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Abstract
We explore the potential of sub-polyhedra as a means to fight
some of the algorithmic complexity challenges in polyhedral com-
pilation. The static analysis community has produced a rich vari-
ety of sub-polyhedral abstractions, trading precision for scalability
for interprocedural analysis and symbolic model-checking. In this
work, we evaluate the potential of the Two-Variable-Per-Inequality
(TVPI) numerical abstract domain for polyhedral compilation. We
demonstrate that strongly polynomial-time algorithms can be de-
signed for the construction of complex affine transformations, with
applications to affine scheduling and partitioning, with various ob-
jectives (parallelization, tiling, latency minimization). We identify
some limitations, questions and research directions to be explored
in depth in what we think is a new approach for the construction of
scalable polyhedral compilation tools.

1. Introduction and Motivation
Static Control Parts (SCoPs) can be analyzed, modeled and trans-
formed in the so-called Polyhedral model of compilation. Analy-
ses and transformations of SCoPs involve a variety of geometrical
and operation research algorithms on polyhedra. These algorithms
are generally exponential in the loop nesting depth (dependence
analysis, array expansion and contraction), and some of them can
also be exponential in the number of statements in the SCoP (affine
scheduling, partitioning, placement, code generation, for the most
relevant optimization criteria) [DRV00].

Today and in the foreseeable future, the difficult problem re-
mains to construct a “good” multidimensional affine transforma-
tion. The seminal work of Feautrier [Fea92] opened the avenue
of constraint-based affine transformation methods, building on the
affine form of the Farkas lemma. This approach has been refined,
extended and applied in many directions. To cite only two recent
achievements at the two extremes of the complexity spectrum:
the tiling-centric Pluto algorithm of Bondhugula et al. [BHRS08]
extending the Forward Communication Only (FCO) principle of
Griebl [GFG02] for coarse-grain parallelization, and the com-
plete, convex characterization and decoupled exploration heuris-
tic of Pouchet et al. [PBB+11]. Much progress has been made in
the understanding of the theoretical and practical complexity of
polyhedral compilation problems. Nevertheless, when consider-
ing multidimensional affine transformations, none of these appear
to be strongly polynomial in the size of the program. The lowest
complexity heuristics such as Pluto appear to be reducible to lin-
ear programming, which is only weakly polynomial in theory, and
only at the cost of significant (yet practically effective) restrictions
of the optimization space.

Scalability to large SCoPs is the main motivation of this work.
This is best understood in light of the upcoming challenges of
modeling large polyhedral process networks [Fea06], and compil-

ing full functions as SCoPs, including irregular and data-dependent
control and data flow [BPCB10]. Broadly, in this work, we classify
algorithms that are linear or quasi linear in the number of depen-
dences asscalable algorithms. On the other hand, high-complexity
in the nesting depth of the program is typically not a source of scal-
ability problems. Further, we prefer algorithms having low con-
stant factors and being graph theory based, rather than being lin-
ear programming based. Such kinds are likely to be strongly poly-
nomial time algorithms whose complexity does not depend on
the encoding of the size of integers. The polyhedral community
regularly uses linear programming, integer linear programming,
Fourier-Motzkin elimination, vertex representation of polyhedra
and integer sets. All these, we classify as asymptotically unscalable
algorithms.

Some algorithms generate non-convex polyhedra as the result
of solving parametric problems. Their complexity is generally not
strongly polynomial, but the algorithms may still be considered
scalable when the number of parametric contexts can be bounded
w.r.t. the loop nesting depth.

Besides scalability, we are also interested in automatic paral-
lelization and loop nest optimization in Just-In-Time (JIT) com-
pilation scenarios. These scenarios are already considered for the
evolution of back-end compilers for modern GPUs, although the
existing tools are currently limited to local optimizations. In a JIT
compilation context, linear time and space complexity in the num-
ber of dependences is clearly an upper bound. Better bounds would
be widely appreciated.

2. Polyhedral Approximations in Static Analysis
The static analysis community has been considering the tradeoffs
between different sub-polyhedra as a means of trading expressive-
ness for computational complexity in solving abstract interpretation
problems. One main application of these approximate polyhedra, or
sub-polyhedra, are static analysis and other run-time program ver-
ification problems like, value range analysis, bounds checking of
indices of array variables, buffer overflows, validation of array ac-
cesses etc.

In formulating these applications, the static analysis community
uses descriptions of programs calledabstract domains. An abstract
domain is presented as a lattice〈D,⊑,⊔,⊓〉, with ⊑ being an
ordering predicate, and⊓ and⊔ being the associated meet and join
operators respectively.

Many of these problems can be formulated as general polyhe-
dral operations in the Poly abstract domain, in whichD are convex
sets that can be described by finite number of general linear in-
equalities. But the static analysis community has found Poly to be
too expensive for the applications of interest, for several reasons.

Firstly, the need for join operators on polyhedra. The most pre-
cise join operation calculates the closure of the convex hull of the



two input polyhedra, that is, a set of inequalities that represent the
smallest space that includes the two input polyhedra. One straight-
forward way to do the above is to use the generator representation
of the two polyhedra and compute the convex hull. This method
needs the generator representation of both of them, and a conver-
sion from constraint representation to generator representation and
back. Hence it can take exponential time as convex-hull of even two
d-dimensional hypercubes requires just2d inequalities for each hy-
percube, while needing2d vertices.

