Optimizing Remote Accesses for Offloaded Kernels:
Application to High-Level Synthesis for FPGA

Christophe Alias

Alain Darte

Alexandru Plesco

Compsys, LIP, UMR 5668 CNRS, INRIA, ENS-Lyon, UCB-Lyon
firstname.lastname@ens-lyon.fr

Abstract

In the context of the high-level synthesis (HLS) of regular ker-
nels offloaded to FPGA and communicating with an external DDR
memory, we show how to automatically generate adequate commu-
nicating processes for optimizing the transfer of remote data. This
requires a generalized form of communication coalescing where
data can be transferred from the external memory even when this
memory is not fully up-to-date. Experiments with Altera HLS tools
demonstrate that this automatization, based on advanced polyhe-
dral code analysis and code generation techniques, can be used to
efficiently map C kernels to FPGA, by generating, entirely at C
level, all the necessary glue (the communication processes), which
is compiled with the same HLS tool as for the computation kernel.

Categories and Subject Descriptors B.5.2 [Register-Transfer-
Level Implementation]: Design Aids—Automatic Synthesis; D.3.4
[Programming Languages]: Processors—Compilers, Optimization
General Terms Design, Experimentation, Performance, Theory

Keywords Polyhedral optimizations, communication coalescing,
pipelined processes, DDR memory, FPGA, HLS

1. Introduction

Most HLS tools for C-like languages [9], e.g., Catapult-C, C2H,
Gaut, Impulse-C, Pico-Express, Spark, Ugh, use state-of-the-art
back-end compilation techniques and are thus able to derive an op-
timized internal structure. However, integrating the automatically-
generated hardware accelerators within the complete design, with
optimized communications, synchronizations, and local buffers, re-
mains a hard task, reserved to expert designers. In addition to the
VHDL glue that has to be added, the input program must often be
rewritten. For HLS tools to be viable, this tricky and error-prone
step should be automated too. This paper shows how the handmade
restructuring of [2], developed on top of Altera C2H HLS tool, can
be fully automated, entirely at source level (i.e., in C).

We focus on the optimization of hardware accelerators that work
on a large set of data to be transferred from a DDR memory at the
highest possible rate, and possibly temporarily stored locally. For
such a memory, making sure that successive requests access the
same row (such accesses are pipelined an order of magnitude faster)
is a direct way of improving the performances: if not, the hard-
ware accelerator, even if its computational part is highly-optimized,

Copyright is held by the author/owner(s).

PPoPP’12, February 25-29, 2012, New Orleans, Louisiana, USA.
ACM 978-1-4503-1160-1/12/02.

keeps stalling and runs at the rate of the (unoptimized) DDR ac-
cesses. Our technique relies on loop tiling to increase the granu-
larity of computations and communications. In each strip of tiles,
transfers from/to the DDR are performed in a pipelined double-
buffering fashion thanks to the introduction of communication pro-
cesses in addition to the initial computation process. The accesses
within each process are pipelined thanks to fine-grain software
pipelining while the execution of the different processes is orches-
trated thanks to coarse-grain software pipelining. Data reuse within
a strip is fully exploited to avoid remote accesses when data are
already available locally in the accelerator. To reduce the size of lo-
cal storage, loads from the DDR (resp. stores to the DDR) are done
as late (resp. soon) as possible. This requires a generalized form of
communication coalescing, where loads are performed even when
the external memory may not be up-to-date. Local memories are
automatically generated, using allocations with modulo [1, 10, 12],
to store the communicated data and exploit data & memory reuse.

2. Generalized Communication Coalescing

Our method can be applied to offload a kernel on which loop
tiling [16] and polyhedral code transformations can be applied, i.e.,
a set of for nested loops, manipulating arrays and scalar variables,
where loop bounds, if conditions, and access functions, are affine
expressions of surrounding loop counters and structure parameters.
This model can be extended through approximations when access
functions or if conditions are not fully analyzable.

