
The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Approximations in the polyhedral model

Alain Darte

CNRS, Inria Compsys project-team
Laboratoire de l’Informatique du Parallélisme

École normale supérieure de Lyon

Impact’11, Chamonix, April 3, 2011

Thanks to:

Y. Robert, F. Vivien, F. Irigoin, G.-A. Silber, G. Huard, G. Villard,

R. Schreiber, F. Baray, P. Feautrier, C. Alias, A. Plesco, L. Gonnord

1 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Outline

1 The polyhedral model

2 Scheduling, SURES, and approximated loops

3 Data mapping & communication optimizations

2 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

Outline

1 The polyhedral model
Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

2 Scheduling, SURES, and approximated loops

3 Data mapping & communication optimizations

3 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

Affine bounds and affine array access functions

Fortran DO loops:

DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

Nested loops, static control.

Iteration domain and vector.

Loop increment = 1.

Affine bounds of surrounding
counters & parameters.

Multi-dimensional arrays, same
restriction for access functions.

� Polyhedral model: the “all-affine” world, with exact analysis

Iteration domain = polytope.

Sequential order ≤seq.

Data = images of polytopes by affine functions.

! Typical criticism: such codes do not exist.

4 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

Affine bounds and affine array access functions

Fortran DO loops:

DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

Nested loops, static control.

Iteration domain and vector.

Loop increment = 1.

Affine bounds of surrounding
counters & parameters.

Multi-dimensional arrays, same
restriction for access functions.

� Polyhedral model: the “all-affine” world, with exact analysis

Iteration domain = polytope.

Sequential order ≤seq.

Data = images of polytopes by affine functions.

! Typical criticism: such codes do not exist.

4 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

Affine bounds and affine array access functions

Fortran DO loops:

DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

Nested loops, static control.

Iteration domain and vector.

Loop increment = 1.

Affine bounds of surrounding
counters & parameters.

Multi-dimensional arrays, same
restriction for access functions.

� Polyhedral model: the “all-affine” world, with exact analysis

Iteration domain = polytope.

Sequential order ≤seq.

Data = images of polytopes by affine functions.

! Typical criticism: such codes do not exist.

4 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

(Parametric) analysis, transformations, optimizations

Data-flow array analysis

Array expansion.

Single assignment.

Liveness array analysis.

Data reuse.

Loop transformations

Automatic parallelization.

Transformations framework.

Code generation (with loops
or with automaton).

Mapping computations & data

Systolic arrays design.

Data distribution.

Communication opt.

Counting & Ehrhart polynomials

Cache misses.

Memory size computations.

Latency computations.

And many more. . .

5 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

Many languages fit in the polyhedral model

C for loops:

for (i=1, i<=N, i++) {
for (j=1, j<=N, j++) {
a[i][j] = c[i][j-1];

c[i][j] = a[i][j] + a[i-1][N];

}
}

C while loops:

y = 0; x = 0;

while (x <= N && y <= N) {
if (?) {

x=x+1;

while (y >= 0 && ?) y=y-1;

}
y=y+1;

}
Uniform recurrence equations

∀(i , j) such that 1 ≤ i , j ≤ N
a(i , j) = c(i , j − 1)
b(i , j) = a(i − 1, j) + b(i , j + 1)
c(i , j) = a(i , j) + b(i , j)

FAUST: audio processing

random = +(12345) ~ *(1103515);

noise = random/2147483.0;

process = random/2 : @(10);

and more: Matlab, Fortran90, StreamIt, HPF, C for HLS, . . .
6 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

Many tools and a recent revival

PIP Parametric integer programming.

POLYLIB Polyhedra manipulations.

FADALIB Fuzzy array data-flow analysis.

CLOOG Code generation, from polytopes to loops.

EHRHART & BARVINOK Counting tools.

CL@K Critical and admissible lattices.

PIPS Automatic parallelizer & code transformation framework.

PLUTO Automatic parallelizer & locality optimizer for multicores.

GRAPHITE High-level memory optimizations framework in GCC.

R-STREAM High-level compiler of Reservoir Labs.

. . .

7 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

But still, how to deal with non-static control programs?

Polyhedral model.

Extensions.

Non-affine constraints.

Handling of while loops.

Recursive programs.

Beyond induction variables.

Approximations.

Dependences, lifetime, data
& iteration domains, etc.

Do not assume exact
information is available.

Think conservative!

8 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

But still, how to deal with non-static control programs?

Polyhedral model.

Real life.

Extensions.

Non-affine constraints.

Handling of while loops.

Recursive programs.

Beyond induction variables.

Approximations.

Dependences, lifetime, data
& iteration domains, etc.

Do not assume exact
information is available.

Think conservative!

8 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

But still, how to deal with non-static control programs?

Polyhedral model.

Real life.

Extensions.

Non-affine constraints.

Handling of while loops.

Recursive programs.

Beyond induction variables.

Approximations.

Dependences, lifetime, data
& iteration domains, etc.

Do not assume exact
information is available.

Think conservative!

8 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

But still, how to deal with non-static control programs?

Polyhedral model.

Real life.

Extensions.

Non-affine constraints.

Handling of while loops.

Recursive programs.

Beyond induction variables.

Approximations.

Dependences, lifetime, data
& iteration domains, etc.

Do not assume exact
information is available.

Think conservative!

8 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

But still, how to deal with non-static control programs?

Polyhedral model.

Real life.

Extensions.

Non-affine constraints.