Secondly, it is the recursive nature of (flow) equations which
are solved in an iterative way until a fix-point is reached. In solving
these equations, the meet operator usually adds a few additional
inequalities to an existing system and then the system is used for
other operations like entailment checks (checking ifP1 ⊆ P2

holds), or subjected again to join or even the projection operations.
This leads to the need for a so calledclosed system, in which all
information between any pairs of variables can be inferred by using
the set of constraints that involve only those pairs of variables.
Closure can also be considered as the process of calculating all
possible projections. Needless to say, closure is very costly for
Poly.

Finally, another reason is the scale of problems that are being
dealt with. For the more demanding applications coming from run-
time verification problems, the more powerful Poly are simply un-
affordable. Mińe [Min06] (page 4) says “... polyhedron domain has
a memory and time cost unbounded in theory and exponential in
practice”. This is also substantiated by empirical studies by Lavi-
ron and Logozzo in [LL09] (page 2) : “... Poly easily propagates
the constraints. However, ... the price to pay for using Poly is too
high: the analysis not scale beyond dozens of variables, ... while
mostly one wants to solve hundreds of constraints and variables.”.
These results are further substantiated by the much earlier study by
Halbwachs et al. in [HMG06].

Hence, sub-polyhedral abstract domains started being used, by
either restricting the shape of the polyhedron (the weakly rela-
tional domain approach) or by apriori limiting the number of linear-
inequalities that can be solved (the bounded domains approach).
The most obvious in the first category are (multidimensional) in-
tervals, or “boxes”. Beyond these are the Difference Bound Matri-
ces (DBMs) [Bag97, Min01a, SKS00], Octagons, a.k.a. Unit Two
Variables Per Inequality (Unit-TVPI or UTVPI) [Min01a, Min01b,
Min06], Two Variables Per Inequality (TVPI) [SKH02], SubPoly-
hedra [LL09], Octahedra [CC04] etc. Other interesting ones in-
clude Logahedra and Pentagons. Some of these are summarized
in Table 1.

Sub-polyhedra Approximation (nature
of constraint)
(a, b, c ∈ Q)

Intervals a ≤ xi ≤ b

DBM xi−xj ≤ c; xi, xj ≥ 0
Octagons (UTVPI) ±xi ± xj ≤ c

TVPI axi + bxj ≤ c

Sub-Polyhedra (SubPoly) LinEq⊗ Interval
Pentagons a ≤ xi ≤ b ∧ xi < xj

Octahedra ±xi ± · · · ± xj ≤ c

Convex Polyhedra
P

aixi ≤ c

Table 1. Various Sub Polyhedra

Of these, we discuss in detail the TVPI domain and its UTVPI
specialization. The TVPI domain because of its excellent precision-
complexity tradeoff, and UTVPI because of the maturity of the
existing tools and applications.

2.1 Octagons (UTVPI)

Difference Bound Matrices (DBM) have constraints of the form
xi − xj ≤ c; xi, xj ≥ 0. Their use as abstract domains is mainly
by [Bag97, Min01a, SKS00].

Octagons have constraints of the form±xi ± xj ≤ c. They
are mainly from [Min01a, Min06, Min01b, Min06, BHZ09], and
are called so because in2-dimensions, their geometric shape is
octagonal. Octagons are similar toSimple Sectionsintroduced by
Balasundaram-Kennedy in [BK89], who introduced them in the
context of loop-parallelization. They are also referred to as Unit
Two Variables Per Inequality (UTVPI) because of the nature of
their constraints. It is easy to see that Intervals⊂ DBM ⊂ UTVPI.

Octagons, though not being closed under projection, have cubic-
time closure and the optimum result of reduction of that problem to
Floyd-Warshall is by Bagnara et. al in [BHZ09].

Octagons have the same asymptotic bounds as DBMs thanks
to a data-structure innovation which uses an adjacency matrix rep-
resentation. Most geometrical operations have quadratic-time (or
worst case cubic-time) complexity.

DBMs and Octagons benefit from the algorithms suitable for
TVPI (presented in the next section), but it is an open problem
whether there exists a linear programming algorithm that has an
asymptotically better running time than that of linear programming
on non-closed TVPI systems. So is the cost of efficient Fourier-
Motzkin on non-closed systems.

2.2 TVPI

TVPI have been pioneered as an abstract domain by Simon,
King and Howe [SKH02, SKH10]. In TVPI polyhedra, each con-
straint is of the form:axi + bxj ≤ c. It is obvious to see that
UTV PI ⊂ TV PI. TVPI are obviously closed under projection,
and hence many algorithms on geometric operations that are de-
veloped for planar polyhedra (polygons) are directly applicable to
general TVPI giving rise to simple algorithms with small complex-
ity.

Linear Programming on TVPI has a longer history than their
use in abstract domains. The linear programming community has
been interested in them because of the strongly polynomial time al-
gorithms for the linear programming problem on TVPI polyhedra.

The early work on using graph theory techniques for linear
programming on TVPI systems was by Shostak [Sho81]. Aspvall
and Shiloach [AS80] showed the polynomiality of the feasibility
problem of TVPI-LP problems. This was followed by network
flow based (“combinatorial”) strongly polynomial time algorithms
by Cohen and Megiddo [CM94]. The following result by Wayne
[Way99] is the best result to date.

Lemma 2.1 [LP optimization on TVPI] Linear programming
optimization on TVPI systems can be solved inO(m3n2 log B)
worst case time, wherem is the number of inequalities,n is the
number of variables andB the upper bound on the size of the
constants.

The above is a polynomial time combinatorial algorithm and
uses a reduction of a specialized TVPI problem, namely one hav-
ing monotone (DBM) inequalities, to a generalized min-cost-flow
problem, namely one which allows negative circulations too. The
former is a dual of the latter and hence they both have the same
complexity bounds. Though the reduction uses DBM, result by
Wayne can be generalized to the more general TVPI because of
a previous result by Cohen and Megiddo.

