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Abstract— Current emerging embedded System-on-Chip plat-
forms are increasingly becoming multiprocessor architectures.
System designers experience significant difficulties in program-
ming these platforms. The applications are typically specified as
sequential programs that do not reveal the available parallelism
in an application, thereby hindering the efficient mapping of
an application onto a parallel multiprocessor platform. In this
paper we present our compiler techniques that facilitate the
migration from a sequential application specification to aparallel
application specification using the Process Network model of
computation. Our work is inspired by a previous research project
called Compaan. With our techniques we address optimization
issues such as the generation of Process Networks with simplified
topology and communication without sacrificing the Process
Networks performance. Moreover, we describe a technique for
compile-time memory requirement estimation which we consider
as an important contribution of this paper. We demonstrate the
usefulness of our techniques on several examples.

I. I NTRODUCTION AND MOTIVATION

The complexity of embedded multimedia and signal pro-
cessing applications has reached a point where the perfor-
mance requirements of these applications can no longer be
supported by embedded system platforms based on a sin-
gle processor. Therefore, modern embedded Systems-on-Chip
platforms have to be multiprocessor architectures. In the recent
years a lot of attention has been paid to building such multi-
processor platforms. Fortunately, advances in chip technology
facilitate this activity. However, less attention has beenpaid
to compiler techniques for efficient programming of multi-
processor platforms, i.e., the efficient mapping of applications
onto these platforms is becoming a key issue. Today, system
designers experience significant difficulties in programming
multiprocessor platforms because the way an application is
specified by an application developer does not match the
way multiprocessor platforms operate. The applications are
typically specified as sequential programs using imperative
programming languages such as C/C++ or Matlab. Specifying
an application as a sequential program is relatively easy and
convenient for application developers, but the sequentialnature
of such specification does not reveal the available parallelism
in an application. This fact makes the efficient mapping of
an application onto a parallel multiprocessor platform very
difficult. By contrast, if an application is specified using
a parallel model of computation (MoC) then the mapping
can be done in a systematic and transparent way using a
disciplined approach [17], but specifying an application using
a parallel MoC is difficult, not well understood by application
developers, and a time consuming and error prone process.
That is why application developers still prefer to specify an

application as a sequential program, which is well understood,
even though such a specification is not suitable for mapping
an application onto a parallel multiprocessor platform.

This gap between between a sequential program and a
parallel model of computation motivates us to research and
develop compiler techniques that facilitate the migrationfrom
a sequential application specification to a parallel applica-
tion specification. These compiler techniques depend on the
parallel model of computation used for parallel application
specification. Although many parallel models of computa-
tion exist [14], [15], in this paper we consider the Process
Network model of computation [12] because its operational
semantics are simple, yet general enough, to conveniently
specify stream-orienteddata processing that fits nicely with
the application domain we are interested in—multimedia and
signal processing applications. Moreover, for this application
domain, many researchers [6]–[8], [11], [16], [18], [19], [21],
[24] have already indicated that Process Networks are very
suitable for systematic and efficient mapping onto multipro-
cessor platforms.

In this paper we present our compiler techniques for deriv-
ing Process Network specifications for applications specified
as static affine nested loop programs (SANLPs), thereby bridg-
ing the gap mentioned above in a particular way. SANLPs are
important in Scientific, Matrix Computation and Multimedia
and Adaptive Signal Processing applications. Our work is
inspired by previous research on Compaan [13], [20], [23]. The
techniques presented in this paper can be seen as a significant
improvement of the techniques developed in the Compaan
project in the following sense. The Compaan project has iden-
tified the fundamental problems that have to be solved in order
to derive Process Networks systematically and automatically
and has proposed and implemented basic solutions to these
problems. However, many optimization issues that improve
the quality of the derived Process Networks have not been
fully addressed in Compaan. The techniques presented in this
paper try to address optimization issues in four main aspects:

Given an application specified as a SANLP,
1) Derive (if possible) Process Networks (PN) with fewer

communication channels between different processes
compared to Compaan derived PNs without sacrificing
the PN performance.

2) Derive (if possible) Process Networks (PN) with fewer
processes compared to Compaan derived PNs without
sacrificing the PN performance.

3) Replace (if possible) reordering communication chan-
nels with simple FIFO channels without sacrificing the



PN performance.
4) Determine the size of the communication FIFO channels

at compile time. The problem of deriving efficient FIFO
sizes has not been addressed by Compaan. Our tech-
niques for computing FIFO sizes constitute a starting
point to overcome this problem.

The rest of this paper is organized as follows. In Section II,
we first introduce some concepts that we will need throughout
this paper. We explain how to derive and optimize Process
Networks in Section III and how to compute FIFO sizes
in Section IV. Detailed examples are given in Section V,
with a further comparison to Compaan-generated networks
in Section VI. After a comparison to other related work in
Section VII, we conclude in Section VIII.

II. PRELIMINARIES

In this section, we introduce the process network model and
parametric integer programming, our main analysis tool.

A. The Process Network Model

As the names suggests, a process network consists of a
set of processes, also callednodes, that communicate with
each other throughchannels. Each process has a fixed internal
schedule, but there is no (a priori) global schedule that dictates
the relative order of execution of the different processes.
Rather, the relative execution order is solely determined by
the channels through which the processes communicate. In
the special case of a Kahn Process Network (KPN), the
communication channels are unbounded FIFOs that support
a blocking read. That is, a process that reads data from a
channel will block until data is available and this is the only
way in which a process influences the execution of another
process.