Handling of while loops.

Recursive programs.

Beyond induction variables.

Approximations.

Dependences, lifetime, data
& iteration domains, etc.

Do not assume exact
information is available.

Think conservative!

8 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

Apparent dependence graph and parallelism detection

Is there some loop parallelism (i.e., parallel loop iterations) in the
following two codes? What is their degree of parallelism?

DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

i

j

DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,j)

ENDDO

ENDDO

i

j

9 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

Apparent dependence graph and parallelism detection

Is there some loop parallelism (i.e., parallel loop iterations) in the
following two codes? What is their degree of parallelism?

DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

i

j

DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,j)

ENDDO

ENDDO

i

j

9 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

Apparent evolution of variables and program termination

Does this program terminate?
If yes, how many steps in the worst case? Useful for WCET.

y = 0; x = 0;

while (x <= N && y <= N) {
if (?) {
x=x+1;

while (y >= 0 && ?) y=y-1;

}
y=y+1;

}

y

x(0,0)

(N,N)

ý Terminates in at most N2 + 3N + 2 = O(N2) steps.

Note: a single while loop can generate quadratic (or more) WCCC.
Surprisingly, similar to parallel detection in Fortran DO loops.

10 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Paul Feautrier’s static control programs
Analyses, optimizations, and tools
The polyhedral model is. . . a model

Apparent evolution of variables and program termination

Does this program terminate?
If yes, how many steps in the worst case? Useful for WCET.

y = 0; x = 0;

while (x <= N && y <= N) {
if (?) {
x=x+1;

while (y >= 0 && ?) y=y-1;

}
y=y+1;

}

y

x(0,0)

(N,N)

ý Terminates in at most N2 + 3N + 2 = O(N2) steps.

Note: a single while loop can generate quadratic (or more) WCCC.
Surprisingly, similar to parallel detection in Fortran DO loops.

10 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Outline

1 The polyhedral model

2 Scheduling, SURES, and approximated loops
System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

3 Data mapping & communication optimizations

11 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

SURE: system of uniform recurrence equations (1967)

Karp, Miller, Winograd: “The organization of computations for
uniform recurrence equations” (J. ACM, 14(3), pp. 563-590).

∀p ∈ P = {p = (i , j) | 1 ≤ i , j ≤ N}
a(i , j) = c(i , j − 1)
b(i , j) = a(i − 1, j) + b(i , j + 1)
c(i , j) = a(i , j) + b(i , j)

0
0

a

b

c

1
0

0
-1

0
0

0
1

Semantics:

RDG (reduced dependence graph) G = (V ,E ,w).

Explicit dependences & iteration domain P, implicit schedule.

e = (u, v)⇔ v(p) depends on u(p − w(e)), i.e., must be
computed after. If p − w(e) /∈ P, it is an input.

EDG (expanded dep. graph): vertices V ×P = unrolled RDG.

12 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Looking for zero-weight cycles

Computability: Can we compute a(p) in a finite number of steps?
Scheduling: If yes, how to find an explicit and “good” schedule?

Lemma 1

A SURE is computable for all bounded domains P if and only if
the RDG has no cycle C with w(C) = 0.

Key structure: the subgraph G ′ induced by all edges that belong to
a multi-cycle (i.e., union of cycles) of zero weight.

0
0

a

b

c

1
0

0
-1

0
0

0
1

Graph G

0
0

a

b

c

1
0

0
-1

0
0

0
1

Graphs G and G ′

13 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Looking for zero-weight cycles

Computability: Can we compute a(p) in a finite number of steps?
Scheduling: If yes, how to find an explicit and “good” schedule?

Lemma 1

A SURE is computable for all bounded domains P if and only if
the RDG has no cycle C with w(C) = 0.

Key structure: the subgraph G ′ induced by all edges that belong to
a multi-cycle (i.e., union of cycles) of zero weight.

0
0

a

b

c

1
0

0
-1

0
0

0
1

Graph G

0
0

a

b

c

1
0

0
-1

0
0

0
1

Graphs G and G ′
13 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Key properties

Three elementary key lemmas.

Lemma 2

A zero-weight cycle is a zero-weight multi-cycle.
ý Look in G ′ only.

Lemma 3

A zero-weight cycle belongs to a strongly connected component.
ý Look in each strongly connected component (SCC) separately.

Lemma 4

If G ′ is strongly connected, there is a zero-weight cycle.
ý Terminating case.

14 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Key properties

Three elementary key lemmas.

Lemma 2

A zero-weight cycle is a zero-weight multi-cycle.
ý Look in G ′ only.

Lemma 3

A zero-weight cycle belongs to a strongly connected component.
ý Look in each strongly connected component (SCC) separately.

Lemma 4

If G ′ is strongly connected, there is a zero-weight cycle.
ý Terminating case.

14 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Key properties

Three elementary key lemmas.

Lemma 2

A zero-weight cycle is a zero-weight multi-cycle.
ý Look in G ′ only.

Lemma 3

A zero-weight cycle belongs to a strongly connected component.
ý Look in each strongly connected component (SCC) separately.

Lemma 4

If G ′ is strongly connected, there is a zero-weight cycle.
ý Terminating case.

14 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Key properties

Lemma 5

If G ′ is strongly connected, there is a zero-weight cycle.

e1 e2

e3e4

P1 P2

P3
P4

C1
’

C3
’

C3
’

∑
i ei cycle that

visits all vertices.

ei in multi-cycle Ci ,
with w(Ci) = 0.