It well known that for general polyhedra, the optimization and
the feasibility problems have the same pseudo-polynomial time
hardness. But it is interesting to note that they have different com-
plexities on TVPI systems. The feasibility problem has lower com-
plexity that the above result by Wayne on the optimization problem.



Hochbaum and Naor in [HN94] showed that feasibility (or satisfia-
bility) of TVPI polyhedra can be determined instronglypolynomial
time.

Lemma 2.2 [Feasibility on TVPI] Feasibility of TVPI stystems
can be solved inO(mn2 log m) worst case time, wherem is the
number of inequalities, andn is the number of variables.

The above algorithm is surprisingly simple and uses a clever
pruning technique to limit the redundant inequalities. It can be
seen that the above result can as well be used to derive strongly
polynomial time bounds for Fourier Motzkin elimination, and for
projection of variables from TVPI systems.

Solving Integer-TVPI systems is NP-Complete and hence is no
cheaper than solving general integer linear programs. The result is
by [Lag85].

2.3 Complexities of general and sub polyhedra

Many times in this paper we will be referring to theaveragecase
complexity of Linear Programming on atypical input general con-
vex polyhedron. Defining the problem and finding the complexity
of the most commonly used simplex algorithm, which runs so well
in practice, while taking exponential time on pathological inputs (as
shown by Klee-Minty) has been a vexing issue for complexity the-
orists for decades. Researchers (like [ST04]) have even proposed
new kinds of analysis “smoothened analysis” to prove the poly-
nomiality of simplex algorithm. Thoroughout this paper, we will
however be using the following result, which we believe is from
[Sch86] and folklore.

Experimental complexity of LP and simplex algorithm Let Z be
the complexity of Linear Programming using simplex algorithm,
on a problem withn variables andm constraints. On atypical
input, and withn and m being of the same order of magnitude
(m = O(n)), it can be assumed thatZ = O(n3) onaverage.

Comparison of complexities and scalabilities Many times in this
paper, we would be comparing complexities of algorithms (mainly
LP and FM) on Sub Polyhedra with that of the same algorithms on
general polyhedra. Such a comparison becomes a difficult task, and
one needs to be careful in generalizing such comparisons because
of the following reasons.

Firstly, though LP has an exponential time worst case com-
plexity, and the corresponding value for FM is doubly exponential,
these measures are largely built on artificial examples. The average
case complexities on typical inputs is usually likely to be smaller.
In particular, it is likely that LP runs on usual inputs in polyno-
mial (cubic) time as noted above, and FM on a smaller than doubly
exponential time.

Secondly, the complexity bounds of Sub Polyhedra (like in
[HN94, CM94, Way99] for example) describe only worst case
bounds with no mention of average case complexity. On the other
hand, some of the complexity bounds on Sub Polyhedra given by
static analysis community assume closure. Closure is generally not
needed for sub-polyhedral compilation as the set of inequalities do
not get altered.

Thirdly, the average case of these algorithms on Sub Polyhedra
on typical inputs is bound to be much better than what is guaranteed
by the worst case bounds. For example, though the LP algorithm of
Wayne has seemingly quintic complexity, it may as well be that it
runs on optimum cubic time complexity, similar to Floyd-Warshall
algorithm.

Finally, the average case complexity is only one of the many
measures to quantify the hard problem of scalability.

With the above note, in Table 2 summarizes the relevant com-
plexities of the interesting Sub-Polyhedra along with the same com-
plexities on general polyhedra, each defined inn variables,m in-
equalities andd dimensions.

TheOc-notation is to denote the worstcase measure when the
particular sub-polyhedron is apriori in closed form. Rest of the
complexities in the table refer to worst case complexities, except
for the Fourier-Motzkin on Convex Polyhedra, where we have used
lower bounds. NPC and WNPC stand for NP-Complete and Weakly
NP-Complete complexities respectively.

2.4 Algorithms to approximate into sub-polyhedra

A general polyhedron has to be converted into a Sub-Polyhedra for
it use the algorithms or libraries that specialize in it. An approx-
imation can be an over-approximation or under-approximation.
Whichever be the kind of approximation, broadly, here are some
issues that the approximation algorithm has to satisfy:

• Legality: The approximated polyhedron should not yield illegal
optimizations.

• Cost: Small scalable running time: The conversion process
should be asymptotically small (polynomial-time) as well as
appreciably simpler.

• Closest: The approximated polyhedron should be as close to
the original polyhedron as possible. In case of rational approxi-
mation, the volume of the approximated sub-polyhedron should
be as close to the original one as possible. In case of integer ap-
proximation, it should leave out as few number of integer points
as possible.

• Expressiveness:The approximation should give non-trivial ap-
proximations for sizable number of interesting inputs.

There are some more details that the algorithm that needs to satisfy.
We will point them in Section 4 and Section 5.

From the sub-polyhedral literature, we are not aware of any
systematic study of under-approximation algorithms. We however
are aware of two algorithms on over-approximation. Here is a
summary of them.

2.4.1 Interval over-approximation

Interval over-approximation of an arbitrary polyhedron is a trivial
approximation and has been assumed and solved many times in
polyhedral literature.

For a system withn variables andm constraints, one can run
2n linear programs, twice per each variablexi, with the objective
function beingmax(xi) andmin(xi), each returning the upper-
bound and lower-bound respectively of variablexi.

The above method is simple, and has cost2nZ, which on
average case takesO(n4) time, and could be quite affordable
if n is small. Further, the method can use an existing simplex
implementation.

