
More Definite Results From the
Pluto Scheduling Algorithm

By

Athanasios Konstantinidis

Supervisor

Paul H. J. Kelly

About Me

• PhD student at Imperial College London supervised by Paul H. J. Kelly.

• Compiler and Language support for Heterogeneous parallel architectures (e.g.

GPGPUs, Cell BE, Multicore etc.).

• Developing our own source-to-source polyhedral compiler (CUDA back-end).

• Sponsored by EPSRC and Codeplay Software Ltd.

Our Polyhedral Framework

Control
Graph

Extraction

ROSE AST Polyhedral
Model

extraction

Main graph Polyhedral
framework

poly graph

PLuTo
Scheduling

Dependence
Analysis

Constraints
Polyhedral
scanning
algorithm
(CLooG)

Affine
Transformations

CLooG
graph

extraction

CLooG IR CUDA
graph

extraction

Graph to
AST

CLooG
graph

CUDA
graph

ROSE
AST

Our Polyhedral Framework

Control
Graph

Extraction

ROSE AST Polyhedral
Model

extraction

Main graph Polyhedral
framework

poly graph

PLuTo
Scheduling

Dependence
Analysis

Constraints
Polyhedral
scanning
algorithm
(CLooG)

Affine
Transformations

CLooG
graph

extraction

CLooG IR CUDA
graph

extraction

Graph to
AST

CLooG
graph

CUDA
graph

ROSE
AST

Does not require file I/O for
syntactic post-processing

The layout of the
constraints can affect the
scheduling solutions

Our Polyhedral Framework

Control
Graph

Extraction

ROSE AST Polyhedral
Model

extraction

Main graph Polyhedral
framework

poly graph

PLuTo
Scheduling

Dependence
Analysis

Constraints
Polyhedral
scanning
algorithm
(CLooG)

Affine
Transformations

CLooG
graph

extraction

CLooG IR CUDA
graph

extraction

Graph to
AST

CLooG
graph

CUDA
graph

ROSE
AST

PLuTo Scheduling Algorithm 1
• Iteratively looks for a maximal set of linearly independent affine transforms of

the original iteration space.

• An affine transform is a hyperplane representing a loop in the transformed
iteration space.

• Each hyperplane needs to respect a set of constraints that guarantee legality
and minimum communication between hyperplane instances (i.e. between
different loop iterations).

space
time

space

time
time

space

PLuTo Scheduling Algorithm 2

MAX + scalar dimensions

• Solve(M) Uses a Parametric Integer Programming Library (PIP) to find the
lexicographic minimum solution.

Global Constraint Matrix M Empty
M Legality
M Communication Bounding
M Non-Trivial solution
While (Solve(M)) {
 M Linear Independence
}

PLuTo Scheduling Algorithm 3

• Iteratively find as many linearly independent solution as possible

Global Constraint Matrix M Empty
M Legality
M Communication Bounding
M Non-Trivial solution
While (Solve(M)) {
 M Linear Independence
}
Cut in SCC If NO solution is found
Remove Killed dependences

PLuTo Scheduling Algorithm 4

• If NO MORE solutions can be found remove any killed dependences
• If NO solution was found cut the dependence graph into Strongly Connected

Components (SCC) – loop distribution – and remove the killed dependences

do {
 Global Constraint Matrix M Empty
 M Legality
 M Communication Bounding
 M Non-Trivial solution
 While (Solve(M)) {
 M Linear Independence
 }
 Cut in SCC If NO solution is found
 Remove Killed dependences
} While ((total_sols < MAX) OR (deps ≠ 0))

PLuTo Scheduling Algorithm 5

• Iteratively find bands of fully permutable loop nests

Communication Bounding Constraints

Affine Form
on

Structure Parameters

• For every dependence edge e :

Farkas Lemma

Parameters Unknown schedule
coefficients

Constant

Identification

h-transformation

Ordering Sensitivity 1
Cost

• For the same Cost the solution we will get from the PIP solver will eventually
depend on the ordering of the transformation coefficients.

Ordering of Transformation
Coefficients

Ordering Sensitivity (example)

Cost = 1

• Minimum Cost is 1.
• No outer parallel loop.

i

j

for i = 0,N
 for j = 0, N
 A[i][j] = A[i-1][j]*A[i-1][j-1]

0 1

Ordering Sensitivity (example)
• By changing the order of the transformation coefficients we get two different

solutions both having Cost = 1.

i

j

Order 1 :

Cost = 1

0 1 0

Order 2 :

Cost = 1

0 1 0

i

j

Ordering Sensitivity (example)
• By adding the linear independence constraints we get a second solution.
• Order 2 yields an inner loop that is fully parallel.
• Which solution/order is better ?

i

j

Order 1 :

Cost = 1

1 0 0

Order 2 :

Cost = 1

1 0 0

i

j

Fully Parallel Inner Loop Pipeline/Wavefront

Pipeline Degrees of Parallelism

• N Non-parallel loops can be transformed into a wavefront/pipeline consisted of
one sequential and N-1 parallel loops i.e. degrees of parallelism.

Wavefront/pipeline Non-parallel loops

i

j

i

j

Pipeline Degrees of Parallelism

i

j

Start-up Cost Drain Cost

i

j

Better spatial/temporal Locality
along a wavefront

Pipeline Degrees of Parallelism

i

j

Start-up Cost Drain Cost

i

j

Better spatial/temporal Locality
along a wavefront

Depend on structure
parameters

Pipeline Degrees of Parallelism

i

j

Start-up Cost Drain Cost

i

j

Better spatial/temporal Locality
along a wavefront

Depend on structure
parameters

Number of Read-after-Read dependences
that lie within the wavefront

Fully Parallel vs Pipeline Degrees of Parallelism 1

• We propose a way of distinguishing between fully parallel and pipeline degrees
of parallelism.

• We use dependence direction vectors in order to expose inner fully parallel
degrees of parallelism.

Direction Information :

bit vector If e extends along i
If e does not extend along i

Boolean If e extends in only 1 dimension
If e extends in more than 1 dimensions

Fully Parallel vs Pipeline Degrees of Parallelism 2

i

j

1e

2e

Fully Parallel vs Pipeline Degrees of Parallelism 3

i

j

i j

Fully parallel dimension

• By placing the coefficients of fully parallel dimensions in leading minimization positions
we are effectively pushing them towards inner nest levels.

• As a result fully parallel degrees of parallelism can be recovered.

Conclusions

• The PLuTo scheduling algorithm iteratively finds affine transformations that
minimize communication.

• For the same minimum communication the solution might be sensitive to the
ordering of the affine transformation coefficients in the global constraint matrix.

• We might have to choose between fully parallel and pipeline degrees of
parallelism.

• We propose a method for distinguishing between fully parallel and pipeline
degrees of parallelism.

• We use dependence direction information in order to expose inner fully parallel
loops.

Thank You !

Any Questions ?