Ci = ei + Pi + C ′i .

Follow the ei , then
the Pi and, on the
way, plug the C ′i .

15 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Karp, Miller, and Winograd’s decomposition

Boolean KMW(G):

Build G ′ the subgraph of zero-weight multicycles of G .

Compute G ′1, . . . , G ′s , the s SCCs of G ′.

If s = 0, G ′ is empty, return TRUE.
If s = 1, G ′ is strongly connected, return FALSE.
Otherwise return ∧iKMW(G ′

i) (logical AND).

Then, G is computable iff KMW(G) returns TRUE.

Depth d of the decomposition
d = 0 if G is acyclic, d = 1 if all SCCs have an empty G ′, etc.

Theorem 1 (Depth of the decomposition)

If G is computable, d ≤ n, otherwise, d ≤ n + 1.

(n is the dimension of the problem, i.e., the dimension of P.)

16 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Karp, Miller, and Winograd’s decomposition

Boolean KMW(G):

Build G ′ the subgraph of zero-weight multicycles of G .

Compute G ′1, . . . , G ′s , the s SCCs of G ′.

If s = 0, G ′ is empty, return TRUE.
If s = 1, G ′ is strongly connected, return FALSE.
Otherwise return ∧iKMW(G ′

i) (logical AND).

Then, G is computable iff KMW(G) returns TRUE.

Depth d of the decomposition
d = 0 if G is acyclic, d = 1 if all SCCs have an empty G ′, etc.

Theorem 1 (Depth of the decomposition)

If G is computable, d ≤ n, otherwise, d ≤ n + 1.

(n is the dimension of the problem, i.e., the dimension of P.)

16 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Length of longest dependence path in the EDG

Theorem 2 (Longest dependence path)

If P contains a n-dimensional cube of size Ω(N), there exists a
dependence path of length Ω(Nd).

∼ N

∼ N3

∼ N3

∼ N2

∼ N2

∼ N2

Subtlety: needs to make sure that the path stays in the EDG.

17 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

But how to compute G ′? Primal and dual programs.

e ∈ G ′ iff ve = 0 in any optimal solution of the linear program:

min
{ ∑

e ve | q ≥ 0, v ≥ 0, q + v ≥ 1, Cq = 0, Wq = 0
}

* A single (rational) linear program.

Always interesting to take a look at the dual program:

max
{ ∑

e ze | 0 ≤ z ≤ 1, X .w(e) + ρv − ρu ≥ ze , ∀e = (u, v) ∈ E
}

Additional property, for any optimal solution:

e ∈ G ′ ⇔ X .w(e) + ρv − ρu = 0.
e /∈ G ′ ⇔ X .w(e) + ρv − ρu ≥ 1.

Schedule σ : V × P → N, with σ(u, p) = X .p + ρu, is valid if:

σ(v , p) ≥ σ(u, p − w(e)) + 1
⇔ X .p + ρv ≥ X .(p − w(e)) + ρu + 1
⇔ X .w(e) + ρv − ρu ≥ 1

18 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

But how to compute G ′? Primal and dual programs.

e ∈ G ′ iff ve = 0 in any optimal solution of the linear program:

min
{ ∑

e ve | q ≥ 0, v ≥ 0, q + v ≥ 1, Cq = 0, Wq = 0
}

* A single (rational) linear program.

Always interesting to take a look at the dual program:

max
{ ∑

e ze | 0 ≤ z ≤ 1, X .w(e) + ρv − ρu ≥ ze , ∀e = (u, v) ∈ E
}

Additional property, for any optimal solution:

e ∈ G ′ ⇔ X .w(e) + ρv − ρu = 0.
e /∈ G ′ ⇔ X .w(e) + ρv − ρu ≥ 1.

Schedule σ : V × P → N, with σ(u, p) = X .p + ρu, is valid if:

σ(v , p) ≥ σ(u, p − w(e)) + 1
⇔ X .p + ρv ≥ X .(p − w(e)) + ρu + 1
⇔ X .w(e) + ρv − ρu ≥ 1

18 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

But how to compute G ′? Primal and dual programs.

e ∈ G ′ iff ve = 0 in any optimal solution of the linear program:

min
{ ∑

e ve | q ≥ 0, v ≥ 0, q + v ≥ 1, Cq = 0, Wq = 0
}

* A single (rational) linear program.

Always interesting to take a look at the dual program:

max
{ ∑

e ze | 0 ≤ z ≤ 1, X .w(e) + ρv − ρu ≥ ze , ∀e = (u, v) ∈ E
}

Additional property, for any optimal solution:

e ∈ G ′ ⇔ X .w(e) + ρv − ρu = 0.
e /∈ G ′ ⇔ X .w(e) + ρv − ρu ≥ 1.

Schedule σ : V × P → N, with σ(u, p) = X .p + ρu, is valid if:

σ(v , p) ≥ σ(u, p − w(e)) + 1
⇔ X .p + ρv ≥ X .(p − w(e)) + ρu + 1
⇔ X .w(e) + ρv − ρu ≥ 1

18 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Scheduling: dual of computability.

e ∈ G ′ ⇔ X .w(e) + ρv − ρu = 0.

e /∈ G ′ ⇔ X .w(e) + ρv − ρu ≥ 1.

Multi-dimensional scheduling: hours, minutes, seconds, etc.

e /∈ G ′: u & v computed at different hours.
Different iterations of the outer loop = loop-carried.

e ∈ G ′: u & v same hour, constraints pushed to inner dimensions.
Same iteration of outer loop = loop-independent.