2.4.2 UTVPI over-approximation by Miné

Miné (in [Min06], section 4.3) has proposed an algorithm to over-
approximate a general polyhedron into a UTVPI-over-approximation.
The algorithm however, uses the generator representation and has
the costO(d2(|R| + |V |)), whered is the dimension and|R| and
|V | are the number of rays and vertices respectively. It returns the
tightest over-approximation-UTVPI of the given Polyhedron.

Briefly, the method uses a greedy approach of incrementally
building an Octagon, exploiting another already developed algo-
rithm to do convex union of two octagons and octagonalize the
result. The over-approximation algorithm begins with an arbitrary
vertex of the input polyhedron, which is trivially an Octagon and
iteratively adds vertices to it, each time obtaining an incremental
octagonal convex-hull for that particular set of vertices which have
been over-approximated. A similar procedure is repeated for each
ray of the polyhedron as well. The result of this algorithm is the
tightest over-approximation for the input polyhedron.



Problem Convex Polyhedra TVPI UTVPI/DBM

GEN (V ↔ H) EXP(n), EXP(d) EXP(n), EXP(d) EXP(n), EXP(d)
LP-OPT WNPC O(m3n2 log B) O(m3n2 log B)
LP-OPT (2 variables in objective function) WNPC Oc(log m) Oc(1)
LP-FEAS WNPC O(mn2 log m) O(mn2 log m)
FM EXP(n), EXP(d) O(mn2 log m) O(mn2 log m)
CLOSURE – O(n3) O(n3)
ILP NPC NPC NPC?

Table 2. General and Sub Polyhedra: Comparison of (Worstcase) Complexities

Needless to say, the method given uses the generator repre-
sentation of the polyhedron which could be costly. We are aware
of no efficient algorithm to directly compute the UTVPI over-
approximation using only the constraint representation.

2.4.3 TVPI over-approximation by Simon-King-Howe

Simon, King and Howe (in [SKH10], Section 3.2.6) propose an
algorithm that approximates a constrainta1x1 + · · · + anxn ≤ c
of a PolyhedronP using the set of constraintsajxj + akxk ≤
c − cj,k for every1 ≤ j < k ≤ n. They propose that eachcj,k

can be calculated as the result of a linear programming problem:
cj,k = minExp(

P

i∈[1,n]\{j,k} aixi, OA(Pi)) and OA(Pi) is the
incremental over-approximation polyhedron obtained at thei’th
step of computation. The above step1 needs to be iterated for each
non-TVPI constraint ofP .

For converting a general polyhedron withn variables andm
constraints into a TVPI over-approximation, it can be seen that
the above algorithm has costn2m2Z, which in average case takes
O(n7) time. This could be quite expensive, unlessn is very small.

Further, the above method is hampered by unbounded vari-
ables in the original set of constraints. For example the polyhedron
{x, y, z|x+y +z ≤ 1} cannot be over-approximated by the above
method ascj,k variables are returned as unbounded variables each
time in the calls tominExp!

Other than the above result by Simon, King and Howe, as far
as we know, this process of efficiently over-approximation of a
general linear program using TVPI constraints is an open problem.
In their paper on Logahedra [HK09] (Section 4.4), Howe and King
propose an algorithm to approximate a finite set of Poly constraints
into Logahedra constraints. It remains to be seen if this method can
be extended to under/over-approximate a Poly system from scratch.

2.4.4 Under-approximation through over-approximation

To obtain an sub-polyhedral under-approximation of a rational
polyhedronP, one can transform the polyhedron into the dual-
space obtainingP∗, and then obtain the over-approximation of
the dual-polyhedron OA(P∗) and convert the over-approximated
dual polyhedron into primal space (OA(P∗) → UA(P)) to
get an under-approximation UA(P). In effect, we will be doing
P → P∗

 OA(P∗) → UA(P). A similar procedure can be used
for the reverse process as well. The proof of these methods2 is triv-
ial using a simple convexity argument on the polyhedra involved.

The above procedures make the under-approximation and over-
approximation as asymptotically comparable methods, but for the
transformation into dual-space. In case when the constraints/ver-

1 One way of looking at the above step is that it fills incj,k entries into a
lower-diagonal matrix of sizen × n.
2 These methods work only when0 ∈ P . Otherwise, the polyhedra should
be shifted so as to satisfy this condition. We believe that itcan be done with
low complexity, or it can be ensured that the input itself can be modified
accordingly.

tices of the input polyhedron are too many, then a cheaper direct
method could be used.

We are also not aware of any work on integer TVPI (or UTVPI)
approximations, other than the obvious ones of directly using the
above suggested rational approximations. Obviously, using such
methods could yield a very weak approximations. Further literature
study is needed, though we suspect that integer approximations
may be NP-Complete problems.

3. Sub-polyhedral compilation approaches
Whichever be the flavor of sub-polyhedra, there are some choices
on how one may use that flavor depending on the precise decision
or optimization problem.

Dependence approximation One may assume that the depen-
dence polyhedra satisfy some approximation criterion. The input to
the optimization or parallelization problem is chosen to belong to
a pre-determined flavor of sub-polyhedra. The dependences which
do not satisfy those criterion must beover-approximatedby an ap-
propriately designed heuristic. Some degrees of freedom may be
lost, but only correct transformations will be modeled. This nec-
essary approximation is in the same spirit as classical abstractions
and algorithms presented in [YAI94, DRV00]. We will discuss de-
pendence approximation with TVPI sub-polyhedra in Section 4.