In practice, FIFOs are not unbounded and so our process
network model also supports blocking writes. It is important
then to ensure the FIFOs are large enough to avoid deadlocks.
Note that determining suitable channel sizes may not be
possible in general, but it is possible for process networks
derived from SANLPs as defined in Section III-A. We also
allow data to be written to a channel in an order that is different
from the order in which the data is read. Such channels are
calledreordering channelsand could be implemented using a
piece of addressable memory. Note that allowing reordering
channels does not extend the expressive power of the model,
since the process reading data from the channel could equally
well be changed to read the data in the order in which it is
sent and to store it in an internal memory block.

B. Parametric Integer Programming

We will be dealing in this paper with sets of vectors of
integers defined by linear inequalities,S = { i ∈ Z

n | Ai+c ≥
0 }, with A ∈ Z

m×n and c ∈ Z
m. We will call such sets

simply integer sets. The elements of the vectors in these sets
could, for instance, refer to the iterators of a loop nest from a
sequential program, with the linear inequalities corresponding
to the lower and upper bounds of the loops. We will further

assign an ordering to these integer vectors that corresponds to
the order in which the iterations of the loop nest are executed.
This order is called thelexicographical orderand will be
denoted by≺. A vectora ∈ Z

n is said to be lexicographically
(strictly) smaller thanb ∈ Z

n if for the first positioni in which
a andb differ, we haveai < bi, or, equivalently,

a ≺ b ≡

n
∨

i=1



ai < bi ∧

i−1
∧

j=1

aj = bj



 . (1)

In some integer sets, the variables appear in two (or more)
groups, sayi ∈ Z

n1 and j ∈ Z
n2 . Such sets can be seen

as subsets of the Cartesian productZ
n1 × Z

n2 and will be
called integer relations. The constraints defining these sets or
relations may also involve additional,existentially quantified
variablesα ∈ Z

n′

as well as someparametersp ∈ Z
n′′

, i.e.,
S = { i ∈ Z

n | ∃α ∈ Z
n′

: Ai + Bα + Cp + c ≥ 0 }, with
A ∈ Z

m×n, B ∈ Z
m×n′

, C ∈ Z
m×n′′

andc ∈ Z
m.

Parametric integer programming [9] is a technique for com-
puting the lexicographically smallest element of a parametric
integer set. The result is a subdivision of the parameter
space with for each cell of this subdivision a description
of the corresponding unique minimal element as an affine
combination of the parameters. This result can be described
as a union of parametric integer sets, where each set in the
union contains a single point. Parametric integer programming
(PIP) can be used to project out some of the variables in a
set. We simply compute the lexicographical minimum of these
variables, treating all other variables as additional parameters,
and then discard the description of the minimal element.

III. D ERIVATION OF PROCESSNETWORKS

This section explains the conversion of static affine nested
loop programs (SANLPs) to Process Networks. We first dis-
cuss SANLPs and our internal representation in Section III-A.
Then we recall how to perform dataflow analysis in Section III-
B and how to determine channels types in Section III-C. In
Section III-D we show how to extend the dataflow analysis to
detect reuse, reducing the number of channels between nodes
and in Section III-E we show we can enhance this effect by
removing (artificial) copy nodes.

A. Limitations on the Input and Internal Representation

We impose the usual restrictions on the input programs we
process, i.e., the SANLPs. A SANLP consists of a set of
statements, each possibly enclosed in loops and/or guardedby
conditions. The loops need not be perfectly nested. All lower
and upper bounds of the loops as well as all expressions in
conditions and array accesses are (quasi-)affine combinations
of enclosing loop iterators and parameters. The values of
the parameters may not change during the execution of the
program, or at least the part we analyze. The reason for these
restrictions is that they allow us to represent all relevantdata
using integer sets and relations, as defined in Section II-B.

In particular, the set of iterator vectors for which a statement
is executed is an integer set called theiteration domain. These



iteration domains will form the basis of the description of the
nodes in our process network, as each node will correspond
to a particular statement. The channels are determined by the
array (or scalar) accesses in the corresponding statements. All
accesses that appear on the left hand side of an assignment or
in an address-of (&) expression are considered to bewrite ac-
cesses. All other accesses are considered to beread accesses.
Each of these accesses is represented by anaccess relation,
relating each iteration of the statement to the array element
accessed by the iteration, i.e.,{ (i,a) ∈ I×A | a = Li+m },
where I is the iteration domain,A is the array space and
Li+m is the affine access function. The next section describes
how the channels are derived from these access relations.

B. Dataflow Analysis

To compute the channels between the nodes, we basically
need to perform dataflow analysis [10]. That is, for each
execution of a read operation of a given data element in the
sequential program, we need to find the corresponding write
operation that wrote the data element. In the simplest case,
where a given array is written by a single statement in a loop
nest that furthermore precedes the loop nest reading from the
array, we need to find the last iteration of the write statement
that writes to the array element read by a given iteration of
the read statement. This can be formulated as a single PIP
problem. In particular, we need to solve

lexmax { iw ∈ Iw | W (iw,a) ∧ R(ir,a) ∧ ir ∈ Ir },

whereW and R are the write and read access relations and
Iw ⊂ Z

n1 and Ir ⊂ Z
n2 are the iteration domains of the

write and read operation respectively. Note that the iterators
of the read operation are treated as parameters in this problem,
along with any possible structural parameters. The solution is
therefore a map from the read operation to the corresponding
write operation. The array indexa is also treated as a vector of
parameters in the above formulation, but it can be ignored in
the solution since it is uniquely identified by the read iteration
vector.