Special form of schedule: affine, same linear part in a SCC of G ′.

0
0

a

b

c

1
0

0
-1

0
0

0
1

X1.(0, 1) = 0
X1.(1, 1) ≥ 2

}
⇒
{

X1 = (2, 0), ρa = 1
ρb = 0, ρc = 1

Final schedule

σa(i , j) = (2i + 1, 2j)
σb(i , j) = (2i ,−j)
σc(i , j) = (2i + 1, 2j + 1)

19 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Scheduling: dual of computability.

e ∈ G ′ ⇔ X .w(e) + ρv − ρu = 0.

e /∈ G ′ ⇔ X .w(e) + ρv − ρu ≥ 1.

Multi-dimensional scheduling: hours, minutes, seconds, etc.

e /∈ G ′: u & v computed at different hours.
Different iterations of the outer loop = loop-carried.

e ∈ G ′: u & v same hour, constraints pushed to inner dimensions.
Same iteration of outer loop = loop-independent.

Special form of schedule: affine, same linear part in a SCC of G ′.

0
0

a

b

c

1
0

0
-1

0
0

0
1

X1.(0, 1) = 0
X1.(1, 1) ≥ 2

}
⇒
{

X1 = (2, 0), ρa = 1
ρb = 0, ρc = 1

Final schedule

σa(i , j) = (2i + 1, 2j)
σb(i , j) = (2i ,−j)
σc(i , j) = (2i + 1, 2j + 1)

19 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Performances of schedules for computable equations

Theorem 3 (Optimality of multi-dimensional schedules)

If P contains a n-dim. cube of size θ(N), there is a dependence
path of length Ω(Nd) and a schedule of latency O(Nd).

Theorem 4 (Case of one-dimensional schedules)

If d = 1, the best affine schedule is ∼ λN, for some λ > 0, and so
is the maximal dependence length.

Theorem 5 (Case of a single equation)

For one equation, d = 0 or d = 1. Moreover, if d = 1, the best
linear schedule is optimal up to a constant.

Theorem 6 (Link with tiling)

The maximal number of permutable loops is linked to the
dimension of the vector space Vect({w(C) | C cycle of G ′}).

20 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Outline

1 The polyhedral model

2 Scheduling, SURES, and approximated loops
System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

3 Data mapping & communication optimizations

21 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Loop terminology

Fortran DO loops:

DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

Nested loops, static control.

Iteration domain and vector.

Sequential order ≤seq.

Dependences:

R/W, W/R, W/R.

S(I) <seq T (J)⇔ (I |d <lex J|d) or (I |d = J|d and S <txt J)

EDG: dependence graph between operations S(I)⇒ T (J).

RDG: dependence graph between statements S → T .

ADG: over-approximation, if S(I)⇒ T (J), then S → T .

22 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Representation of dependences

Pair set (exact dependences): RS ,T = {(I , J) | S(I)⇒ T (J)},
in particular affine dependence I = f (J) if possible.

Distance set: ES,T = {(J − I) | S(I)⇒ T (J)}.
Over-approximations E ′S,T such that ES ,T ⊆ E ′S,T .

DO i=1, N

DO j=1, N

a(i,j) = a(j,i) + 1

ENDDO

ENDDO

Distance set:

E =

{(
i − j
j − i

) ∣∣∣∣ i − j ≥ 1, 1 ≤ i , j ≤ N

}
Polyhedral approximation:

E ′ =

{(
1
−1

)
+ λ

(
1
−1

) ∣∣∣∣ λ ≥ 0

}
Direction vectors:

E ′ =

(
+
−

)
=

{(
1
−1

)
+ λ

(
1
0

)
+ µ

(
0
−1

) ∣∣∣∣ λ, µ ≥ 0

}
Level:

E ′ = À =

(
+
∗

)
=

{(
1
0

)
+ λ

(
1
0

)
+ µ

(
0
1

) ∣∣∣∣ λ ≥ 0

}
23 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Uniformization of dependences: example
DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

a(i,j) ⇒ a(i-1,N)

Dep. distance (1, j − N).

Direction vector (1, 0−) = (1, 0) + k(0,−1), k ≥ 0.
Also X .(1, 0−) ≥ 1⇒ X .(1, 0) ≥ 1 and X .(0,−1) ≥ 0.

}
* SURE!

a c

0
0

0
1

1
0-

0
0

a

b

c

1
0

0
-1

0
0

0
1

No parallelism (d = 2). Code appears (here it is) purely sequential.

24 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Uniformization of dependences: example
DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

a(i,j) ⇒ a(i-1,N)

Dep. distance (1, j − N).

Direction vector (1, 0−) = (1, 0) + k(0,−1), k ≥ 0.
Also X .(1, 0−) ≥ 1⇒ X .(1, 0) ≥ 1 and X .(0,−1) ≥ 0.

}
* SURE!

a c

0
0

0
1

1
0-

0
0

a

b

c

1
0

0
-1

0
0

0
1

No parallelism (d = 2). Code appears (here it is) purely sequential.

24 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Emulation of dependence polyhedra

For a (self) dependence polyhedron P, with vertex v and ray r :

∀p ∈ P X .p ≥ 1⇔ ∀λ ≥ 0 X .(v+λr) ≥ 1⇔ X .v ≥ 1 and X .r ≥ 0

* Emulate vertices, rays, and lines.

