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Abstract-Some data- and compute-intensive applications can 
be accelerated by offloading portions of codes to platforms such 
as GPGPUs or FPGAs. However, to get high performance for 
these kernels, it is mandatory to restructure the application, to 
generate adequate communication mechanisms for the transfer 
of remote data, and to make good usage of the memory band­
width. In the context of the high-level synthesis (HLS), from 
a C program, of hardware accelerators on FPGA, we show 
how to automatically generate optimized remote accesses for an 
accelerator communicating to an external DDR memory. Loop 
tiling is used to enable block communications, suitable for DDR 
memories. Pipelined communication processes are generated to 
overlap communications and computations, thereby hiding some 
latencies, in a way similar to double bufTering. Finally, not only 
intra-tile but also inter-tile data reuse is exploited to avoid remote 
accesses when data are already available in the local memory. 

Our first contribution is to show how to generate the sets of 
data to be read from (resp. written to) the external memory just 
before (resp. after) each tile so as to reduce communications 
and reuse data as much as possible in the accelerator. The 
main difficulty arises when some data may be (re)defined in the 
accelerator and should be kept locally. Our second contribution 
is an optimized code generation scheme, entirely at source­
level, i.e., in C, that allows us to compile all the necessary 
glue (the communication processes) with the same HLS tool 
as for the computation kernel. Both contributions use advanced 
polyhedral techniques for program analysis and transformation. 
Experiments with Altera HLS tools demonstrate how to use our 
techniques to efficiently map C kernels to FPGA. 

I. INTRODUCTION 

HLS tools [1], e.g., Catapult-C, Impulse-C, Pico-Express, 
C2H, Gaut, Spark, Ugh, provide a convenient level of abstrac­
tion (in C-like languages) to implement complex designs. Most 
of these tools integrate state-of-the-art back-end compilation 
techniques and are thus able to derive an optimized internal 
structure, thanks to efficient techniques for scheduling, re­
source sharing, and finite-state machines generation. However, 
integrating the automatically-generated hardware accelerators 
within the complete design, with optimized cOlmnunications, 
synchronizations, and local buffers, remains a hard task, re­
served to expert designers. In addition to the VHDL glue that 
must sometimes be added, the input program must often be 
rewritten, in a proper way that is not obvious to guess. For 
HLS tools to be viable, these issues need to be addressed: a) 
the interface should be part of the specification and/or automat­
ically generated by the HLS tool; b) HLS-specific optimizing 
program restructuring should be available, either in the tool or 
accessible to the designer, so that high performances (mainly 
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throughput) can be achieved. High-level transformations and 
optimizations are common in high-performance compilers, 
not yet in high-level synthesis. But their interest and their 
specificities for HLS have been demonstrated through hand­
made designs or restructuring methodologies [2], [3], [4], [5]. 

The goal of this paper is to show how the handmade 
restructuring proposed in [5] in the context of C2H, the Altera 
HLS tool, can be fully automated, thanks to advanced polyhe­
dral techniques for code analysis and code generation, entirely 
at source level (i.e., in C). We focus on the optimization 
of hardware accelerators that work on a large data set that 
cannot be completely stored in local memory, but need to be 
transferred from a DDR memory at the highest possible rate, 
and possibly temporarily stored locally. For such a memory, 
the throughput of memory transfers is not uniform: successive 
accesses to the same DDR row are pipelined an order of 
magnitude faster than when accessing different rows. Conse­
quently, accessing data by blocks is a direct way of improving 
performances: if not, the hardware accelerator, even if it is 
highly-optimized, keeps stalling and runs at the frequency of 
the DDR accesses. A similar situation occurs when accessing a 
bus for which burst communications are more efficient or when 
optimizing remote accesses for GPGPUs. More generally, this 
offloading problem occurs when transfers between an external 
large memory and an accelerator with a limited memory 
should be reduced (thanks to data reuse in the accelerator), 
pipe lined, and preferably performed by blocks. This is why 
our optimization techniques, although developed for HLS and 
specialized to Altera C2H, may be interesting in other contexts. 