If the read and write operation share one or more enclosing
loops, then we need to ensure that we only consider write op-
erations that are executed before the read operation. However,
the lexicographical order that we need to impose is not a linear
constraint, but rather a disjunction ofn linear constraints (1),
where n is the shared nesting level. We therefore need to
solve n + 1 PIP problems (the write and read operation
may also occur in the same iteration of the loop nest). The
presence of multiple statements that write to the same array
complicates the analysis only slightly, since we now also
have to impose lexicographical orderings between the different
write operations to obtain the last of them. Our implementation
of this analysis is a variation of the algorithm outlined in [10].

In the end, we obtain pairs of write and read operations
such that some data flows from the write operation to the
read operation. These pairs correspond to the channels in our
process network. For each of these pairs, we further obtain a

union of integer relations
m
⋃

j=1

Dj(iw, ir) ⊂ Z
n1 × Z

n2 (2)

that connect the specific iterations of the write and read
operations such that each iteration of a given read operation
is uniquely paired off to some write operation iteration.

C. Determining Channel Types

In general, the channels we derived in the previous section
may not be FIFOs. That is, data may be written to the channel
in an order that is different from the order in which data
is read. We therefore need to check whether such reordering
occurs. This check can again be formulated as a (set of) PIP
problem(s). Reordering occurs iff there exist two pairs of write
and read iterations,(w1, r1) and(w2, r2), such that the order
of the write operations is different from the order of the read
operations, i.e.,w1 ≻ w2 andr1 ≺ r2, or equivalently

w1 − w2 ≻ 0 and r1 ≺ r2. (3)

Given a union of integer relations describing the channel (2),
then for any pair of relations in this union,(Dj1 ,Dj2), we
therefore need to solven2 PIP problems

lexmax { (w1 − w2, (w1, r1), (w2, r2),p) |

(w1, r1) ∈ Dj1 ∧ (w2, r2) ∈ Dj2 ∧ r1 ≺ r2 },
(4)

wherer1 ≺ r2 should be expanded according to Equation (1)
to obtain then2 problems. If any of these problems has a
solution and if it is lexicographically positive or unbounded
(in the first n1 positions), then reordering occurs. Note that
we do not compute the maximum ofw1 − w2 in terms of
the parametersp, but rather the maximum over all values
of the parameters. If reordering occurs for any value of
the parameters then we simply consider the channel to be
reordering. Equation (4) therefore actually represents a non-
parametric integer programming problem. The large majority
of these problems will be trivially unsatisfiable.

The reordering test of this section is a variation of the
reordering test of [23], where it is formulated asn1 × n2 PIP
problems for a channel described by a single integer relation.
The simplified computation for specific types of relations
of [22] apply to pairs of the same relation and, with some
modifications, also to pairs of different relations.

D. Detecting Self Reuse

The reordering check from the previous section is not
sufficient to determine whether a channel is a FIFO or not.
Even if the data elements are read in the same order as they
are written, they may be read multiple times. Rather than
detecting and handling this multiplicity, we opt to remove the
multiplicity entirely by replacing the channel by two FIFOs,
without any special cases. The added benefit of removing
multiplicity is that some channels which would be classified
as reordering, can also be decomposed into two FIFOs.

A typical example of a situation where the removal of
multiplicity is very beneficial is the outer product of two



for (i = 0; i < N; ++i)
a[i] = A(i);

for (j = 0; j < N; ++j)
b[j] = B(j);

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

c[i][j] = a[i] * b[j];

Fig. 1. Outer product source code.
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Fig. 2. Outer product dependence graph with multiplicity.

vectors, shown in Figure 1. Figure 2 shows the result of
a straightforward application of the dataflow analysis from
Section III-B. The left part of the figure shows the three
nodes and two channels; the right part shows the data flow
between the individual iterations of the nodes. The iterations
are executed top-down, left-to-right. The channel betweena
andc is described by the relation

Da→c = { (ia, ic, jc) | 0 ≤ ic ≤ N − 1 ∧

0 ≤ jc ≤ N − 1 ∧ ia = ic }
(5)

and would be classified as non-reordering, since the data
elements are read (albeit multiple times) in the order in which
they are produced. The channel betweenb andc, on the other
hand, is described by the relation

Db→c = { (jb, ic, jc) | 0 ≤ ic ≤ N − 1 ∧

0 ≤ jc ≤ N − 1 ∧ jb = jc }
(6)

and would be classified as reordering, with the further com-
plication that the same data element needs to be sent over the
channel multiple times. By simply letting nodec only read a
data element from these channels the first time it needs the data
and from a newly introduced self-loop channel all other times,
we obtain the network shown in Figure 3. In this network, all
channels, including the new self-loop channels, are FIFOs.