Example with direction vectors:

DO i= 1, N
DO j = 1, N

DO k = 1, j
a(i,j,k) = c(i,j,k-1) + 1
b(i,j,k) = a(i-1,j+i,k) + b(i,j-1,k)
c(i,j,k+1) = c(i,j,k) + b(i,j-1,k+i)

+ a(i,j-k,k+1)
ENDDO

ENDDO
ENDDO

1

−

0

0

1

−

0

+

−1

0

0

2

0

1

0

0

0

1

S1

S3

S2

25 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Second example: dependence graphs

1

−

0

0

1

−

0

+

−1

0

0

2

0

1

0

0

0

1

S1

S3

S2

Initial RDG.

0

0

2

0

1

00

1

−1

0

0

0

0

−1

0 0

0

0

0

0

0

1

−1

0

0

1

0

0

1

−1

0

0

1

0

0

−1

S1

S3

S2

Uniformized RDG.

26 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Second example: G and G ′

0

0

2

0

1

00

1

−1

0

0

0

0

−1

0 0

0

0

0

0

0

1

−1

0

0

1

0

0

1

−1

0

0

1

0

0

−1

S1

S3

S2

Uniformized RDG.

0

0

2

0

1

00

1

−1

0

0

0

0

−1

0

0

1

0
0

0

1

0

0

−1

S1

S3

S2

G ′: zero-weight multi-cycles.

(2i , j) for S2, (2i + 1, 2k) for S1, and (2i + 1, 2k + 3) for S3.

27 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Second exemple: parallel code generation

DOSEQ i=1, n
DOSEQ j=1, n /* scheduling (2i, j) */

DOPAR k=1, j
b(i,j,k) = a(i-1,j+i,k) + b(i,j-1,k)

ENDDOPAR
ENDDOSEQ
DOSEQ k = 1, n+1

IF (k ≤ n) THEN /* scheduling (2i+1, 2k) */
DOPAR j=k, n

a(i,j,k) = c(i,j,k-1) + 1
ENDDOPAR

IF (k ≥ 2) THEN /* scheduling (2i+1, 2k+3) */
DOPAR j=k-1, n

c(i,j,k) = c(i,j,k-1) + b(i,j-1,k+i-1) + a(i,j-k+1,k)
ENDDOPAR

ENDDOSEQ
ENDDOSEQ

28 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Loop parallelization: optimality w.r.t. dep. abstraction

Lamport (1974): hyperplane method = skew + interchange.

Allen-Kennedy (1987): loop distribution, optimal for levels.

Wolf-Lam (1991): unimodular, optimal for direction vectors
and one statement. Based on finding permutable loops.

Darte-Vivien (1997): unimodular + shifting + distribution,
optimal for polyhedral abstraction and perfectly nested loops.
Finds permutable loops, too.

Feautrier (1992): general affine scheduling, complete for affine
dependences and affine transformations, but not optimal.

Lim-Lam (1998): extension to coarse-grain parallelism, vague.

Ramanujam-Sadayappan (2009): second (more sound)
extension to permutable loops, with locality optimization.

29 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Outline

1 The polyhedral model

2 Scheduling, SURES, and approximated loops
System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

3 Data mapping & communication optimizations

30 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Yet another application of SUREs: understand “iterations”

Fortran DO loops:

DO i=1, N

DO j=1, N

a(i,j) = c(i,j-1)

c(i,j) = a(i,j) + a(i-1,N)

ENDDO

ENDDO

C for and while loops:

y = 0; x = 0;

while (x <= N && y <= N) {
if (?) {

x=x+1;

while (y >= 0 && ?) y=y-1;

}
y=y+1;

}
Uniform recurrence equations:

∀p ∈ {p = (i , j) | 1 ≤ i , j ≤ N}
a(i , j) = c(i , j − 1)
b(i , j) = a(i − 1, j) + b(i , j + 1)
c(i , j) = a(i , j) + b(i , j)

0
0

a

b

c

1
0

0
-1

0
0

0
1

31 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Context: transforming WHILE loops into DO loops

Example of GCD of 2 polynomials

// expression expr, array A, r>0 integer.

da = 2r; db = 2r;

while (da >= r) {

cond = (da >= db || A[expr] == 0);

if (!cond) {

tmp = db; db = da; da = tmp - 1;

} else da = da - 1;

}
da

da + db = cte

r − 1

2r
r

db

2r

Hard to optimize for HLS tools:
No loop unrolling possible.

Limited software pipelining.

No nested-loops optimization.

No information for coarse-grain
scheduling/pipelining.

* Need to bound the num-
ber of iterations. When
feasible, proves program
termination as by-product.

32 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Phase 1: build an integer interpreted automaton

Identify relevant variables:

vector ~x ∈ Zn, n = problem dimension.

Build RDG:

control-flow graph and conditional transitions.

express evolution of ~x with affine relations, a bit more general
than affine dependences.

Refine automaton (if desired):

analysis of Booleans: better accuracy, higher complexity.

simple-path compression: reduces complexity.

multiple-paths summary: better accuracy, impacts complexity.

Sequential automaton similar to affine recurrence equations, with a
different semantics: different relations express non-determinism.

33 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Phase 2: abstract interpretation to get “invariants”

Explicit dependences and schedule, but implicit iteration domains!

Here, we need to prove db ≥ r . * Use abstract interpretation.