Constraint approximation Another choice is to keep dependence
relations as general polyhedra, but approximate the constraints on
the affine transformation itself. After the transformation to the
dual space through the Farkas lemma, the constraint polyhedron
— the (µ, λ)-polyhedron of Farkas multipliers — must beunder-
approximated. Again, some legal affine transformations may be
lost. We will discuss constraint approximation with TVPI sub-
polyhedra in Section 5.

Additional approximations There are at least two more ways
in which sub-polyhedra could be used in polyhedral compilation.
These aredomain approximationandobjective function approxi-
mation. In most cases, iteration domains (loop bounds) form multi-
dimensional intervals, and most non-interval cases belong to the
UTVPI flavor (triangular loops). Approximations are possible, but
require specific handling in the code generator to generate pre-
cise iteration domain traversals; we believe the problem can be re-
duced to code generation for irregular, data-dependent control flow
[BPCB10]. Regarding the approximation of objective functions, the
strongly polynomial time bounds for TVPI discussed in Section 2
only hold for a specific class of optimization problems (to which
the lexicographic minimum can be reduced). When the objective
function is arbitrary, linear programming seems to be required. This
is discussed in detail in the literature [HN94, CM94, Way99]. We
believe solutions can be found to enable both kinds of approxima-
tions, but leave these as open problems.



4. Dependence Approximation Using TVPI
The goal of this section is to progress towards the design of a
Feautrier-like scheduling algorithm building on the previously dis-
cussed sub-polyhedral techniques. It is an open ended section at
this point.

4.1 Existing dependence approximations

Over approximations of dependence polyhedra is a fairly well
known technique. This kind of dependence approximation leads
to loss of precision in the input itself. Different dependence ab-
stractions have been proposed for dealing with loop nest optimiza-
tion and parallelization. They have been summarized in [YAI94]
as well as in [DRV00]. Our view of them is summarized in the
following hierarchy, where DL stands for dependence levels, DDV
for dependence direction vectors, DC for dependence cones, D for
dependence difference polyhedron, DP for dependence polyhedron
and DI for dependenceZ-polyhedron:

DL ⊂ DDV ⊂ DC
| {z }

sub-polyhedral

⊂ D ⊂ DP
| {z }

polyhedral

⊂ DI ⊂ · · ·
| {z }

beyond polyhedal

Interestingly, the above hierarchy of abstractions is largely dif-
ferent from the one introduced by the static analysis community
and described in Section 2:

Intervals⊂ DBM ⊂ Octagons⊂ TVPI ⊂ Poly

TVPI polyhedra are not directly comparable with other abstrac-
tions such as DC, but it is larger than DDV and smaller than D.

All the above varieties of abstractions are different approxima-
tions of DP (and of DI, and of the exact, potentially non-affine, ex-
tensional relation). Considering dependence relations, an approxi-
mation is always an over-approximation; it will only yield correct
transformations although it may induce a loss of potentially inter-
esting schedules.

The overall motivation for the above sub-polyhedral abstrac-
tions, as well as the original papers that proposed them, has been to
solve a particular parallelization algorithm or transformation. For
example, DL has been proposed for data-parallelism detection and
loop reversal, and DDV for all unimodular transformations.

But the goal of the comparison by Yang et al. [YAI94] has not
been to find whether the particular dependence abstractionscales
well, but whether the particular abstractionfits well its application
purpose.

We already know that TVPI is associated with excellent strongly
polynomial algorithms. But we still need to study how to approx-
imate a polyhedral dependence relation into a TVPI, and then to
study how TVPI dependence relationsfit their purpose in affine
transformation methods such as Feautrier’s scheduling algorithm.

4.2 TVPI approximation of dependence polyhedra

As pointed out in early sections, TVPI has been discovered by
theoreticians to have a scalable linear programming solution and
has been applied by static analysis people to their problems. We
point out the difficulties that rise when trying to use the state of the
art techniques to polyhedral compilation.

Is there a need for parametric TVPI? As a means of motivation
for TVPI approximation of dependences, we point out that none of
the existing sub-polyhedral abstractions (DL, DDV and DC) deal
with parameters. The primary assumption of non-affine transfor-
mation algorithms — including the polyhedral Darte-Vivien algo-
rithm — on such approximations is that parameters are unbounded
at compile time.

Feautrier’s polyhedral approximation of dependences (as well
as the more powerful DI abstraction) are really different from the
ones lower in the hierarchy because they can handle the parameters

symbolically. A parameter can be considered a constant that is not
known at compile time, which is not equivalent to considering it
as an additional index-variable in several key problems, including
linear programming and piece-wise feasibility with respect to the
parametric context.

But the surprising fact is that Farkas-based affine transforma-
tions do not need to solve a parametric linear programming formu-
lation at all!

Hence it is clear that though solving parametric linear programs
cannot be avoided for solving the dependence analysis problem,
it can however be avoided for affine transformation algorithms
using the Farkas lemma or Vertex method. Such algorithms can use
existing sub-polyhedra without the need for a paramteric extension.

Yet more complex affine transformations such as index-set split-
ting or iteration-space slicing may need parameterized algorithms
at their core.

The cost of parametric sub-polyhedra For the problems that do
benefit from parameterization, it would be tempting to take sub-
polyhedra (like UTVPI or TVPI) and add parameterization to it
and pay a small additional cost, while still retaining the strong-
polynomiality bounds. The main turning point in polyhedral com-
pilation is the work by Feautrier on PIP [Fea88]. Using PIP, one
can represent constraints of the formaI + bN ≤ c, whereI is the
iterator vector, andN is the parameter vector. But, it turns out that
parameterization itself is an exponential problem, since it has to de-
cide on the sign of a parametric expressions. Therefore, even if the
non-parametric part of the sub-polyhedra could be solved in linear
time, like in intervals, the parametric part may still take exponential
time.

