
HAL Id: hal-01725143
https://hal.inria.fr/hal-01725143

Submitted on 8 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Communication Patterns in Polyhedral
Process Networks

Christophe Alias

To cite this version:
Christophe Alias. Improving Communication Patterns in Polyhedral Process Networks. HIP3ES 2018
- Sixth International Workshop on High Performance Energy Efficient Embedded Systems, Jan 2018,
Manchester, United Kingdom. <hal-01725143>

https://hal.inria.fr/hal-01725143
https://hal.archives-ouvertes.fr


Improving Communication Patterns in Polyhedral Process
Networks

Christophe Alias
CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon

christophe.alias[at]ens-lyon.fr

ABSTRACT
Embedded system performances are bounded by power con-
sumption. The trend is to offload greedy computations on
hardware accelerators as GPU, Xeon Phi or FPGA. FPGA
chips combine both flexibility of programmable chips and
energy-efficiency of specialized hardware and appear as a
natural solution. Hardware compilers from high-level lan-
guages (High-level synthesis, HLS) are required to exploit
all the capabilities of FPGA while satisfying tight time-to-
market constraints. Compiler optimizations for parallelism
and data locality restructure deeply the execution order of
the processes, hence the read/write patterns in communi-
cation channels. This breaks most FIFO channels, which
have to be implemented with addressable buffers. Expen-
sive hardware is required to enforce synchronizations, which
often results in dramatic performance loss. In this paper,
we present an algorithm to partition the communications
so that most FIFO channels can be recovered after a loop
tiling, a key optimization for parallelism and data locality.
Experimental results show a drastic improvement of FIFO
detection for regular kernels at the cost of a few additional
storage. As a bonus, the storage can even be reduced in
some cases.

1. INTRODUCTION
Since the end of Dennard scaling, the performance of em-

bedded systems is bounded by power consumption. The
trend is to trade genericity (processors) for energy efficiency
(hardware accelerators) by offloading critical tasks to spe-
cialized hardware. FPGA chips combine both flexibility
of programmable chips and energy-efficiency of specialized
hardware and appear as a natural solution. High-level syn-
thesis (HLS) techniques are required to exploit all the capa-
bilities of FPGA, while satisfying tight time-to-market con-
straints. Parallelization techniques from high-performance
compilers are progressively migrating to HLS, particularly
the models and algorithms from the polyhedral model [7], a
powerful framework to design compiler optimizations. Ad-

HIP3ES 2018
Sixth International Workshop on High Performance Energy Efficient
Embedded Systems
Jan 22th, 2018, Manchester, UK
In conjunction with HiPEAC 2018.

https://www.hipeac.net/events/activities/7528/
hip3es/

ditional constraints must be fulfilled before plugging a com-
piler optimization into an HLS tool. Unlike software, the
hardware size is bounded by the available silicium surface.
The bigger is a parallel unit, the less it can be duplicated,
thereby limiting the overall performance. Particularly, tricky
program optimizations are likely to spoil the performances
if the circuit is not post-optimized carefully [5]. An impor-
tant consequence is that the the roofline model is not longer
valid in HLS [8]. Indeed, peak performance is no longer a
constant: it decreases with the operational intensity. The
bigger is the operational intensity, the bigger is the buffer
size and the less is the space remaining for the computation
itself. Consequently, it is important to produce at source-
level a precise model of the circuit which allows to predict ac-
curately the resource consumption. Process networks are a
natural and convenient intermediate representation for HLS
[4, 13, 14, 19]. A sequential program is translated to a pro-
cess network by partitioning computations into processes
and flow dependences into channels. Then, the processes
and buffers are factorized and mapped to hardware.
In this paper, we focus on the translation of buffers to

hardware. We propose an algorithm to restructure the buffers
so they can be mapped to inexpensive FIFOs. Most often, a
direct translation of a regular kernel – without optimization
– produces to a process network with FIFO buffers [16].
Unfortunately, data transfers optimization [3] and gener-
ally loop tiling reorganizes deeply the computations, hence
the read/write order in channels (communication patterns).
Consequently, most channels may no longer be implemented
by a FIFO. Additional circuitry is required to enforce syn-
chronizations [4, 20, 15, 17] which result in larger circuits
and causes performance penalties. In this paper, we make
the following contributions:

• We propose an algorithm to reorganize the communi-
cations between processes so that more channels can
be implemented as FIFO after a loop tiling. As far
as we know, this is the first algorithm to recover FIFO
communication patterns after a compiler optimization.

• Experimental results show that we can recover most
of the FIFO disabled by communication optimization,
and more generally any loop tiling, at almost no extra
storage cost.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces polyhedral process network and discusses
how communication patterns are impacted by loop tiling,
Section 3 describes our algorithm to reorganize channels,

1



Section 4 presents experimental results, Finally, Section 5
concludes this paper and draws future research directions.