// expression expr, array A,

// r>0 integer.

da = 2r; db = 2r;

while (da >= r) {

cond = (da >= db

|| A[expr] == 0);

if (!cond) {

tmp = db; db = da;

da = tmp - 1;

} else da = da - 1;

}

init

loop

stop

Ploop =

r − 1 6 da 6 2r

r 6 db 6 2r

1 6 r

t1

t2 t3

t4

Pstop =

1 6 r

r 6 db 6 2r

r − 1 6 da < r

Pinit = 1 6 r

Invariant = integer points in a polyhedron Pk : conservative
approximation of reachable values for each control point k.

Possibly infinite, parameterized by program inputs.

34 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Phase 3: ranking function to prove termination

Ranking function Mapping σ : K × Zn → (W,�), decreasing on
each transition, where (W,�) is a well-founded set.

Multi-dimensional rankings W = Np with lexicographic order.
Affine ranking σ(k,~x) = Ak .~x + ~bk à Farkas lemma.

* Similar to multi-dimensional scheduling for loops, except:

Higher dimension n (number of relevant variables).
Flow not always lexico-positive à recurrence equations.
Hidden “counters” (number p of dimension of the ranking).

da

da + db = cte

r − 1

2r
r

db

2r
init

loop

stop

(

1
da + db − 2r + 2

)

t1

t2 t3

t4

(0)

(2)

35 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Phase 3: ranking function to prove termination

Ranking function Mapping σ : K × Zn → (W,�), decreasing on
each transition, where (W,�) is a well-founded set.

Multi-dimensional rankings W = Np with lexicographic order.
Affine ranking σ(k,~x) = Ak .~x + ~bk à Farkas lemma.

* Similar to multi-dimensional scheduling for loops, except:

Higher dimension n (number of relevant variables).
Flow not always lexico-positive à recurrence equations.
Hidden “counters” (number p of dimension of the ranking).

da

da + db = cte

r − 1

2r
r

db

2r
init

loop

stop

(

1
da + db − 2r + 2

)

t1

t2 t3

t4

(0)

(2)

35 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Phase 4: bound on the number of program steps

Worst-case computational complexity (WCCC): maximum number
of transitions fired by the automaton:

WCCC ≤ #
⋃
σ(k ,Pk) ≤

∑
k

#σ(k ,Pk)

Counting points in (images of) polyhedra: Ehrhart polynomials,
projections, Smith form, union of polyhedra, etc.

WCCC ≤ #σ(init,Pinit)
+#σ(loop,Ploop)
+#σ(end,Pend)

= 2 + #{(1, i) | 1 ≤ i ≤ 2r + 2}
= 2r + 4

init

loop

stop

(

1
da + db − 2r + 2

)

t1

t2 t3

t4

(0)

(2)

36 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Alias-Darte-Feautrier-Gonnord (2010)

Greedy algorithm

i = 0; T = T , set of all transitions.

While T is not empty do

Find a 1D affine function (X , ρS), not increasing for any
transitions, and decreasing for as many transitions as possible.
Let σi = X ; i = i + 1;
If no transition is decreasing, return false.
Remove from T all decreasing transitions.

d = i , return true.

Theorem 7 (Completeness of greedy algorithm w.r.t. invariants)

If an affine interpreted automaton, with associated invariants, has
a multi-dimensional affine ranking function, then the greedy
algorithm generates one such ranking. Moreover, the dimension of
the generated ranking is minimal.

37 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Yet another example

y = 0;

x = m;

while(x>=0 && y>=0){

if(indet()){

while(y <= m && indet())

y++;

x--;

}

y--;

}

start

lbl4

lbl5

stop lbl6

lbl10

x := n; y := 0

0 6 x ∧ 0 6 y
x + 1 6 0

∨y + 1 6 0

true

true

y 6 n

y := y + 1

x := x − 1

y := y − 1

start m ≥ 0 2m + 4
lbl4 m ≥ x > 0,m ≥ y > 0 (2x + 3, 3y + 3)
lbl5 m ≥ x ≥ 0,m ≥ y ≥ 0 (2x + 3, 3y + 2)
lbl6 m ≥ x ≥ 0,m + 1 ≥ y ≥ 0 (2x + 2,m − y + 1)

lbl10

{
m ≥ x ≥ −1,m + 1 ≥ y ≥ 0

2m ≥ x + y
(2x + 3, 3y + 1)

wccc = 5 + 7m + 4m2
38 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

System of uniform recurrence equations
Multi-dimensional scheduling and parallel loop detection
Multi-dimensional ranking and worst-case execution time

Link with Karp, Miller, Winograd’s decomposition

Podelski-Rybalchenko (2004) ∼ URE ∼ Lamport (1974).
Bradley-Manna-Sipma (2005) ∼ Wolf-Lam (1991).
Colón-Sipma (2002) between Wolf-Lam & Darte-Vivien (1997).
Alias-Darte-Feautrier-Gonnord (2010) ∼ Feautrier (1992).

Gulwani (2009) very different but similar theoretical power.

Iteration domains ⇔ Invariants.

Loop counters ⇔ Integer variables involved in the control.

Dependences: partial order ⇔ Evolution of variables.

Scheduling functions ⇔ Ranking functions.

Latency ⇔ Worst-case execution time (ideal).

Parallelism ⇔ Non determinism.

In both cases, algorithm depth = measure of sequentiality.

39 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Outline

1 The polyhedral model

2 Scheduling, SURES, and approximated loops

3 Data mapping & communication optimizations
Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

40 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Example of intermediate buffer: DCT-like example

Two synchronized, pipelined (ASAP) processes, communicating
through a shared buffer A.