Our technique relies on loop tiling to increase the granu­
larity of computations and cOlmnunications. Each strip of tiles 
is optimized as follows. Transfers from and to the DDR are 
pipelined, in a blocking and double-buffering fashion, thanks 
to the introduction of software-pipe lined communicating pro­
cesses. Data reuse within a strip, in particular inter-tile reuse, 
is exploited by accessing data from the accelerator and not 
from the DDR when already present. Local memories are 
automatically generated to store the communicated data and 
exploit data reuse. Our main contributions are the following: 

Program analysis We show how to compute the sets Load(T) 
and Store(T) of data to be loaded/stored before/after the 
execution of a tile T, thanks to parametric linear programming, 
so that the lifetime of each individual data in the local memory 
is minimized, which tends to reduce its size. Unlike previous 
approaches, ours can pipeline communications and exploit 
reuse among tiles even for data redefined in the tile strip. 
It can also be extended to the case where data accesses are 
approximated, i.e., when reads/writes are not known for sure. 



Code generation Driven by a "scheduling function" that 
expresses the tiling of loops and the pipelining of tiles, our 
technique generates automatically the size of local buffers, the 
access functions, the scanning of data sets to access the DDR 
row-wise, and the generation of cOlmnunicating processes, 
thanks to the integration of several polyhedral techniques. 

HLS integration A unique feature of our scheme is that the 
original computation kernel and all generated communicating 
processes are expressed in C and compiled into hardware with 
the same HLS tool (C2H), used as a back-end compiler. 

In Section II, we recall loop tiling and illustrate our 
technique through a synthetic example. Section III explains 
how to optimize remote accesses for an offloaded kernel, when 
the sets of data read and written in a tile are known exactly I. 
In Section IV, we apply our technique to the special case of 
HLS with Altera C2H. We present the different steps of the 
code generation and some experimental results comparing the 
performances of the hardware accelerators of [5], optimized by 
hand, and those optimized automatically thanks to our method. 

II. Loop TILING AND TRANSFER SETS 

Our method can be applied to offload a kernel on which 
loop tiling [7] and polyhedral transformations can be applied, 
i.e., a set of for nested loops, manipulating arrays and 
scalar variables, whose iterations can be represented by an 
iteration domain using polyhedra, i.e., when loop bounds, if 
conditions, and array access functions are affine expressions 
of surrounding loops counters and structure parameters. Many 
compute-intensive kernels (e.g., from linear algebra, image 
processing) fit into this model. 

Loop tiling is a standard loop transformation, known to 
be effective for automatic parallelization and data locality im­
provement. With loop tiling, the iteration domain is partitioned 
into rectangular blocks (tiles) of iterations to be executed 
atomically. Loop tiling can be viewed as a composition of 
strip-mining and loop interchange. Strip-mining introduces 
two kinds of loops: the tile loops, which iterate over the 
tiles, and the intra-tile loops, which iterate within a tile. This 
step is always legal. Then, loop interchange pushes the intra­
tile loops to innermost positions. In some cases, a first loop 
transformation, e.g., loop skewing, is needed to make the 
loops til able (i.e., fully permutable). "Rectangular" has to be 
understood w.r.t. this preliminary change of basis. 

We call tile strip the set of tiles described by the innermost 
tile loop, for a given iteration of the outer tile loops. This 
notion is widely used in our approach, as our optimizations 
are performed within such a one-dimensional tile strip, pa­
rameterized by the counters of the outer tile loops. A loop 
tiling for a statement S, within n nested loops with iteration 
domain Ds, can be defined thanks to an n-dimensional affine 
function i M B(S, i) (the permutable dimensions), where i is 
the iteration vector scanning Ds, and a (single, to make things 
simpler) tile size b. Then, a tile, defined by n loop counters 

h, . . .  , In, contains i E Ds if blk � B(S, i) < b(1k + 1), 
for k E [l..n]. Adding these constraints, for a fixed value b, 

IThis restriction is enough for the kernels of Section IV and, more generally, 
when reads are approximated. When writes are approximated, the technique 
can be extended [6], but this goes out of the scope of this paper. 
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Figure 1. Different tilings and communications 

to those expressing Ds specifies an iteration domain D� of 
dimension 2n. If the transformation B leads to n permutable 
loops, then a valid sequential schedule of the tiled code is, for 
example: Btiled(S, h . . .  In, i) = (h, . . .  , In, B(S, i)). 