To obtain this decomposition, we simply perform a dataflow
analysis on each read access. That is, for each iteration of a
read access, we determine the previous iteration of the same
read access reading the same data element. This relation will
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Fig. 3. Outer product dependence graph without multiplicity.

for (i = 0; i < N; ++i)
b[i] = f(i > 0 ? a[i-1] : a[i], a[i],

3 i < N-1 ? a[i+1] : a[i]);
for (i = 0; i < N; ++i) {

if (i > 0)
tmp = b[i-1];

else
8 tmp = b[i];

c[i] = g(tmp, b[i]);
}

Fig. 4. Use of temporary variables to express border behavior.

determine the new channel. Iterations for which there is no
corresponding previous iteration continue to read from the
original source. For example, the channel with dependence
relationDb→c (6) is split into a channel with relation

D′

b→c
= { (jb, ic, jc) | ic = 0 ∧ 0 ≤ jc ≤ N − 1 ∧ jb = jc }

and a self-loop channel with relation

D2
c→c

= { (i′
c
, j′

c
, ic, jc) | 1 ≤ ic ≤ N − 1 ∧

0 ≤ jc ≤ N − 1 ∧

j′
c

= jc ∧ i′
c

= ic − 1 }.

(7)

Rather than performing this analysis as a separate step, we
can also combine it with the regular dataflow analysis. That is,
for each iteration of a read access, we determine the previous
access to the same data element that is either a writeor a read
through the same read access. We can then apply the analysis
from Section III-C and since there is no more multiplicity
in any of the channels, any non-reordering channel will be a
FIFO.

We can go one step further and not only consider reuse
through the same read access, but also through other read
accesses from the same statement. This analysis will not
affect the types of any of the channels, but it may reduce the
communication volume between different nodes. An example
of such a case will be explained in detail in Section V-A.
This further analysis can again be integrated in the regular
dataflow analysis. Finally, channels that result from different
read accesses from the same statement to data written by the
same write access are combined into a single channel if this
combination does not introduce reordering.

E. Simple Copy Propagation

A typical multimedia application has one or more kernels
that uniformly manipulate a stream of data such as an image.
At the borders of such data, however, the kernel will usually
behave slightly differently. A common way to express such
border behavior is to use temporary variables, possibly implic-
itly through the use of the ternary operator (?:) in C. Both
an implicit and an explicit example are shown in Figure 4 on
a 1D data stream.

A straightforward transformation of code such as that of
Figure 4 would introduce extra nodes that simply copy the
data from the appropriate channel to the input channel of the
core node. Not only does this result in a network with more
nodes than needed, it also reduces the opportunity for applying
the self reuse detection described in Section III-D.



Our solution is to first identify the statements that simply
copy data to a temporary variable and to perform a dataflow
analysis on those temporary variables in a first pass. We then
combine the (union of) dependence relation(s) between the
copy node and the core nodeD(icopy, icore) with the corre-
sponding read access relationRcopy(icopy,a) of the copy node
to obtain a new (union of) access relation(s)Rcore(icore,a)
for the core node that bypasses the copy node. That is, we
compute

Rcore = { (icore,a) | ∃icopy : D(icopy, icore) ∧

Rcopy(icopy,a) }
(8)

by combining the constraints ofD andRcopy and projecting
out the iteration vector of the copy nodeicopy. The regular
dataflow analysis is then performed using these adapted access
functions.

As an example, consider the copy statement in line 6
of Figure 4. Dataflow analysis yields the following relation
between this statement and the statement in line 9:

D = { (icopy, icore) | icopy = icore ∧ 1 ≤ icopy ≤ N − 1 }.

The read access in the copy statement from theb array is
given by the relation

Rcopy = { (icopy, a) | a = icopy − 1 }

and so the propagated access function is given by the relation

Rcore = { (icore, a) | a = icore − 1 ∧ 1 ≤ icore ≤ N − 1 }.

IV. COMPUTING CHANNEL SIZES

In this section, we explain how we compute the buffer sizes
for the FIFOs in our networks at compile-time. This computa-
tion may not be feasible for Process Networks in general, be
we are dealing here with the easier case of networks generated
from static affine nested loop programs. We first consider self-
loops, with two special cases in Section IV-A and Section IV-
B, and the general case in Section IV-C. In Section IV-D,
we then explain how to reduce the general case of FIFOs to
self-loops by scheduling the network.

A. Single-Register Self-loops

We first consider a simple, but important special case of
self-loop channels, namely the case where the channels holds
at most one data element throughout the execution of the
program. Such channels can be replaced by a single register.
This situation occurs when for every pair of write and read
iterations(w2, r2), there is no other read iterationsr1 reading
from the same channel in between. In other words, the situa-
tion doesnot occur iff there exist two pairs of write and read
iterations,(w1, r1) and (w2, r2), such thatw2 ≺ r1 ≺ r2, or
equivalentlyr1 − w2 ≻ 0 and r1 ≺ r2. Notice the similarity
between this condition and the reordering condition (3). The
PIP problems that need to be solved to determine this condition
are therefore nearly identical to the problems (4), viz.,

lexmax { (r1 − w2, (w1, r1), (w2, r2),p) |

(w1, r1) ∈ Dj1 ∧ (w2, r2) ∈ Dj2 ∧ r1 ≺ r2 },
(9)

where again(Dj1 ,Dj2) is a pair of relations in the union
describing the channel and wherer1 ≺ r2 should be expanded
according to Equation (1).

B. Uniform Self-Dependences on Rectangular Domains

Another important special case occurs when the channel is
represented by a single integer relation that in turn represents a
uniform dependence over a rectangular domain. A dependence
is called uniform if the difference between the read and write
iteration vector is a (possibly parametric) constant over the
whole relation. We call such a dependence a uniform depen-
dence over a rectangular domain if the set of iterations reading
from the channel form a rectangular domain. (Note that due
to the dependence being uniform, also the write iterations will
form a rectangular domain in this case.) For example, the
relationD2

c→c
(7) from Section III-D is a uniform dependence

over a rectangular domain since the difference between the
read and write iteration vector is(ic, jc) − (i′

c
, j′

c
) = (1, 0)

and since the projection onto the read iterations is the rectangle
1 ≤ ic ≤ N − 1 ∧ 0 ≤ jc ≤ N − 1.