DO br = 0, 63
DO bc = 0, 63

DO r = 0, 7
S: A(br , bc , r , ∗) = . . .

ENDDO
ENDDO

ENDDO

DO br = 0, 63
DO bc = 0, 63

DO c = 0, 7
T: . . . = A(br , bc , ∗, c)

ENDDO
ENDDO

ENDDO

Full array (no reuse) 64× 64× 8× 8 = 218 = 256K .

“Intuitive solution” write in A(br mod 2, bc mod 2, r , c) (4 blocks)

Best linear allocation 112 with σ =

{
r mod 4
16(br + bc) + 2r + c mod 28

41 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Example of intermediate buffer: DCT-like example

Two synchronized, pipelined (ASAP) processes, communicating
through a shared buffer A.

DO br = 0, 63
DO bc = 0, 63

DO r = 0, 7
S: A(br , bc , r , ∗) = . . .

ENDDO
ENDDO

ENDDO

DO br = 0, 63
DO bc = 0, 63

DO c = 0, 7
T: . . . = A(br , bc , ∗, c)

ENDDO
ENDDO

ENDDO

Full array (no reuse) 64× 64× 8× 8 = 218 = 256K .

“Intuitive solution” write in A(br mod 2, bc mod 2, r , c) (4 blocks)

Best linear allocation 112 with σ =

{
r mod 4
16(br + bc) + 2r + c mod 28

41 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Memory reuse for scheduled programs

Given

An array A with multiple reads and writes.

Scheduled program or communicating processes, thanks to θ.

Goal

reduction of the allocation size (size of buffer);

simplicity of the addressing functions.

Solutions

Optimal size with Ehrhart counting * approximations?

Approximation of maximal number of live values * mapping?

Modular mapping ~i 7→ A~i mod b * simple and quite efficient.

42 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Modular mapping and admissible lattice

Definition 1 (Modular mapping)

A modular mapping (M,~b), with M ∈Mp,n(Z) and ~b ∈ Np, maps

index ~i to σ(~i) = M~i mod ~b in p-dimensional array with shape ~b.

Definition 2 (Lifetime analysis)

Two indices ~i and ~j of Zn are conflicting (~i ./~j) if they correspond
to two simultaneously live values in the schedule θ.

Define DS = {~i −~j | ~i ./~j}. * Can be over-approximated.

Lemma 6

The modular mapping σ = (M,~b) is valid iff DS ∩ ker σ = {~0}

* ker σ admissible lattice for DS.

43 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Modular mapping and admissible lattice

Definition 1 (Modular mapping)

A modular mapping (M,~b), with M ∈Mp,n(Z) and ~b ∈ Np, maps

index ~i to σ(~i) = M~i mod ~b in p-dimensional array with shape ~b.

Definition 2 (Lifetime analysis)

Two indices ~i and ~j of Zn are conflicting (~i ./~j) if they correspond
to two simultaneously live values in the schedule θ.

Define DS = {~i −~j | ~i ./~j}. * Can be over-approximated.

Lemma 6

The modular mapping σ = (M,~b) is valid iff DS ∩ ker σ = {~0}

* ker σ admissible lattice for DS.

43 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Critical and admissible lattices

Integer points

44 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Critical and admissible lattices

0−Symmetric Polytope: vertices (8,1), (−8,−1), (−1,5), and (1,−5)

44 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Critical and admissible lattices

Second minimum = 9/41 > 1/5

First minimum = 6/41 > 1/7

Lattice: Basis (7,0), (0,5) Determinant: 35 (i mod 7, j mod 5)

44 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Critical and admissible lattices

Lattice: Basis (9,0), (0,6) Determinant: 54 (i mod 9, j mod 6)

44 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Critical and admissible lattices

Lattice: Basis (9,0), (0,5) (i mod 9, j mod 5)Determinant: 45

44 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Critical and admissible lattices

(i−j mod 8, j mod 6)Lattice: Basis (8,0), (6,6) Determinant: 48

44 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Critical and admissible lattices

Lattice: Basis (8,0), (4,4) Determinant: 32 (i−j mod 8, j mod 4)

44 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Critical and admissible lattices

Determinant: 32Lattice: Basis (8,0), (3,4) 4i−3j mod 32

44 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Critical and admissible lattices

Lattice: Basis (7,0), (4,4) (i−j mod 7, j mod 4)Determinant: 28

44 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Critical and admissible lattices

Critical Lattice: Basis (4,3), (8,0) 3i−4j mod 24Determinant: 24

44 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Lattice-based memory allocation: process

1 Lifetime analysis of the array elements of A, w.r.t. θ.

2 Relation ./: Build the polytope of conflicting differences.

3 Admissible lattice: Build an admissible Λ of small determinant.

4 Modulo function: Compute σ = (M,~b) such that ker σ = Λ.

5 Code generation: Define new array A′ and replace each
occurrence of A(~i) with A′(M~i mod ~b).

* Not a perfect scheme, does not reach minimal size, but:
robust, expressed in terms of θ, usable with approximations.

45 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Outline

1 The polyhedral model

2 Scheduling, SURES, and approximated loops

3 Data mapping & communication optimizations
Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

46 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Source-to-source communication optimizations for HLS

Optimize DDR accesses for bandwidth-bound accelerators.

Use tiling for data reuse and to enable burst communication.