Main example: We illustrate the different steps of our 
technique with the next code, which computes, in c, the product 
of 2 polynomials of degree N, stored in arrays p and q. 

for (i=Oi i<=2*Ni i++) 
Sl: e[i] = Oi 

for (i=Oi i<=Ni i++) 
for (j=Oi j<=Ni j++) 

S2: e[i+j] = e[i+j] + p[i]*q[j]i 

From now on, we suppose that the offloaded kernel is 
the set of nested loops containing S2. If commutativity and 
associativity are not exploited, some preliminary loop trans­
formation is needed to make the loops permutable. 

A possible tiling is given by the schedule (i,j) M (N -
j, i), corresponding to a loop interchange and a loop reversal 
of the j loop, see the left of Fig. 1. For such a tiling, there 
is maximal inter-tile reuse of q within a tile strip (along the j 
axis), maximal intra-tile reuse of p within a tile (along the i 
axis), and some intra- and inter-tile reuse for c between two 
successive tiles. In grey are shown the elements of c that must 
be loaded by each tile, if maximal data reuse is exploited, and 
in hatched white those that must be stored back by each tile. 

With the tiling in the right of Fig. 1, defined by the schedule 
(i, j) M (i + j, i), the data dependences on c are always kept 
in the tile strip. This way, the loads and stores for array c 
only arise on the first and last tiles of the tile strip. Notice 
that the loads and stores for the array p are the same in 
both cases. However, the number of transfers for array q now 
increases compared to the first tiling. As an illustration, for this 
second tiling, the full sequential schedule of iterations, Btiled, 
is (i, j) M (1, J, i + j, i) where bI � i + j � bI + (b -1) and 
bJ � i � bJ + (b -1), i.e., I = li¥J and J = liJ. • 

The choice of the tiling is left to the user 2 and specified, 
thanks to a C pragma, as a function B, such as (N - j, i). 
Given S, D�, and Btiled, standard polyhedral code generation 
could be used to generate a tiled code. However, applying such 
a preliminary rewriting step would complicate our subsequent 
optimizations. Instead, all analysis and code generation steps 
described hereafter are done with respect to this function B. 

2For the automatic selection of tile directions and size, see for ex. [7]. [8]. 



The execution of each tile T is then decomposed, thanks 
to communication coalescing (see Section III), into three 
pipelined processes, for loading data, storing data, and per­
forming the computations, as required for T. The function e 
is then also used to express the relative schedules of these 
processes and to help us synthesize the adequate local buffers 
in a double-buffering fashion. Actually, "double-buffering" is 
a language simplification: we will not use two buffers, but 
one single (larger) buffer. However, two successive blocks of 
computation in a tile strip are indeed pipe lined with two blocks 
of communications, which results in an overlapping between 
communications and computations (see Section IV). 

To define the transfer sets Load(T) and Store(T) express­
ing the data to be loaded/stored before/after the execution of 
a tile indexed by T, we make the following assumptions: 

• Elements in Load(T) are loaded from external memory 
before the tile T starts, but in any order for a given T. 

• Elements in Store(T) are stored to external memory after 
the tile T ends, but in any order for a given T. 

• Tiles are executed in sequence, following the sequential 
order specified by etiled, in particular with increasing T. 

• Similarly, transfers in Load(T) (resp. Store(T)) are initi-
ated before those in Load(T') (resp. Store(T')) if T < T'. 

In addition, we will make sure that a data is never loaded 
from the external memory if it has already been loaded earlier. 
Instead, it will be kept in local memory until its last use. 