Looking for a parametric TVPI abstract domain In the case of
parameterization of TVPI, one can allow with the above assump-
tions only three kinds of scenarios: II, IP and PP, when the con-
straints are of the formai+ bj ≤ c, ai+ bn ≤ c andan+ bm ≤ c
respectively.

A general extension remains to be designed that preserves the
scalability of TVPI algorithms. We identified two early directions:

• symbolic computation with parameters, through the existing
Fourier-Motzkin method for TVPI or min-cost-flow algorithms,
with on-demand elimination of the parameter, approximating it
with its bounds in the parametric context;

• in some JIT compilation scenarios with partial evaluation op-
portunities, instantiate some parameters and resort to non-
parametric TVPI algorithms; since JIT compilation is one major
motivation for this work, this path is worth exploring further.

Approximation into parametric TVPI Here we are talking about
the algorithm that converts a general dependence polyhedron into
a sub-polyhedral over-approximation. One step to meaningfully
resolve the parameters in using polyhedra is to make them un-
bounded, like even Darte-Vivien do.

But parameters can also be eliminated by assuming some con-
text. Or, Even otherwise, their number can be reduced by a simple
Fourier-Motzkin elimination. For example, if a dependence poly-
hedron has constraintn1 > n2, then all occurrences ofn2 can be
replaced byn1. Needless to say, one loses some precision, but the
dependence polyhedron remains parametric, being more powerful
than Darte-Vivien’s dependence cone approximation.

4.3 Towards a Feautrier-TVPI algorithm?

In the previous section, we assumed that a dependence analysis
will result in a reduced dependence graph annotated with TVPI
polyhedra. A first strategy in scheduling this approximate depen-
dence graph is to use an unmodified, general scheduling method



like Feautrier’s. The question remains as to what the complexity
measures the strategy discussed in the previous section, will bring.

In Feautrier’s algorithm, there are two applications of the Farkas
lemma. The first one is expressed in terms of variables(µ, I, N).
The second one in terms of variables(λ, I, N). The above two
polyhedra are “equated” in a matching step, with the equality re-
sulting from convexity properties (as proven by Feautrier).

The result of the above equations is a large system,P =
∩e∈EPe = (µ, λ).

The dependence polyhedronDe satisfying some property, like
it being a TVPI polyhedron, does not necessarily mean thatPe has
to satisfy the same requirement. Neither are they directly related
to each other by duality. But, we think that some measures of the
good bounds on TVPI should reflect onPe as well. Regarding
the problem of the existence of strongly polynomial time bounds
on solvingP, we think that understanding the duality of TVPI
polyhedra is a key.

This path of investigation is currently open. Empirical evalua-
tion will also be needed.

5. Constraint Approximation Using TVPI
In Feautrier’s algorithm [Fea92], the dependence constraints of
a particular dependence edge are pseudo-linear (or quasi-affine)
constraints involving(µ, I, N). These are converted into aPe =
(µ, λ) system by application of affine form of Farkas-lemma,
where the newly createdλ-variables (along withµ-variables) are
called theFarkas multipliers. The set of constraints one obtains is a
polyhedronP = ∩e∈EPe. The polyhedronP is amenable to Lin-
ear Programming or Fourier-Motzkin elimination and any rational
point that satisfiesP is considered a valid schedule.

Note thatP is not a parametric polyhedron: classical non-
parametric algorithms can be used. This is an encouraging obser-
vation for the effectiveness of TVPI sub-polyhedral approaches.

Feautrier suggests preprocessingP with an initial Gaussian
elimination step to remove some Farkas multipliers. This is possi-
ble because the Farkas multipliers occur in equations and the elim-
ination can be done on a per-dependence basis. But, this step will
not remove all the Farkas multipliers asPe is too under-constrained
at least with respect to theλ-variables. This is complicated by the
fact that the systemsPe andPe′ on different edgese ande′ are not
independent systems with respect to theµ-variables.

Our assumption in this section is thatP has too many variables
and constraints, and hence solving it will be asymptotically unscal-
able. As no strongly polynomial algorithm exists for linear pro-
gramming, solvingP means we will not meet our scalability crite-
rion.

In this section, we propose two methods to obviate this difficulty
using Sub Polyhedra. Firstly, we give a rough measure of algorith-
mic complexity. Next, we discuss two previous techniques which
do not use Farkas lemma. Next, we briefly discuss another two pre-
vious techniques which have similar motivation as ours. Next, we
give two approaches which use sub-polyhedra to alleviate the scala-
bility problem. Next, we give examples and in the final sub-section,
pose a lot of open questions.

5.1 Scalability issues in Farkas-based methods

Consider a dependence multigraph(V, E). Let n = |V | be the
number of statements in the program andm = |E| be the number
of edges. We can assume that all statements have the same dimen-
sion and that the maximum dimension of any statement in the pro-
gram isd — counting both iteration and parameter dimensions. Let
nk andmk be the respective number of variables and constraints
of the domain polyhedron for statementk. The polyhedron of a
dependenceSi → Sj between two statementsi andj has dimen-

sion2d.3 Let ne andme be the respective number of variables and
constraints of the polyhedron of dependence edgee.