The required buffer size is easily calculated in these cases
since in each (overlapping) iteration of any of the loops in the
loop nest, the number of data elements produced is exactly
the same as the number of elements consumed. The channel
will therefore never contain more data elements than right
before the first data element is read, or equivalently, rightafter
the last data element is written. To compute the buffer size,
we therefore simply need to take the first read iteration and
count the number of write iterations that are lexicographically
smaller than this read iteration. Although counting the number
of elements in the resulting sets is very easy, we use the
barvinok library [30] to perform this counting. This library
is designed for more complicated cases but also detects and
appropriately handles these easy cases. In the example, the
first read operation occurs at iteration(1, 0) and so we need
to compute

#(S ∩ { (i′
c
, j′

c
) | i′

c
< 1 }) +

# (S ∩ { (i′
c
, j′

c
) | i′

c
= 1 ∧ j′

c
< 0 }) ,

(10)

with S the set of write iterations

S = { (i′
c
, j′

c
) | 0 ≤ i′

c
≤ N − 2 ∧ 0 ≤ j′

c
≤ N − 1 }.

The result of this computation isN + 0 = N .

C. General Self-loop FIFOs

We currently do not have a completely satisfactory method
of computing the buffer sizes for the general case. One option
is to compute the number of array elements in the original
program that are written to the channel. That is, we can
intersect the domain of write iterations with the access relation
and project onto the array space. The resulting (union of)
sets can be enumerated symbolically using a library such as
barvinok. The result may however be a large overestimate
of the actual buffer size requirements.

The actual amount of data in a channel at any given iteration
can be computed fairly easily. We simply compute the number



or read iterations that are executed before a given read opera-
tion and subtract the resulting expression from the number
of write iterations that are executed before the given read
operation. This computation can again be performed entirely
symbolically and the result is a piecewise (quasi-)polynomial
in the read iterators and the parameters. The required buffer
size is the maximum of this expression over all read iterations.
Computing thisparametric maximum remains an obstacle,
however. A possible approach is to use symbolic Bernstein
expansion [3], but to the best of our knowledge this technique
has not been implemented yet.

For sufficiently regular problems, we can still compute the
above maximum symbolically by performing some simplifica-
tions and identifying some special cases. We will not discuss
these issues any further here. Fornon-parametricproblems,
it is usually easier tosimulate the communication channel.
That is, we useCLooG [1] to generate code that increments
a counter for each iteration writing to the channel and decre-
ments the counter for each read iteration. The maximum value
attained by this counter is recorded and reflects the channel
size.

D. Edge FIFOs

Computing the sizes of self-loop channels is relatively easy
because the order of execution within a node of the network
is fixed. The relative order of iterations from different nodes
is not known a priori, however, since this order is determined
at run-time. Computing minimal deadlock-free buffer sizesis
a non-trivial global optimizations problem. This problem be-
comes easier if we first compute a deadlock-free schedule and
then compute the buffer sizes for each channel individually.
Note that this schedule is only computed for the purpose of
computing the buffer sizes and is discarded afterwards. The
schedule we compute may not be optimal and the resulting
buffer sizes may not be valid for the optimal schedule. Our
computations do ensure, however, that a valid schedule exists
for the computed buffer sizes.

The schedule is computed using a greedy approach. This
approach may not work for process networks in general, but
is does work for any network derived from a SANLP. The
basic idea is to place all iteration domains in a common
iteration space at an offset that is computed by the scheduling
algorithm. As in the individual iteration spaces, the execution
order in this common iteration space is the lexicographical
order. By fixing the offsets of the iteration domain in the
common space, we have therefore fixed the relative order
between any pair of iterations from any pair of iteration
domains. The algorithm starts by computing for any pair of
connected nodes, the minimal dependence distance vector, a
distance vector being the difference between a read operation
and the corresponding write operation. Then the nodes are
greedily combined, ensuring that all minimal distance vectors
are (lexicographically) positive. The end result is a schedule
that ensures that every data element is written before it is
read. For more information on this algorithm, we refer to
[27], where it is applied to perform loop fusion on SANLPs.

Note that unlike the case of loop fusion, we can ignore anti-
dependences here, unless we want to use the declared size of
an array as an estimate for the buffer size of the corresponding
channels. (Anti-dependences are ordering constraints between
reads and subsequent writes that ensure an array element is
not overwritten before it is read.)

After the scheduling, we may consider all channels to be
self-loops of the common iteration space and we can apply
the techniques from the previous sections with the following
qualifications. We will not be able to compute the absolute
minimum buffer sizes, but at best the minimum buffer sizes
for the computed schedule. We cannot use the declared size
of an array as an estimate for the channel size, unless we have
taken into account anti-dependences. An estimate that remains
valid is the number of write iterations.