Back to the example: Consider Fig. 1 with the left 
tiling corresponding to (i, j) --+ (1, J, ii, jj) where ii = N -j 
and jj = i. Our technique determines that the elements of c to 
be loaded are those depicted in grey boxes, indicated as "First 
read (c)". For that, given 3 parameters, the loop bound N, 
the outer tile index I, and the memory index m of array c, 
we derive (here for b = 10) an expression of the initial loop 
indices (i, j) that perform the first reads of c in the tile strip: 

• (i,j) = (O,m) if 0 :s: -101 + N - m :s: 9 (this case 
corresponds to a vertical portion of c); 

• (i,j) = (101 -N +m, N -WI) ifl :s: 101 -N +m :s: N 
(this corresponds to an horizontal portion). 

Then, we derive Load(T) (here T = J with previous notations) 
as the set of data m read in T if this is the first access in the 
tile strip indexed by I: 

{m I max(O,N -101 - 9):S: m:S: N -101, T = O}U 
{m I max(l, lOT) :s: m + 101 - N :s: min(N, lOT + 9)} 

How to get these load/store sets (basically, first read/last 
writes) in general, how the corresponding transfers are orches­
trated, and how the necessary local memories are dimensioned 
and addressed, is detailed in the rest of this paper. • 

III. COMMUNICATION COALESCING 

We now show how to select the array regions to be loaded 
from and stored to the external DDR memory. This step 
impacts the amount of communications, the lifetime of array 
elements in the local memory, and the size of this memory. 

To perform data transfers, the most naive solution is to 
access the DDR for each remote data access in the code. This 

solution does not require any local memory but is very ineffi­
cient: the latency to the DDR has to be paid for each access, 
which takes roughly 400 ns on our platform. Accesses must 
thus be pipe lined (a feature available in Altera C2H) so that the 
accelerator throughput depends not on the DDR latency, but on 
its throughput. The accelerator can then receive 32 bits every 
80 ns, if successively-accessed data are not in the same DDR 
row. However, if data accesses are reorganized by blocks on 
the same row, thanks to loop tiling, the accelerator can work at 
full rate, i.e., it can receive 32 bits every 10 ns. But to sustain 
this rate and not pay any DDR latency, conununications must 
be fully pipelined. This can be done thanks to communication 
coalescing, which amounts to hoisting transfers out of a tile 
and to regrouping the same accesses to eliminate redundancy. 

Communication coalescing is a common optimization in 
compilers, for optimizing communications and scratch-pad 
memories [9], [10], [11], [12], [8], [13], [14], [15]. The form 
of communication coalescing we develop here is different as it 
exploits not only intra-tile reuse but also inter-tile reuse, even 
if data dependences exist between tiles, at the granularity of 
individual array elements. Usually, the approach is to load, 
just before executing a tile, all the data read in the tile, then 
to store to the DDR all data written in the tile. This solution 
does not exploit inter-tile data reuse and, unless no data-flow 
dependence exists between successive tiles, forbids to overlap 
computations and communications. This is the approach im­
plemented in the RStream compiler, as described in [13]. The 
other extreme solution is to first load all data needed in a tile 
strip, then to execute all tiles in the strip, and finally to store 
to the DDR all data produced by the tile strip, in other words, 
to hoist some communications outside the innermost tile loop. 
This exploits data reuse but requires a large local memory to 
store all needed data. Also, computations cannot start before 
all data have arrived. Another important difference is that our 
technique performs loads from the external memory even when 
this memory is not fully up-to-date. 

Our strategy consists of sending load and store requests 
to the DDR only at the time they are needed. Furthermore, 
we load from (resp. store to) the DDR any data read (resp. 
written) in the current tile strip only once. Between the first and 
the last accesses, the data is kept and used (read and written) 
in the local memory, exploiting data reuse. As a bonus, this 
method handles naturally the case where dependences exist 
between tiles of a tile strip. Indeed, as data concerned by 
inter-tile dependences are kept in local memory, the sequential 
execution of tiles guarantees the program correctness. Another 
consequence is that, unlike for previous approaches where the 
resulting lifetimes of array elements are all the same (either 
from the first tile to the last tile, or just within a tile), memory 
allocation based on bounding box as in [13], [10], [8] is not 
enough: to exploit the different lifetimes of individual array 
elements, we need to use a more general allocation scheme, 
based on modular mappings, as explained in Section IV-B. 