Example The code of Fig. 1 computes, in array c, the product of
two polynomials of degree N, stored in arrays p and g. The of-
floaded kernel is the second set of loops. If commutativity and as-
sociativity are not exploited, loops are not permutable. A possible
tiling is specified from the transformation 6 : (i, ) — (N — j,1)
(i.e., loop interchange + reversal of the outer loop), see Fig. 1. In
each horizontal tile strip, tiles are pipelined so that the transfers of a
tile overlap with the computations of the previous tile. Communica-
tions are optimized resulting in maximal inter-tile (resp. intra-tile)
reuse for g (resp. p) and some intra- and inter-tile reuse for ¢ (for
adjacent tiles). For example, the elements of c that are loaded (resp.
stored) before (resp. after) each tile are shown in grey (resp. black).

j Loads of ¢ from the DDR
. I

for (i=0; i<=2x*N; i++) {
c[i]l = 0;
}

for (i=0; i<=N; i++) {
for (j=0; j<=N; j++) {
cli+jl += plil*qljl;
}

} Double buffering Double buffering
phase 1 phase 2

Figure 1. Product of polynomials example



In the tiled code, iterations are identified by a 4d vector (1, J, i1, jj)
where (i, jj) = 6(¢,5), I = [4i/b], J = |jj/b], and b is the tile
size. The counters I and J iterate over the tiles, ¢¢ and jj within a
tile. For a tile strip indexed by I, a fixed b, our technique derives,
thanks to parametric linear programming, the set Load(J) of array
elements c(m) loaded before the tile (1, J). With b = 10, we get
Load(J) = {m| max(0, N—10/—9) <m < N—10I}if J =0
and {m | max(1,10J) < m + 10 — N < min(N,10J + 9)}
otherwise, which corresponds to the sets of loads depicted in Fig. 1.

We now give the main principles of our method to select the
array regions to be loaded from and stored to the external DDR
memory. This step impacts the amount of communications, the
lifetimes of array elements in the local memory, and the size of
this memory. Details are provided in the companion reports [3, 4].

To perform data transfers, the naive solution is to access the
DDR for each remote data access. No local memory is needed but
the latency to the DDR is paid for each access, roughly 400 ns on
our platform. However, if data accesses are reorganized by blocks
on the same row, thanks to loop tiling, and fully pipelined, the
accelerator can work at full rate, receiving 32 bits every 10 ns.
This can be done thanks to communication coalescing — a standard
technique used in compilers of parallel languages and scratch-
pad memory optimizations [5-8, 13—15] — which amounts to hoist
transfers out of a tile and regroup the same accesses to eliminate
redundancy. The form of communication coalescing we develop
is more general as it exploits, at the granularity of individual
array elements, not only intra-tile reuse but also inter-tile reuse,
even if data dependences exist between tiles, while minimizing
the lifetimes of array elements in the local memory. Usually, the
approach is to load, just before executing a tile, all the data read in
the tile, then to store to the DDR all data written in the tile, without
exploiting inter-tile data reuse. The other solution is to first load all
data needed in a tile strip, to execute all tiles in the strip, and finally
to store to the DDR all data produced by the strip, in other words, to
hoist communications outside the innermost tile loop. This exploits
data reuse but requires a large local memory to store all needed
data. Also, computations cannot start before all data have arrived.
Another important difference is that our technique performs loads
from the external memory during the execution of the tile strip,
and before actual stores, thus even when the external memory is
not fully up-to-date. This may cause memory consistency problems
that need to be addressed. We solve this issue by generating exact
communication sets when possible, in a way similar to exact data-
flow analysis [11], and by defining valid approximations otherwise.

Our strategy consists in scheduling a load request just before
a first read (unless previously written) and a store request just
after a last write. Data are loaded/stored in a strip only once and,
between the first and last accesses, they are kept and used (read
and written) in local memory, exploiting data reuse. As a bonus,
this method handles naturally the case where dependences exist
between tiles: as data involved in inter-tile dependences are kept
in local memory, the sequential execution of tiles guarantees the
program correctness. Another consequence is that, unlike previous
approaches where the resulting lifetimes of array elements are
identical (either between the first and last tile, or just within a tile),
memory allocation based on bounding box as in [5, 14, 15] is not
enough: to exploit different lifetimes, modular mappings [1, 10, 12]
are more suitable. For the previous example, a memory of only 3b
elements is used to store the elements of array c, and even only 2b
if the first tile of a strip does not overlap with the second tile.