We have tacitly assumed above that all iteration domains
have the same dimension. If this is not the case, then we first
need to assign a dimension of the common (bigger) iteration
space to each of the dimensions of the iteration domains of
lower dimension. For example, the single iterator of the first
loop of the program in Figure 1 would correspond to the outer
loop of the 2D common iteration space, whereas the single
iterator of the second loop would correspond to the inner loop,
as shown in Figure 2. We currently use a greedy heuristic to
match these dimensions, starting from domains with higher
dimensions and matching dimensions that are related through
one or more dependence relations. During this matching we
also, again greedily, take care of any scaling that may need
to be performed to align the iteration domains. Although our
heuristics seem to perform relatively well on our examples,
it is clear that we need a more general approach such as the
linear transformation algorithm of [28].

V. WORKED-OUT EXAMPLES

In this section, we show the results of applying our op-
timization techniques to two image processing algorithms.
The generated Process Networks (PN) enjoy a reduction in
the amount of data transferred between nodes and reduced
memory requirements, resulting in a better performance, i.e.,
a reduced execution time. The first algorithm is the Sobel
operator, which estimates the gradient of a 2D image. This
algorithm is used for edge detection in the pre-processing stage
of computer vision systems. The second algorithm is a forward
Discrete Wavelet Transform (DWT). The Wavelet transform
is a function for multi-scale analysis and has been used
for compact signal and image representations in de-noising,
compression, and feature detection processing problems for
about twenty years.

A. Sobel Edge Detection

The Sobel edge detection algorithm is described by the
source code in Figure 5. To estimate the gradient of an image
the algorithm performs a convolution between the image and
a 3x3 convolution mask. The mask is slid over the image, ma-
nipulating a square of 9 pixels at a time, i.e., each time 9 image
pixels are read and 1 value is produced. The value represents



for (j=0; j < Nrw; j++)
for (i=0; i < Ncl; i++)

a[j][i] = ReadImage();

for (j=1; j < Nrw-1; j++)
for (i=1; i < Ncl-1; i++)

Sbl[j][i] = Sobel(a[j-1][i-1], a[j][i-1], a[j+1][i-1],
a[j-1][ i], a[j][ i], a[j+1][ i],
a[j-1][i+1], a[j][i+1], a[j+1][i+1]);

Fig. 5. Source code of a Sobel edge detection example.

ReadImage

Sobel

1 2 3 255 256 257 509 510 511

Fig. 6. Compaan generated Process Network for the Sobel example.

the approximated gradient in the center of the processed image
area. Applying the regular dataflow analysis on this example
using Compaan results in the Process Network (PN) depicted
in Figure 6. It contains 2 nodes (representing theReadImage
andSobel functions) and 9 channels (representing the param-
eters of theSobel function). Each channel is marked with
a number showing the buffer size it requires. These numbers
were obtained by running a simulation processing an image
of 256x256 pixels (Nrw=Ncl=256). TheReadImage node
reads the input image from memory pixel by pixel and sends
it to theSobel node through the 9 channels. Since the 9 pixel
values are read in parallel, the executions of theSobel node
can start after reading 2 lines and 3 pixels from memory.

After detecting self reuse through read accesses from the
same statement as described in Section III-D, we obtain the
PN in Figure 7. Again, the numbers next to each channel
specify the buffer sizes of the channels. We calculated them
at compile time using the techniques described in Section IV.
The number of channels between the nodes is reduced from
9 to 3 while several self-loops are introduced. Reducing the
communication load between nodes is an important issue
since it influences the overall performance of the final imple-
mentation. Each data element transferred between two nodes
introduces a communication overhead which depends on the
architecture of the system executing the PN. For example,
if a PN is mapped onto a multiprocessor system with a
shared bus architecture, then the 9 pixel values are transferred
sequentially through the shared bus, even though in the PN
model they are specified as 9 (parallel) channels (Figure 6).
In this example it is clear that the PN in Figure 7 will
only suffer a third of the communication overhead because it
contains 3 times fewer channels between the nodes. The self-
loops are implemented using the local processor memory and
they do not use the communication resources of the system.
Moreover, most of the self loops require only 1 register which
makes their implementations simpler than the implementation
of a communication channel (FIFO). This also holds for PNs
implemented as dedicated hardware. A single-register self-
loop is much cheaper to implement in terms of HW resources

ReadImage

Sobel

7 Ncl-2 Ncl-2

1 1 Ncl-4 1 1 Ncl-4 1 11 1 1 1 1 1 1 1

Fig. 7. The generated Process Network for the Sobel example using the self
reuse technique.

#define A(j,i) (j>=0 && i>=0 && i<Ncl ? a[j][i] : noise)
#define S(j,i) (j>=1 && i>=1 && i<Ncl-1 ? Sbl[j][i] : noise)

for (j=0; j < Nrw; j++)
for (i=0; i < Ncl; i++)

a[j][i] = ReadImage();

for (j=-1; j < Nrw-1; j++)
for (i=-1; i < Ncl+1; i++)

S(j,i) = Sobel(A(j-1, i-1), A(j, i-1), A(j+1, i-1),
A(j-1, i), A(j, i), A(j+1, i),
A(j-1, i+1), A(j, i+1), A(j+1, i+1));

Fig. 8. Modified source code of the Sobel edge detection example.

than a FIFO channel. Another important issue (in both SW
and HW systems) is the memory requirement. For the PN
in Figure 6 the total amount of memory required is 2304
locations, while the PN in Figure 7 requires only 1033 (for a
256x256 image). This shows that the detection of self reuse
reduces the memory requirements by a factor of more than 2.