Applying Feautrier’s one-dimensional scheduling, we have one
λ variable per dependence and per dependence constraint. So, total
number ofλ variables is2dΣe∈Eme = 2dmm̂E , wherem̂E is the
average number of constraints per dependence polyhedron. Also,
we have oneµ variable per statement and per domain constraint.
So the total number ofµ variables isdΣk∈V mk = dnm̂V , where
m̂V is the average number of constraints per domain polyhedron.
Besides, the total number of constraints in the complete system is
dm.

Assuming an average cubic complexity of linear programming
(the best algorithm for state-of-the-art Farkas-based methods), this
brings the total complexity to the order ofd3m3(m̂V + m̂E)3.
The m3 factor may get closer ton6 on programs with many de-
pendences, or worse in presence of piecewise-affine dependence
relations (e.g., in some cases after array data-flow analysis). This is
clearly not scalable.

Analyzing the Pluto algorithm leads to a similar computation
and the same non-scalability result. Practical evidence shows that
it scales better on all benchmarks considered so far. But no bench-
mark with thousands of loops and statements have been processed
either, which will no doubt happen with three-address code repre-
sentations [TCE+10] and extensions to irregular, data-dependent
control flow [BPCB10]. Considering Feautrier multi-dimensional
scheduling only makes things worse, as it involves solving a mixed-
integer linear programming problem.

5.2 Two non Farkas-based methods

To address this scalability challenge, one may first consider alter-
natives to Farkas-based methods. Two of them come to mind within
the polyhedral model.

The Vertex method It was the most general “pre-Feautrier” affine
scheduling algorithm [RPF86, QD89]. In this method, non-linear
constraints on schedule coefficients (as variables) are avoided by
converting dependence constraints from the hyperplane to the dual
vertex/ray representation followed by an instantiation of the iter-
ation variables. This process leads to a constraint system with too
many variables and constraints: practical dependence polyhedra are
likely to have a very small hyperplane representation while having
an exponential number of vertices. The method has more scalabil-
ity limitations than Farkas-based scheduling, as shown by Feautrier
[Fea92] and confirmed experimentally by Balev [BQRR98].

Darte-Vivien’s method The Darte-Vivien algorithm [DV97] con-
siders dependence cone approximations of distance vectors and
abstracts away all parameters. The algorithm uses an uniformiza-
tion of affine dependences, building on the technique introduced by
Karp-Miller-Winograd. Although optimality of the number of par-
allel loops has been proven, much expressiveness is lost in terms
of multi-dimensional affine transformation beyond the innermost
loops [DV97].

As far as we know, an empirical study of the Darte-Vivien al-
gorithm vis-a-vis Feautrier’s method is missing. The loss of ex-
pressiveness may not be worth the complexity and scalability gain.
Further study is needed.

5.3 Two Farkas-based approaches

Within the framework suggested by Feautrier [Fea92], two ap-
proaches have recently been suggested which have very similar
goals as ours.

Feautrier’s scalable modular scheduling Feautrier’s approach
[Fea06] starts with Gaussian elimination, and combines a Minkowski

3 This is an upper bound:2d minus the number of parameters to be precise.



decomposition ofPe with a modular parametric linear program-
ming algorithm.

We consider this approach as complementary to ours. It does
not address scalability without making some assumptions on a
modular decomposition of the problem, but Feautrier’s approach
may have a positive influence on the precision of the sub-polyhedral
abstractions as well as on practical scalability.

Pouchet’s FM library and heuristics The other notable work
in avoiding the cost of solving the systems is implemented in
Pouchet’s redundancy aware Fourier-Motzkin (FM) library. Though
a detailed comparison is needed, we note that Pouchet’s method
does not asymptotically reduce the complexity in a predictable
way. Nevertheless, it is clear thatP contains many valid yet use-
less transformations, and many redundant ones in terms of gen-
erated code or behavior on the target platform. This is why we
consider our work to be complementary to the FM approach and
the heuristics therein.

5.4 Two new approaches using sub-polyhedra

In this subsection, we suggest two ways of using sub-polyhedra
to alleviate the scalability problem. Firstly, we suggest a direct
method using under-approximation of sub-polyhedra. Later, we
sketch a method that uses existing over-approximation methods
through a simple duality argument.

A direct approximation method If eachPe can beunder-approximated
using a TVPI, then the resulting system can use the Fourier-
Motzkin technique developed by Hochbaum-Naor in [HN94]. We
suggest the following:

1. Approximate eachPe into a TVPI-polyhedron UA(Pe), using
the method suggested in Section 2.4.

2. Build UA(P) = ∩e∈EUA(Pe) as suggested by Feautrier to
build the complete constraint system.

3. Solve the system UA(P) using Hochbaum-Naor’s Fourier-
Motzkin technique [HN94].

In Step 1 of the above method, as the individual constraint poly-
hedra (Pe’s) could be quite small, we could perhaps even use the
polynomial time approximation method suggested in Section 2.4.3
by Simon-King-Howe (albeit withO(n7) worst case complexity)
or King-Howe. As these algorithms give an over-approximation,
one has to use the duality transformation to obtain an under-
approximation. Step 2 of the above method is exactly as suggested
by Feautrier and involves collating the under-approximated sub-
polyhedral systems. Step 3 of the above method uses the Fourier-
Motzkin pruning technique of Hochbaum-Naor to determine the
feasibility of a linear system, and thus benefits from the strongly
polynomial time bounds (withO(mn2 log m) worst case complex-
ity) therein.

We claim that a valid schedule can be determined using the
above method in strongly polynomial time. It follows directly from
the polynomial-time claims of under-approximation as well as the
bounds of Hochbaum-Naor’s algorithm.