Our technique relies on the following definitions and the­
orems. For a tile T, let In(T) be the data read in T, but not 
defined earlier in the tile, i.e., used in T and live-in for T, and 
let Out(T) be the data written in T. We assume In(T) and 
Out(T) to be exact. The following theorem gives a solution 
where loads are performed as late as possible and stores as 
soon as possible. This has the effect of minimizing the lifetime 



of data in the local memory, which tends to reduce its size. 

Theorem 1: The functions Load and Store defined by 

• Load(T) = In(T) \ {In(t < T) U Out(t < T)} 
• Store(T) = Out(T) \ Out(t > T) 

avoid useless transfers and reduce lifetimes in local memory. 

Theorem 1 specifies optimized transfers based on set 
operations. Instead of relying on such operations, which could 
be done with the libraries Omega or ISL 3, our implementation 
uses an alternative approach based on PIP, a tool for parametric 
linear prograrmning [16]. Assuming that the analyzed kernel 
fits in the polytope model, i.e., has affine loop bounds and 
access functions, we define: 

• FirstOpReadBeforeWrite(m), first operation that accesses 
an array cell indexed by m, if it is a read. 

• LastOpWrite(m), last operation accessing m as a write. 

Theorem 1 can then be reformulated as follows: 

Theorem 2: The operators of Thm. 1 can be defined as: 

• Load(T) = {m I FirstOpReadBeforeWrite(m) E T} 
• Store(T) = {m I LastOpWrite(m) E T} 

Load(T) gives the data accessed for the first time in T if this 
is a read, Store(T) the data written for the last time in T. 

FirstOpReadBefore Write( m) is obtained by first extracting 
the set of operations accessing m. Then, we compute the access 
that is scheduled first (with respect to Btiled, the tiled schedule) 
in the tile strip, which boils down to compute the lexicographic 
minimum in a union of polytopes, as for exact array data-flow 
analysis [l7]. More precisely, in the polytope model, reads 
(this is similar for writes) to c are as follows: 

S : i ED: . . .  = . . .  c[u(i)] . . .  

where D is the iteration domain of statement S, i an iteration 
vector, and u is affine. The reads of c(m) in S are the 
operations (S, i) such that u(i) = m and i E D: 

Read(m, S) = {i ED I u(i) = m} 

(If c occurs more than once in S, each access is distinguished.) 
Now, remember that S is given an affine schedule Bs, see 
Section II. We extend the definition of Read by incorporating 
the execution date of i, i.e., (J, ii) = (L B s (i) J , B s (i)) to get: 

{(J, ii,i) Iii = Bs(i)AbJ � ii < b(J +f)Au(i) = mAi ED} 

Then, we use PIP to compute the lexicographic minimum 
of Read(m, S). The result depends on the parameters (in 
our example, the loop bound N, the outer tile index J, the 
memory cell m) and is presented as a discussion on their values 
(and possibly some additional parameters expressing integer 
division), more precisely as a tree of affine conditions (a quasi­
affine selection tree or Quast in PIP's terminology), where each 
result (leaf of the tree) is expressed as an affine function. When 
several references exist (reads and writes) to the array c, the 
previous process is applied to each reference and the resulting 
piece-wise affine functions are combined, with standard Quasts 
combinations and simplifications, to get the global mini­
mum. Of course, for computing FirstOpReadBeforeWrite(m), 

30mega: hup:llchunchen. info/omegaJ, ISL: http://freecode. com/projects/isl 

Storel 

Time 

Figure 2. Software-pipelined synchronizations. 