3. Implementation and Experimental Results

We implemented all necessary program analysis, generation of
communicating sets, and code generation for the different com-
municating processes, making an extensive use of the parametric

linear programming tool PIP (www.piplib.org). Our prototype
generates, from the C code of a small kernel to be optimized, a C
code that implements a double-bufferized version of it. This code
can be simulated using linux processes, FIFOs, and shared mem-
ories. Its different processes are then synthesized and integrated
automatically using C2H and Altera SOPC builder. Before, we cur-
rently still need to do a few modifications by hand, such as insert-
ing some adequate pragmas for C2H, linearizing array addresses
with the right base addresses, instantiating memories in the SOPC
builder, changing some arrays into non-aliasing pointers. All these
changes are systematic, but not integrated yet in our code generator.

For the 3 kernels analyzed in [2], we retrieve the performances
of the versions optimized by hand. They can run 6x or more faster
than the direct implementations (the maximal speed-up is 8, if, in
the initial code, successive DDR accesses are in different rows).
Note that these speed-ups are obtained not because computations
are parallelized (tiles are run sequentially) but because DDR re-
quests are reorganized, fully pipelined, overlapped with computa-
tions, and because data reuse is exploited. These first experimental
results show that our method is effective and promising compared
to handmade design. To our knowledge, this is the first time, in the
context of HLS, that such accelerators are automatically generated.

References

[1] C. Alias, F. Baray, and A. Darte. Bee+Cl@k: An implementation of
lattice-based array contraction in the source-to-source translator Rose.
In ACM Conference LCTES’07, San Diego, USA, June 2007.

[2] C. Alias, A. Darte, and A. Plesco. Optimizing DDR-SDRAM com-
munications at C-level for automatically-generated hardware acceler-
ators. In [EEE Int. Conference ASAP’10, pages 329-332, July 2010.

[3] C. Alias, A. Darte, and A. Plesco. Program analysis and source-level
communication optimizations for HLS. TR 7648, Inria, June 2011.

[4] C. Alias, A. Darte, and A. Plesco. Kernel offloading with optimized
remote accesses. TR 7697, Inria, July 2011.

[5] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. Automatic data movement and com-
putation mapping for multi-level parallel architectures with explicitly
managed memories. In ACM Symp. PPoPP’08, pages 1-10, 2008.

[6] D. Chavarria-Miranda and J. Mellor-Crummey. Effective communi-
cation coalescing for data-parallel applications. In ACM Symposium
PPoPP’05, pages 14-25, Chicago, IL, USA, 2005.

[71 W.-Y. Chen, C. Iancu, and K. Yelick. Communication optimizations
for fine-grained UPC applications. In IEEE Int. Conf. on Parallel
Arch. and Compilation Techniques (PACT’05), pages 267-278, 2005.

[8] J. Cong, H. Huang, C. Liu, and Y. Zou. A reuse-aware prefetching
scheme for scratchpad memory. In DAC’11, pages 960-965, 2011.

[9] P. Coussy and A. Morawiec. High-Level Synthesis: From Algorithm
to Digital Circuit. Springer, 2008.

[10] A. Darte, R. Schreiber, and G. Villard. Lattice-based memory alloca-
tion. IEEE Transactions on Computers, 54(10):1242—1257, Oct. 2005.

[11] P. Feautrier. Dataflow analysis of array and scalar references. Interna-
tional Journal of Parallel Programming, 20(1):23-53, Feb. 1991.

[12] E. D. Greef, F. Catthoor, and H. D. Man. Memory size reduction
through storage order optimization for embedded parallel multimedia
applications. Parallel Computing, 23:1811-1837, 1997.

[13] I Issenin, E. Borckmeyer, M. Miranda, and N. Dutt. DRDU: A data
reuse analysis technique for efficient scratch-pad memory manage-
ment. ACM TODAES, 12(2), Apr. 2007. Article 15.

[14] A. Leung, N. Vasilache, B. Meister, M. M. Baskaran, D. Wohlford,
C. Bastoul, and R. Lethin. A mapping path for multi-GPGPU accel-
erated computers from a portable high level programming abstraction.
In ACM Workshop GPGPU'’10, pages 51-61, Mar. 2010.

[15] M. Kandemir and A. Choudhary. Compiler-directed scratch pad mem-
ory hierarchy design and management. In DAC’02, pp. 628-633, 2002.

[16] J. Xue. Loop Tiling for Parallelism. Kluwer Academic, 2000.