In principle, the three remaining channels between the two
nodes could be combined into a single channel, but, due to
boundary conditions, the order in which data would be read
from this channel is different from the order in which it is
written and we would therefore have a reordering channel
(see Section III-C). Since the implementation of a reordering
channel is much more expensive than that of a FIFO channel,
we do not want to introduce such reordering. The reason we
still have 9 channels (7 of which are combined into a single
channel) after reuse detection, is that each access reads atleast
some data for the first time. We can change this behavior
by extending the loops with a few iterations, while still only
reading the same data as in the original program. All data will
then be read for the first time by accessa[j+1][i+1] only,
resulting in a single FIFO between the two nodes. To ensure
that we only read the required data, some of the extra iterations
of the accesses do not read any data. We can effectuate this
change in C by using (implicit) temporary variables and,
depending on the index expressions, reading from “noise”,
as shown in Figure 8. By using the simple copy propagation
technique of Section III-E, these modifications do not increase
the number of nodes in the PN.

The generated optimized PN shown in Figure 9 contains
only one (FIFO) channel between theReadImage and
Sobel nodes. All other communications are through self-
loops. Thus, the communication between the nodes is reduced
9 times compared to the initial PN (Figure 6). The total
memory requirements for a 256x256 image have been reduced
by a factor of almost 4.5 to 519 locations. Note that the
results of the extra iterations of theSobel node, which partly
operate on “noise”, are discarded and so the final behavior of
the algorithm remains unaltered. However, with the reduced
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Fig. 9. The generated PN for the modified Sobel edge detection example.

for( i=0; i<2*Nrw; i++ )
for( j=0; j<2*Ncl; j++ )

3 a[i][j] = ReadImage();

for( i=0; i<Nrw; i++ ) {
// 1D DWT in vertical direction with subsampling
for( j=0; j<2*Ncl; j++ ) {

8 tmpLine = (i==Nrw-1) ? a[2*i][j] : a[2*i+2][j];
Hf[j] = high_flt_vert( a[2*i][j], a[2*i+1][j], tmpLine );

tmp = (i==0) ? Hf[j] : oldHf[j];
low_flt_vert( tmp,a[2*i][j],Hf[j],&oldHf[j],&Lf[j] );

13 }

// 1D DWT in horizontal direction with subsampling ---------
for( j=0; j<Ncl; j++ ) {

tmp = (j==Ncl-1) ? Lf[2*j] : Lf[2*j+2];
18 HL[i][j] = high_flt_hor( Lf[2*j], Lf[2*j+1], tmp );

tmp = (j==0) ? HL[i][j] : HL[i][j-1];
LL[i][j] = low_flt_hor( tmp, Lf[2*j], HL[i][j] );

}
23

// 1D DWT in horizontal direction with subsampling ---------
for( j=0; j<Ncl; j++ ) {

tmp = (j==Ncl-1) ? Hf[2*j] : Hf[2*j+2];
HH[i][j] = high_flt_hor( Hf[2*j], Hf[2*j+1], tmp );

28
tmp = (j == 0) ? HH[i][j] : HH[i][j-1];
LH[i][j] = low_flt_hor( tmp, Hf[2*j], HH[i][j] );

}
}

33 // The Outputs ------------------------------------------------
for( i=0; i<Nrw; i++)

for( j=0; j<Ncl; j++) {
Sink( LL[i][j] );
Sink( HL[i][j] );

38 Sink( LH[i][j] );
Sink( HH[i][j] );

}

Fig. 10. Source code of a Discrete Wavelet Transform example.

number of communication channels and overhead, the final
(real) implementation of the optimized PN will have a better
performance.

B. Discrete Wavelet Transform

In the Discrete Wavelet Transform (DWT) the input image
is decomposed into different decomposition levels. These
decomposition levels contain a number of sub-bands, which
consist of coefficients that describe the horizontal and vertical
spatial frequency characteristics of the original image. The
DWT requires the signal to be extended periodically. This
periodic symmetric extension is used to ensure that for the
filtering operations that take place at both boundaries of the
signal, one signal sample exists and spatially correspondsto
each coefficient of the filter mask. The number of additional
samples required at the boundaries of the signal is therefore
filter-length dependent.

The C program realizing one level of a 2D forward DWT
is presented in Figure 10. In this example we use a lifting
scheme of a reversible transformation with 5/3 filter [5]. In
this case the image has to be extended with one pixel at the
boundaries. All the boundary conditions are described by the
conditions in code lines 8, 11, 17, 20, 26 and 29.
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Fig. 11. 2D-DWT Process Network with Copy nodes.

First, a 1D DWT is applied in the vertical direction (lines
7 to 13). Two intermediate variables are produced (low- and
high-pass filtered images sub-sampled by 2—lines 9 and 12).
They are further processed by a 1D DWT applied in the
horizontal direction and thus producing (again sub-sampled
by 2) a four sub-bands decomposition: HL (line 18), LL (line
21), HH (line 27), and LH (line 30). The Process Network
generated by using the regular dataflow analysis (and Compaan
tool) is depicted in Figure 11. The PN contains 22 nodes, half
of them just copying pixels at the boundaries of the image.
Channel sizes are estimated by running a simulation again
processing an image 256x256 pixels. Although most of the
channels have size 1, they cannot be implemented by a simple
register since they connect nodes and additional logic (FIFO
like) is required for synchronization. Obviously, the generated
PN has considerable initial overhead.

