel) channels (Figure 8)e number of nodes in the PN.
In this example it is clear that the PN in Figure 7 will The generated optimized PN shown in Figure 9 contains
only suffer a third of the communication overhead becauseohly one (FIFO) channel between thHeeadl mage and
contains 3 times fewer channels between the nodes. The s8fbel nodes. All other communications are through self-
loops are implemented using the local processor memory dondps. Thus, the communication between the nodes is reduced
they do not use the communication resources of the systédntimes compared to the initial PN (Figure 6). The total
Moreover, most of the self loops require only 1 register Wwhicmemory requirements for a 256x256 image have been reduced
makes their implementations simpler than the implemestiatiby a factor of almost 4.5 to 519 locations. Note that the
of a communication channel (FIFO). This also holds for PN®sults of the extra iterations of tl8mbel node, which partly
implemented as dedicated hardware. A single-register selperate on “noise”, are discarded and so the final behavior of
loop is much cheaper to implement in terms of HW resourcéise algorithm remains unaltered. However, with the reduced
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Fig. 10. Source code of a Discrete Wavelet Transform example.
Fig. 11. 2D-DWT Process Network with Copy nodes.

number of communication channels and overhead, the final
(real) implementation of the optimized PN will have a better First, a 1D DWT is applied in the vertical direction (lines

performance. 7 to 13). Two intermediate variables are produced (low- and
high-pass filtered images sub-sampled by 2—lines 9 and 12).
They are further processed by a 1D DWT applied in the

In the Discrete Wavelet Transform (DWT) the input imagéorizontal direction and thus producing (again sub-sathple
is decomposed into different decomposition levels. Theby 2) a four sub-bands decomposition: HL (line 18), LL (line
decomposition levels contain a number of sub-bands, whi2h), HH (line 27), and LH (line 30). The Process Network
consist of coefficients that describe the horizontal anticadr generated by using the regular dataflow analysis (and Campaa
spatial frequency characteristics of the original imagke T tool) is depicted in Figure 11. The PN contains 22 nodes, half
DWT requires the signal to be extended periodically. Thigf them just copying pixels at the boundaries of the image.
periodic symmetric extension is used to ensure that for tkdhannel sizes are estimated by running a simulation again
filtering operations that take place at both boundaries ef throcessing an image 256x256 pixels. Although most of the
signal, one signal sample exists and spatially corresptmdschannels have size 1, they cannot be implemented by a simple
each coefficient of the filter mask. The number of additionaggister since they connect nodes and additional logicQ@FIF
samples required at the boundaries of the signal is thereftike) is required for synchronization. Obviously, the gexted
filter-length dependent. PN has considerable initial overhead.

The C program realizing one level of a 2D forward DWT The optimization goals for this example are to remove the
is presented in Figure 10. In this example we use a liftindopy nodes and to reduce the communication between the
scheme of a reversible transformation with 5/3 filter [5]. Imodes as much as possible. We achieve these goals by applying
this case the image has to be extended with one pixel at th& techniques. The optimized Process Network is shown in
boundaries. All the boundary conditions are described by tRigure 12. The simple copy propagation technigue reduces th
conditions in code lines 8, 11, 17, 20, 26 and 29. number of the nodes from 22 to 11 and the detection of self

B. Discrete Wavelet Transform



Algorithm Compaan Networks Our Networks
name allf 10 JIOM] OO [OOM alf 10 Joo
LU-Factor 35| 4+17/1+5 [0+5 |0+1 27| 3+5+16/0+3
QR-Decomp| 12| 4+8 [0+0 [0+0 |0+0 12| 1+3+8 [0+0
SVD 118| 4+80[0+4 |0+30[0+0 60|10+ 0 +34/ 0+16
Faddeev 28| 3+21|0+3 [0+1 |0+0 26| 4+2+190+1
Gauss-Elim.| 11| 2+5 [0+0 [0+1 [1+2 13| 0+6+6 [0+1
Motion Est. | 98]|27+71|0+0 |[0+0 [0+0 120| 0+54+66 0+0
M-JPEG 50 9+24[0+17[/0+0 [0+0 56|18+ 0 +38 0+0

TABLE |
COMPARISON TO CHANNEL NUMBERS OFCOMPAAN NETWORKS

Readlmage

2*Ncl+1

reported in [23]. We can however conclude that our techrique
have split all OOM channels in these examples into pairs
of FIFOs, that in general we have fewer channels between
different nodes at the expense of more self-loops and that
many of these self-loops are “single-register” FIFOs, wher
“register” should be interpreted as “token”, which may be a
whole table in the case of M-JPEG.