Use fine-grain software pipelining to pipeline DDR requests.

Use double buffering to hide DDR latencies.

Use coarse-grain software pipelining to hide computations.

iterations

time

=STORE0

STORE1

STORE0

STORE1

Note:

dependence

additional synchro.

COMP1

COMP0

COMP1

COMP0
LOAD0

LOAD1

LOAD0

LOAD1

47 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Source-to-source communication optimizations for HLS

Optimize DDR accesses for bandwidth-bound accelerators.

Use tiling for data reuse and to enable burst communication.

Use fine-grain software pipelining to pipeline DDR requests.

Use double buffering to hide DDR latencies.

Use coarse-grain software pipelining to hide computations.

ST0

STORE0

COMP0/1

STORE1

BUFF1

BUFF0 ST1
LOAD0

LOAD1

47 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Overview of the method (for C2H Altera HLS tool)

Derive automatically C2H-compliant C functions for the pipelined
accelerators: load, store, and compute. Blocks are obtained by
loop tiling, pipelined in a “double-buffering” scheme.

1 Communication coalescing: prefetches data out of tile,
following rows, and exploits data reuse.

Array access analysis.
Tiling + software pipelining = schedule θ.

2 Local memory management: defines memory elements,
reduces size, and computes access functions.

Lifetime analysis w.r.t. θ.
Lattice-based memory reduction of intermediate buffers.

3 Code generation: generates final C code in a linearized form
while optimizing accesses to the DDR.

Placement of FIFO synchronizations.
Boulet-Feautrier’s method for polytope scanning.

48 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Formalization of valid, exact, and approximated load

TT−1T−2

In In InOut Out Out

LD

LD
LD

Valid load

(i) Load at least what is needed but not previously produced:

∪t≤T
{
In(t) \Out(t ′ < t)

}
⊆ Load(t ≤ T)

(ii) Do not overwrite locally-defined data:

Out(t < T) ∩ Load(T) = ∅
49 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Formalization of valid, exact, and approximated load

TT−1T−2

In In InOut Out Out

LD

LDLD

Exact load

(i) Load exactly what is needed but not previously produced:

∀T ,∪t≤T
{
In(t) \Out(t ′ < t)

}
=Load(t ≤ T)

(ii) All loads should be disjoint (no redundant transfers):

Load(T) ∩ Load(T ′) = ∅,∀T 6= T ′

49 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Formalization of valid, exact, and approximated load

TT−1T−2

In In InOut Out Out

Out

LD
LD

LD

LD

Valid approximated load

(i) Load at least the exact amount of data:

∪t≤T
{
In(t) \Out(t ′ < t)

}
⊆ Load(t ≤ T)

(ii) Do not overwrite possibly locally-defined data:

Out(t < T) ∩ Load(T) = ∅
49 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Formalization of valid, exact, and approximated load

TT−1T−2

In In InOut Out Out

Out

LD
LD

LD

LDLD

Valid approximated load

(i) Load at least the exact amount of data:

∪t≤T
{
In(t) \Out(t ′ < t)

}
⊆ Load(t ≤ T)

(ii) Do not overwrite possibly locally-defined data:

Out(t < T) ∩ Load(T) = ∅
49 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Handling approximations of data accesses

Exact situation:
Load(T) = In(T) \ {In(t < T) ∪Out(t < T)}

= FirstReadBeforeWrite ∩ T
Store(T) = Out(T) \Out(t > T) = LastWrite ∩ T

Approximated situation:

Load(T) = In(T) \
{
In(t < T) ∪Out(t < T)

}
Store(T) = Out(T) \Out(t > T)

Theorem 8 (Valid approximated load and store operators)

The previous load and store operators are valid, for any tile T :

(i) Out(T) ⊆ In(t ≤ T) ∪Out(t > T) ∪Out(t ≤ T).

(ii) In(T) ∩
{
Out(t < T) \Out(t < T)

}
⊆ In(t < T).

Possible solution:

{
Out(T) \Out(T) ⊆ In(T)

In(T) = ∪t>T

{
In(t) ∩ (Out(t′ ≤ T) \Out(t′ < t))

}
∪ In(T)

50 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

Outline

1 The polyhedral model

2 Scheduling, SURES, and approximated loops

3 Data mapping & communication optimizations
Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

51 / 52

The polyhedral model
Scheduling, SURES, and approximated loops

Data mapping & communication optimizations

Lattice-based memory reduction
Communication optimizations for remote data
Conclusion

The polytope model: more than an exact representation

Discuss correctness and optimality with respect to a description.

Parallelism detection with respect to dependence abstraction.

More accurate for uniform dependences and Allen & Kennedy.

Optimality in a class of functions.

Try to not assume that some information is exactly described, i.e.,
take into account approximations. Think conservative!

Dependence and lifetime analysis.

Array references and sets of data.

Memory mapping and conflicts.

Iteration domains? If conversion? Non-determinism?

* Approximating the control remains a major difficulty.
* Incorporate more techniques such as abstract interpretation.

52 / 52

	The polyhedral model
	Paul Feautrier's static control programs
	Analyses, optimizations, and tools
	The polyhedral model is…a model

	Scheduling, SURES, and approximated loops
	System of uniform recurrence equations
	Multi-dimensional scheduling and parallel loop detection
	Multi-dimensional ranking and worst-case execution time

	Data mapping & communication optimizations
	Lattice-based memory reduction
	Communication optimizations for remote data
	Conclusion