Indirect approximation using duality Alternatively, the duality
theorem be used on eachPe and each dual polyhedronP∗

e beover-
approximated4 by a min-cost-flow polyhedron (or even a gener-
alized min-cost-flow polyhedron, as defined by Wayne [Way99]).
The resultant over-approximation’s dual polyhedron will be a TVPI
polyhedron. We are not aware of any literature on the subject, but

4 This over-approximation isnot the same as the dependence over-
approximation discussed in Section 4. Here, it is the dual of the constraint
system that is being over-approximated, while there, it is the dependence
polyhedron that is being over-approximated.

we think that it may be implicit in the work of Cohen-Megiddo in
[CM94]. More study is needed to assess the effectiveness of this
approach.

5.5 Example

We illustrate the direct under-approximation approach on one
Feautrier’s one-dimensional scheduling Example 1 [Fea92] (or Ex-
ample 20, page 220–222 in Darte et al. [DRV00]),

µ2,1 − µ2,2 − µ1,1 + µ1,2 = λ1,1 − λ1,2

µ2,3 − µ2,4 = λ1,3 − λ1,4

µ2,2 + µ2,4 − µ1,2 = λ1,2

µ2,0 − µ1,0 − 1 = λ1,0

After simplification by Gaussian elimination, followed by re-
moval ofλ-variables, the above becomes

C1 : µ2,0 ≥ µ1,0 + 1
C2 : µ2,1 + µ2,4 ≥ µ1,1

C3 : µ2,2 + µ2,4 ≥ µ1,2

C4 : µ2,3 ≥ µ2,4 + 1

Let us denote the sub-systems asP1 = {C1, C2, C3} from
dependenceD1 andP2 = {C4} from dependenceD2. It can be
seen that the sub-systemsP1 andP2 are not independent, sharing
variableµ2,4 with each other. Feautrier suggests two schedules to
the above system.

Schedule 1: Arbitrarily chooseµ1,0 = µ1,1 = µ1,2 = µ2,1 =
µ2,2 = µ2,4 = 0 andµ2,0 = µ2,3 = 1 which leads to the schedules
{θ(S1, i, N) = 0; θ(S2, i, j, N) = j + 1}.

Schedule 2: This time, one can chooseµ1,0 = µ1,2 = µ2,2 =
µ2,4 = 0 and which leads toµ2,1 = µ1,1 = 1. The schedules are
{θ(S1, i, N) = i; θ(S2, i, j, N) = i + j + 1}.

Let us now study three sub-polyhedral abstract domains and the
impact on the affine schedules, in an increasing order of expressive-
ness. All three abstract domains are amenable to strongly polyno-
mial algorithms to compute such schedules.

Interval under-approximation Neither of the sub-systemsP1

andP2 are Intervals. One can however under-approximate each of
them so that the resultant sub-systems are interval sub-polyhedra.
Here is one possibility among many others.

ForP2, choose the under-approximation Interval(P2) = {µ2,3 ≥
1, µ2,4 = 0} which is an interval. This leads toP1 having the sys-
tem{µ2,0 ≥ µ1,0+1, µ2,1 ≥ µ1,1, µ2,2 ≥ µ1,2}, which is still not
an interval. One can then choose{µ1,0 = 0, µ1,1 = 0, µ1,2 = 0}
leading to Interval(P1) = {µ2,0 ≥ 1, µ2,1 ≥ 0, µ2,2 ≥ 0}.
The overall system is{µ2,3 ≥ 1, µ2,4 = 0, µ2,0 ≥ 1, µ2,1 ≥
0, µ2,2 ≥ 0}. One solution of the system is{µ2,3 = 1, µ2,4 =
0, µ2,0 = 1, µ2,1 = 0, µ2,2 = 0}, which results in schedules
{θ(S1, i, N) = 0; θ(S2, i, j, N) = j + 1}, which is same as
Schedule 1 as illustrated by Feautrier.

UTVPI under-approximation It can be observed thatP2 is al-
ready a UTVPI. On the other hand,P1 is “mostly” a UTVPI with
constraintC1 already being a UTVPI needing no approximation,
while C2 andC3 have to be under-approximated into UTVPI. To
obtain the UTVPI under-approximation intuition, one can observe
thatµ2,4 is a shared variable between the non-UTVPI constraints
C2, C3 and UTVPI constraintC4. Since there is no other shared
variable, we are free to choose any non-negative values to them,
without effecting the others. The variableµ2,4 along with each of
the pairs of variables{µ2,1, µ1,1} and{µ2,2, µ1,2}, creates halfs-
paces passing though origin dividing their corresponding3d-space
accordingly. One can simply set the valueµ2,4 = 1 leading to
UA(C2) = {µ2,1 +1 ≥ µ1,1} and UA(C3) = {µ2,2 +1 ≥ µ1,2}.
Solving this system and choosing the other variables asµ1,0 =



µ1,1 = µ1,2 = 1 andµ2,0 = µ2,1 = µ2,2 = 0 and leads to the
schedules{θ(S1, i, N) = 1 + N ; θ(S2, i, j, N) = j + N}.

TVPI under-approximation SinceP2 is already a UTVPI it is
a TVPI as well, whileP1 is needs to be under-approximated into
one. The above UTVPI under-approximations are valid as TVPI
under-approximations well.

6. Future Work
We have raised many questions and provided very few answers to
the scalability challenge. In the near future, we would like to col-
lect and/or synthesize examples that demonstrate empirically the
unscalability of (integer) linear programming and Fourier-Motzkin
techniques. We would also like to validate one or more strongly
polynomial approaches based on TVPI or UTVPI on these exam-
ples. We will use existing frameworks like GRAPHITE and PoCC
for this purpose.
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