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The layout of the 
constraints can affect the 
scheduling solutions 
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PLuTo Scheduling Algorithm 1 
• Iteratively looks for a maximal set of linearly independent affine transforms of 

the original iteration space. 
 

• An affine transform is a hyperplane representing a loop in the transformed 
iteration space. 
 

• Each hyperplane needs to respect a set of constraints that guarantee legality 
and minimum communication between hyperplane instances (i.e. between 
different loop iterations). 
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PLuTo Scheduling Algorithm 2 

MAX + scalar dimensions 

• Solve(M)  Uses a Parametric Integer Programming Library (PIP) to find the 
lexicographic minimum solution. 



Global Constraint Matrix M  Empty 
M  Legality 
M  Communication Bounding 
M  Non-Trivial solution  
While ( Solve(M) ) { 
 M  Linear Independence 
} 

PLuTo Scheduling Algorithm 3 

• Iteratively find as many linearly independent solution as possible 



Global Constraint Matrix M  Empty 
M  Legality 
M  Communication Bounding 
M  Non-Trivial solution  
While ( Solve(M) ) { 
 M  Linear Independence 
} 
Cut in SCC If NO solution is found 
Remove Killed dependences 

PLuTo Scheduling Algorithm 4 

• If NO MORE solutions can be found  remove any killed dependences 
• If NO solution was found  cut the dependence graph into Strongly Connected 

Components (SCC) – loop distribution – and remove the killed dependences 



do { 
 Global Constraint Matrix M  Empty 
 M  Legality 
 M  Communication Bounding 
 M  Non-Trivial solution  
 While ( Solve(M) ) { 
  M  Linear Independence 
 } 
 Cut in SCC If NO solution is found 
 Remove Killed dependences 
} While ( (total_sols < MAX) OR (deps ≠ 0) ) 

PLuTo Scheduling Algorithm 5 

• Iteratively find bands of fully permutable loop nests 



Communication Bounding Constraints 
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Ordering Sensitivity 1 
Cost 

• For the same Cost the solution we will get from the PIP solver will eventually 
depend on the ordering of the transformation coefficients. 

Ordering of Transformation 
Coefficients 



Ordering Sensitivity (example) 

Cost = 1 

• Minimum Cost is 1. 
• No outer parallel loop. 

i 

j 

for i = 0,N 
    for j = 0, N  
        A[i][j] = A[i-1][j]*A[i-1][j-1] 

0 1 



Ordering Sensitivity (example) 
• By changing the order of the transformation coefficients we get two different 

solutions both having Cost = 1. 

i 

j 

Order 1 : 

Cost = 1 

0 1 0 

Order 2 : 

Cost = 1 

0 1 0 

i 

j 



Ordering Sensitivity (example) 
• By adding the linear independence constraints we get a second solution. 
• Order 2 yields an inner loop that is fully parallel. 
• Which solution/order is better ? 
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Order 1 : 

Cost = 1 

1 0 0 

Order 2 : 

Cost = 1 

1 0 0 
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Fully Parallel Inner Loop  Pipeline/Wavefront  



Pipeline Degrees of Parallelism 

• N Non-parallel loops can be transformed into a wavefront/pipeline consisted of 
one sequential and N-1 parallel loops i.e. degrees of parallelism. 

Wavefront/pipeline Non-parallel loops 
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Pipeline Degrees of Parallelism 
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Pipeline Degrees of Parallelism 
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Better spatial/temporal Locality 
along a wavefront 

Depend on structure 
parameters 

Number of Read-after-Read dependences 
that lie within the wavefront 



Fully Parallel vs Pipeline Degrees of Parallelism 1 

• We propose a way of distinguishing between fully parallel and pipeline degrees 
of parallelism. 

• We use dependence direction vectors in order to expose inner fully parallel 
degrees of parallelism. 

Direction Information : 

bit vector If e extends along i 
If e does not extend along i 

Boolean If e extends in only 1 dimension 
If e extends in more than 1 dimensions 



Fully Parallel vs Pipeline Degrees of Parallelism 2 
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Fully Parallel vs Pipeline Degrees of Parallelism 3 

i 

j 

i       j 

Fully parallel dimension 

• By placing the coefficients of fully parallel dimensions in leading minimization positions 
we are effectively pushing them towards inner nest levels. 
 

• As a result fully parallel degrees of parallelism can be recovered. 



Conclusions 

• The PLuTo scheduling algorithm iteratively finds affine transformations that 
minimize communication. 
 

• For the same minimum communication the solution might be sensitive to the 
ordering of the affine transformation coefficients in the global constraint matrix. 
 

• We might have to choose between fully parallel and pipeline degrees of 
parallelism. 
 

• We propose a method for distinguishing between fully parallel and pipeline 
degrees of parallelism. 
 

• We use dependence direction information in order to expose inner fully parallel 
loops. 



Thank You ! 

Any Questions ? 