Fig. 12. Optimized 2D-DWT Process Network.

VII. RELATED WORK
Process Networks are supported by the Ptolemy Il frame-

reuse technique reduces the communication between the notierk [15] and the YAPI environment [6] for concurrent
from 38 to 15 channels introducing 11 self-loop channelglodeling and design of applications and systems. The dessign
There is only one channel connecting two nodes of the PN s to manually specify the application as a Process Network
Figure 12, except for the channels betweenRead| nage and to give this network as an input to the Ptolemy Il or YAPI
and hi gh7f| |t vert nodes. In this case we detect that §imu|ati0n and verification engines. In many cases manua”y
combined channel would be reordering. As we mentioned $pecifying an application as a Process Network is a very time
the previous example we prefer not to introduce reorderig@nsuming and error prone process. Our work, presented in
and therefore generate more (FIFO) channels. As a restllis paper, can be used as a front-end tool by Ptolemy II
the number of channels emanating from tRead| nage or YAPI. This will significantly SPGEdUp the modeling effort
has been reduced by only one compared to the initial PMen Process Networks are used and avoid modeling errors
(Figure 11). The buffer sizes are calculated at compile tin@cause our techniques guarantee a correct-by-constructi
using our techniques described in Section IV. Note thatis trgeneration of Process Networks.

example applying the optimization techniques has littfeatf =~ Process Networks have been used to model applications
on the memory requirements: the number of memory locatiofg8d to explore the mapping of these applications onto multi-
required for an image of 256x256 pixels is 2586 compared Rsocessor architectures [7], [16], [19], [24]. The appiica
2594 for the initial DWT PN. However, the topology of themodeling is performed manually starting from sequential C

optimized PN has been simplified significantly allowing agode and a significant amount of time (a few weeks) is spent
efficient HW and/or SW implementation. by the designers on correctly transforming the sequential C

code into Process Networks. This activity slows down the

VI. COMPARISON TOCOMPAAN-GENERATEDNETWORKS  design space exploration process. The work presentedsn thi

Table | compares the number of channels in Compaapaper gives a solution for fast automatic derivation of Bssc
generated networks to the number of channels in our networkietworks from sequential C code that will contribute to éast
The total number of channels is shown for each example @ssign space exploration.
well as a decomposition into different types of channels. In The relation of our analysis to Compaan has already been
Order (I10) and Out-of-Order (OO) refer to FIFOs and rehighlighted throughout the text. As to memory size require-
ordering channels respectively and the M-suffix refers t&-muments, much research has been devoted to optimal reuse of
tiplicity, which does not occur in our networks. Each colummemory for arrays. For an overview and a general technique,
is further split into self-loops+edges, or single-regisgelf- we refer to [4]. These techniques are complementary to our
loops+edges for our FIFOs. research on FIFO sizes and can be used on the reordering

Note that a direct comparison of the numbers is unfair sinchannels and optionally on the data communication inside a
some of our channels are split into several Compaan-cheinnabde. Also related is the concept of reuse distances [2]. In
due to a difference in internal representation. In Compagarticular, our FIFO sizes are a special case of the “reuse
these channels are recombined, with possibly further combi distance per statement” of [26]. For more advanced forms of
tions, at a later stage. The numbers for combined channels eopy propagation, we refer to [25].



VIIl. CONCLUSIONS ANDDISCUSSION [14]

In this paper we have improved upon the state-of-the-art
conversion of sequential programs to Process Networks [id] E. Lee et al., “Ptolemyll: Heterogeneous Concurrent Klidy and
several ways. We have shown that we can reduce the number Design in Java,” University of California at Berkeley, Tedtep., 1999,
of reordering channels as well the total number of channglg,
between different nodes by extending the standard dataflow
analysis to detect reuse within a node. This effect is erdthnc

by first removing the (artificial) copy nodes introduced byn
Compaan through simple copy propagation. These techniques

lead to a removal of all reordering channels with multigjici

. ) i8]
that appear in our examples and a reduction of the commu-
nication volume by up to a factor 9 in the extreme case. We
have further shown how to compute the FIFO sizes exactly
for self-loops and approximately for other channels for son, g,
important special cases. Generalizing these results wkdlyl
require more advanced symbolic techniques such as Batnstei

expansion [3].
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