only the cases where the minimum is a read (and not a 
write) are kept. Then, following Theorem 2, it remains to 
add the constraints that express the fact that an operation 
FirstOpReadBeforeWrite(m) belongs to a given tile T. The 
final result is described as a relation between m and T that 
can be read as a set of value m, parameterized by T to get the 
sets Load(T) and Store(T). Similarly, Store(T) is obtained by 
maximization, through the computation of LastOpWrite(m) 

Back to the example: For the left tiling of Fig. 1, 
computing FirstOpReadBeforeWrite(m), for the tile strip in­
dexed by J, amounts to finding (i,j) such that (J, ii,jj, i,j) 
is lexicographically minimum, with the constraints: 

{ ii = N -j, jj = i, i + j = m, 0 � i � N, 0 � j � N 
bJ � ii � b(I + 1) -1, bJ � jj � b(J + 1) -1 

This system can be solved with PIP if the tile size b is 
fixed. After simplifications, we obtain the expression given in 
Section II for b = 10. Finally, given the schedule B( i, j) = 

(N - j, i), we put back the constraint L*J = T, where T is 
a parameter indexing tiles, and, from this relation between T 
and m, we derive the set Load(T) given in Section II. • 

IV. ApPLICATION TO HLS FOR FPGA 

We now use the theory developed in Section III to generate 
automatically a C specification of communicating processes 
that can be compiled into hardware by a HLS tool, namely Al­
tera C2H, following the procedure proposed in [5]. It remains 
to show how the different communication and computation 
processes are scheduled and synchronized, in C using C2H, 
how the local memories (size and access function) are then 
defined with respect to this schedule, and how the load and 
store sets are finally scanned. We point out that all these steps 
(computation of loads/stores, computation of a mapping for 
designing local buffers, scanning of sets for kernel generation) 
are done w.r.t. the schedule B. This makes the whole technique 
transparent, without even generating an initial loop tiling. 

A. Synchronization of computation/communication processes 

Following the methodology of [5], we generate 5 functions 
(called drivers) to be translated by C2H into separate hardware 
accelerators. For each tile strip, the Compute driver executes 
all computations of tiles in sequence, whereas, for communi­
cations, the tiles are processed by pairs, by 2 load and 2 store 
drivers, e.g., if Tmin = 0, LoadO and StoreO deal with even 
tiles, Loadl and Storel with odd tiles. Each driver contains 
a loop nest iterating over the tiles. For each tile, a piece 
of code (called micro-kernel) performs the required loads, 
computations, or stores. The drivers are run in parallel and 
software-pipelined as shown in Fig. 2, with synchronizations 
implemented as blocking reads and writes in FIFOs of size 1. 

In C2H, nested loops are scheduled with a hierarchical 
finite-state machine (FSM) structure. Data fetches in loops 
are pipelined to hide latency. Furthermore, a special state is 



added, after a precomputed constant number of cycles, that 
stalls the FSM until the data is received. We exploit this 
mechanism to guarantee the data-flow dependences induced 
by the remote data transfers (blue arrows in Fig. 2) by placing 
the corresponding synchronizations outside the micro-kernels. 
On the contrary, the synchronizations used to sequentialize 
the accesses to the DDR (dotted arrows) are placed inside 
the micro-kernels, at the last iteration, i.e., as soon as the 
last DDR request within a tile is initiated. This avoids the 
important penalty due to the loop pipeline that must be drained. 
This way, computations and communications are pipe lined and 
latencies are hidden. The subtleties of this implementation and 
the interaction with C2H specificities were detailed in [5]. 

For the design of local memories, we need to specify the 
software-pipelined schedule of the processes to know when 
buffer locations can be reused. Several software pipelines are 
possible, the one implemented in our tool is as depicted in 
Fig. 2. It is captured as follows. If T is the innermost tile 
counter (i.e., iterating on the tile strip), we add the constraint 
T = 2p (resp. T = 2p + 1) to the tile domains, where p 
is a fresh integer variable. Then, as far as memory reuse is 
concerned, it is enough to specify the pipelined schedule with 
the following 2D schedule Bdb (this is when T min is even): 