The optimization goals for this example are to remove the
Copy nodes and to reduce the communication between the
nodes as much as possible. We achieve these goals by applying
our techniques. The optimized Process Network is shown in
Figure 12. The simple copy propagation technique reduces the
number of the nodes from 22 to 11 and the detection of self
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Fig. 12. Optimized 2D-DWT Process Network.

reuse technique reduces the communication between the nodes
from 38 to 15 channels introducing 11 self-loop channels.
There is only one channel connecting two nodes of the PN in
Figure 12, except for the channels between theReadImage
and high filt vert nodes. In this case we detect that a
combined channel would be reordering. As we mentioned in
the previous example we prefer not to introduce reordering
and therefore generate more (FIFO) channels. As a result,
the number of channels emanating from theReadImage
has been reduced by only one compared to the initial PN
(Figure 11). The buffer sizes are calculated at compile time
using our techniques described in Section IV. Note that in this
example applying the optimization techniques has little effect
on the memory requirements: the number of memory locations
required for an image of 256x256 pixels is 2586 compared to
2594 for the initial DWT PN. However, the topology of the
optimized PN has been simplified significantly allowing an
efficient HW and/or SW implementation.

VI. COMPARISON TOCOMPAAN-GENERATEDNETWORKS

Table I compares the number of channels in Compaan-
generated networks to the number of channels in our networks.
The total number of channels is shown for each example as
well as a decomposition into different types of channels. In-
Order (IO) and Out-of-Order (OO) refer to FIFOs and re-
ordering channels respectively and the M-suffix refers to mul-
tiplicity, which does not occur in our networks. Each column
is further split into self-loops+edges, or single-register+self-
loops+edges for our FIFOs.

Note that a direct comparison of the numbers is unfair since
some of our channels are split into several Compaan-channels
due to a difference in internal representation. In Compaan,
these channels are recombined, with possibly further combina-
tions, at a later stage. The numbers for combined channels are

Algorithm Compaan Networks Our Networks
name all IO IOM OO OOM all IO OO

LU-Factor 35 4+17 1+5 0+5 0+1 27 3+ 5 +16 0+3
QR-Decomp 12 4+8 0+0 0+0 0+0 12 1+ 3 +8 0+0

SVD 118 4+80 0+4 0+30 0+0 60 10+ 0 +34 0+16
Faddeev 28 3+21 0+3 0+1 0+0 26 4+ 2 +19 0+1

Gauss-Elim. 11 2+5 0+0 0+1 1+2 13 0+ 6 +6 0+1
Motion Est. 98 27+71 0+0 0+0 0+0 120 0+54+66 0+0

M-JPEG 50 9+24 0+17 0+0 0+0 56 18+ 0 +38 0+0

TABLE I

COMPARISON TO CHANNEL NUMBERS OFCOMPAAN NETWORKS

reported in [23]. We can however conclude that our techniques
have split all OOM channels in these examples into pairs
of FIFOs, that in general we have fewer channels between
different nodes at the expense of more self-loops and that
many of these self-loops are “single-register” FIFOs, where
“register” should be interpreted as “token”, which may be a
whole table in the case of M-JPEG.

VII. R ELATED WORK

Process Networks are supported by the Ptolemy II frame-
work [15] and the YAPI environment [6] for concurrent
modeling and design of applications and systems. The designer
has to manually specify the application as a Process Network
and to give this network as an input to the Ptolemy II or YAPI
simulation and verification engines. In many cases manually
specifying an application as a Process Network is a very time
consuming and error prone process. Our work, presented in
this paper, can be used as a front-end tool by Ptolemy II
or YAPI. This will significantly speedup the modeling effort
when Process Networks are used and avoid modeling errors
because our techniques guarantee a correct-by-construction
generation of Process Networks.

Process Networks have been used to model applications
and to explore the mapping of these applications onto multi-
processor architectures [7], [16], [19], [24]. The application
modeling is performed manually starting from sequential C
code and a significant amount of time (a few weeks) is spent
by the designers on correctly transforming the sequential C
code into Process Networks. This activity slows down the
design space exploration process. The work presented in this
paper gives a solution for fast automatic derivation of Process
Networks from sequential C code that will contribute to faster
design space exploration.

The relation of our analysis to Compaan has already been
highlighted throughout the text. As to memory size require-
ments, much research has been devoted to optimal reuse of
memory for arrays. For an overview and a general technique,
we refer to [4]. These techniques are complementary to our
research on FIFO sizes and can be used on the reordering
channels and optionally on the data communication inside a
node. Also related is the concept of reuse distances [2]. In
particular, our FIFO sizes are a special case of the “reuse
distance per statement” of [26]. For more advanced forms of
copy propagation, we refer to [25].



VIII. C ONCLUSIONS ANDDISCUSSION

In this paper we have improved upon the state-of-the-art
conversion of sequential programs to Process Networks in
several ways. We have shown that we can reduce the number
of reordering channels as well the total number of channels
between different nodes by extending the standard dataflow
analysis to detect reuse within a node. This effect is enhanced
by first removing the (artificial) copy nodes introduced by
Compaan through simple copy propagation. These techniques
lead to a removal of all reordering channels with multiplicity
that appear in our examples and a reduction of the commu-
nication volume by up to a factor 9 in the extreme case. We
have further shown how to compute the FIFO sizes exactly
for self-loops and approximately for other channels for some
important special cases. Generalizing these results will likely
require more advanced symbolic techniques such as Bernstein
expansion [3].
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