Ifdb(LoadO,2p) = (p,O) 
Ifdb(Comp,2p) = (p, 1) 
Ifdb(StoreO,2p) = (p,2) 

Ifdb(Loadl, 2p + 1) = (p, 1) 
Ifdb(Comp, 2p + 1) = (p,2) 
Ifdb(Storel, 2p + 1) = (p,3) 

B. Local memory management 

With our method, all computations are done with variables 
from the local memory. The lifetime of such a variable starts 
at its first access (possibly resulting from a load operation) 
and ends at its last access (possibly resulting from a store 
operation). We now explain how variables are mapped in the 
local memory. It must be done so that (i) two data live at the 
same time are not mapped to the same local address, (ii) the 
local memory size is as small as possible. 

Unlike the methods developed in [18], which try to pack 
data optimally (in size), possibly with complex and expensive 
mapping functions and reorganization, we rely on hardware­
inexpensive array contraction based on modular mappings [19], 
[20]: an array cell a(i) is mapped to a local array cell 
a_tmp((J(i) ) where a(i) = Ai mod b, A is an integer ma­
trix, and b is an integral vector defining a modulo oper­
ation component-wise. When the array index functions are 
translations w.r.t. the loop indices, as in a [ i 1 [j -1], the 
set of live array cells is a window sliding during a tiled 
program execution, allowing efficient memory optimizations. 
The framework presented in [20] generalizes this particular 
situation, given an analysis of live array cells. 

For code generation, a direct approach is to feed ClooG 
(http://www.cloog.org) with the different data sets, together 
with a sequential schedule. In our context however, although 
correct, this produces inefficient code, mostly due to C2H 
constraints. It is better to generate each kernel as a single 
"linearized" loop executing one instruction per iteration, using 
the Boulet-Feautrier algorithm [21]. This avoids the penalty 
due to the pipeline of inner loops that must be drained 
(see Sect. IV-A). Also, as recalled in Sect. III, accessing 

successively in different DDR rows degrades the throughput. 
With a single loop, we achieve spatial locality in the DDR 
accesses by scanning the different arrays one after the other, 
with no interleaving, and following rows, i.e., lexicographically 
with respect to the array indices. Furthermore, such a loop is 
nicely pipelined with C2H, with one DDR access per iteration. 

C. Experimental results 

We implemented our methods using the polyhedral tools 
PIP and Polylib. Our prototype takes as input the C source 
code of a small kernel to be optimized. The input parameters, 
such as the loop tiling, are specified with pragmas. Then, a C 
source code, which implements a double-bufferized version of 
the kernel, is automatically generated. It can be simulated using 
linux processes, FIFOs, and shared memories (with IPC linux 
library). The 5 driver codes are then synthesized using C2H, 
which integrates them automatically in the system instantiated 
using Altera SOPC builder. This C source code is generic 
and cannot be inunediately compiled C2H. At this point, a 
few modifications by hand are needed, such as inserting the 
adequate pragmas for C2H, transforming array accesses to 
linearized addresses with the right base addresses, instantiating 
memories in the SOPC builder, changing some arrays into 
non-aliasing pointers so that C2H, whose dependence analyzer 
and software pipeliner are weak, can generate codes with the 
right initiation intervals, etc. These changes are minor and 
systematic, but they are not integrated yet in our code generator 
and take time when performed by hand. 

The study provided in [5], for the HLS tool C2H, showed 
that, even for elementary kernels, generating adequate C 
codes that can be automatically synthesized with no additional 
handmade VHDL glue, while exploiting the maximal DDR 
bandwidth, is very tricky. But it is feasible if codes and 
synchronizations are written in a specific, though generic, way. 
Our techniques show that this process can be automated. We 
considered the 3 kernels studied in [5] (with the same tiling), 
DMA transfer, sum of vectors (VS), matrix multiply (MM), 
to check if we could achieve the same performance automat­
ically. Matrix multiply, the main example demonstrated for 
the RStream compiler [13], is already, for circuit generation, 
very involved: the original code has a few lines but the hand­
optimized version (a double-buffered matrix multiply by block) 
has more than 500 lines! 

We used ModelSim to evaluate our designs, which were 
synthesized on the Altera Stratix II EP 2 S 1 8  OF 150 8e3 
FPGA, running at 100 MHz, and connected to an outside 
DDR memory, of specification JEDEC DDR-400 128 Mb x8, 
CAS of 3.0, running at 200 MHz. The optimized versions 
can run 6x or more faster than the direct implementations 
(remember that the maximal speed-up is at most 8, if we start 
from a code where successive DDR accesses are in different 
rows). Note that these speed-ups are obtained not because 
computations are parallelized (tiles are run in sequential), not 
only because the communications are pipelined (this is also the 
case in the original versions), but (i) because DDR requests 
are reorganized to get successive accesses on the same row as 
much as possible, (ii) because some communications overlap 
computations, and (iii) because some data reuse is exploited. 

However, to achieve this, there is a (moderate) price to 
pay in terms of hardware resources, in addition to the local 



Kernel ALUT Reg. Tot. reg. DSP Max. freg. Speed-up 
System alone 4406 3474 3606 8 205.85 
DMA original 4598 3612 3744 8 200.52 I 
DMA manual 9853 10517 10649 8 162.55 6.01 
DMA autom. 11052 12133 12265 48 167.87 5.99 
VS original 5333 4607 4739 8 189.04 I 
VS manual 10881 11361 11493 8 164 6.54 
VS autom. 11632 13127 13259 48 159.8 6.51 
MM original 6452 4557 4709 40 191.09 I 
MM manual 15255 15630 15762 188 162.02 7.37 
MM autom. 24669 32232 32364 336 146.25 7.32 

Table I. SYNTHESIS: ORIGINAL, MANUAL, AUTOMATIC 

memories involved to store the data locally. This is illus­
trated in Table I, which gives different parameters measuring 
the hardware usage: the number of look-up tables (column 
"ALUT"), of registers ("Reg."), of registers used by the whole 
system ("Total reg."), and of hard 9-bit DSP cores ("DSP"). 
Compared to the manually-optimized versions, the automatic 
ones use slightly more ALUT and registers, mostly because 
they use 2 separate FIFOs for synchronization between the 
drivers LoadO and Loadl , and the driver Compute (we changed 
the design of [5] to make it more generic). They also use more 
multipliers to perform tile address calculations, which could be 
removed by strength reduction. 

Speed-ups are given in the column "S-U". Optimized ver­
sions have a slightly smaller maximal running frequency than 
the original ones (column "Max. freq." in MHz). But, if the 
designs already saturate the memory bandwidth at 1 00 MHz, 
running the systems at a higher frequency will not speed them 
up anyway. This maximal frequency reduction could come 
from more complex codes, the Avalon interconnect routing, 
and the use of double-port memories available in the FPGA, 
which induces additional synthesis constraints. 

V. CONCLUSION 

In the context of HLS for FPGA, we proposed an automatic 
translation method to optimize, at source level, a kernel linked 
to an external DDR memory. Our method relies on a code 
restructuring that combines loop tiling (specified by the user), 
advanced communication coalescing and data reuse, pipelining 
of communicating processes in a double-buffer fashion, buffer 
size optimization, and optimized loop linearization. It has been 
implemented as a prototype, and the first experimental results 
show that the method performs as good as our previous fully­
optimized handmade designs. To our knowledge, this is the 
first time, in the context of HLS, that such accelerators are 
automatically generated. Our method is also a generic form 
of kernel offloading to a distant platform and thus could be 
interesting in other contexts. 

Our current implementation, exposed in this paper, is so 
far limited to the case where the transfer sets Load(T) and 
Store(T) can be built exactly. In theory, the case where the sets 
In(T) and Out(T) (data read/written in T) are approximated 
can be handled. This will give the opportunity to handle more 
irregular codes and to approximate the transfer sets if this is 
more efficient. Another interesting extension is to analyze and 
to generate codes in a parametric fashion w.r.t. tile sizes. These 
extensions have still to be implemented and validated. 
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