2. PRELIMINARIES
This section defines the notions used in the remainder

of this paper. Section 2.1 and 2.2 introduces the basics of
compiler optimization in the polyhedral model and defines
loop tiling. Section 2.3 defines polyhedral process networks
(PPN), shows how loop tiling disables FIFO communication
patterns and outlines a solution.

2.1 Polyhedral Model at a Glance
Translating a program to a process network requires to

split the computation into processes and flow dependences
into channels. The polyhedral model focuses on kernels whose
computation and flow dependences can be predicted, repre-
sented and explored at compile-time. The control must be
predictable: for loops, if with conditions on loop counters.
Data structures are bounded to arrays, pointers are not al-
lowed. Also, loop bounds, conditions and array accesses
must be affine functions of surrounding loop counters and
structure parameters (typically the array size). This way,
the computation may be represented with Presburger sets
(typically approximated with convex polyhedra, hence the
name). This makes possible to reason geometrically about
the computation and to produce precise compiler analy-
sis thanks to integer linear programming: flow dependence
analysis [9], scheduling [7] or code generation [6, 12] to quote
a few. Most compute-intensive kernels from linear algebra
and image processing fit in this category. In some cases,
kernels with dynamic control can even fit in the polyhe-
dral model after a proper abstraction [2]. Figure 1.(a) de-
picts a polyhedral kernel and (b) depicts the geometric rep-
resentation of the computation for each assignment (• for
assignment load, • for assignment compute and ◦ for as-
signment store). The vector ~i = (i1, . . . , in) of loop coun-
ters surrounding an assignment S is called an iteration of
S. The execution of S at iteration ~i is denoted by 〈S,~i〉.
The set DS of iterations of S is called iteration domain of
S. The original execution of the iterations of S follows the
lexicographic order � over DS . For instance, on the state-
ment C: (t, i) � (t′, i′) iff t < t′ or (t = t′ and i < i′).
The lexicographic order over Zd is naturally partitioned by
depth: �=�1 ] . . .] �d where (u1 . . . ud)�k (v1, . . . , vd)
iff

(
∧k−1
i=1 ui = vi

)
∧ uk < vk.

Dataflow Analysis.
On Figure 1.(b), red arrows depict several flow depen-

dences (read after write) between executions instances. We
are interested in flow dependences relating the production
of a value to its consumption, not only a write followed by a
read to the same location. These flow dependences are called
direct dependences. Direct dependences represent the com-
munication of values between two computations and drive
communications and synchronizations in the final process
network. They are crucial to build the process network. Di-
rect dependences can be computed exactly in the polyhedral
model [9]. The result is a relation → relating each producer
〈P,~i〉 to one or more consumers 〈C,~j〉. Technically, → is a
Presburger relation between vectors (P,~i) and vectors (C,~j)
where assignments P and C are encoded as integers. For
example, dependence 5 is summed up with the Presburger

relation: {(•, t − 1, i) → (•, t, i), 0 < t ≤ T ∧ 0 ≤ i ≤ N}.
Presburger relations are computable and efficient libraries
allow to manipulate them [18, 10]. In the remainder, direct
dependence will be referred as flow dependence or depen-
dence to simplify the presentation.

2.2 Scheduling and Loop Tiling
Compiler optimizations change the execution order to ful-

fill multiple goals such as increasing the parallelism degree or
minimizing the communications. The new execution order
is specified by a schedule. A schedule θS maps each exe-
cution 〈S,~i〉 to a timestamp θS(~i) = (t1, . . . , td) ∈ Zd, the
timestamps being ordered by the lexicographic order �. In
a way, a schedule dispatches each execution instance 〈S,~i〉
into a new loop nest, θS(~i) = (t1, . . . , td) being the new
iteration vector of 〈S,~i〉. A schedule θ induces a new exe-
cution order ≺θ such that 〈S,~i〉 ≺θ 〈T,~j〉 iff θS(~i)� θT (~j).
Also, 〈S,~i〉 �θ 〈T,~j〉 means that either 〈S,~i〉 ≺θ 〈T,~j〉 or
θS(~i) = θT (~j). When a schedule is injective, it is said to
be sequential: no execution is scheduled at the same time.
Hence everything is executed in sequence. In the polyhe-
dral model, schedules are affine functions. They can be de-
rived automatically from flow dependences [7]. On Figure
1, the original execution order is specified by the schedule
θload(i) = (0, i), θcompute(t, i) = (1, t, i) and θstore(i) = (2, i).
The lexicographic order ensures the execution of all the load
instances (0), then all the compute instances (1) and finally
all the store instances (2). Then, for each statement, the
loops are executed in the specified order.
Loop tiling is a transformation which partitions the com-

putation in tiles, each tile being executed atomically. Com-
munication minimization [3] typically relies on loop tiling to
tune the ratio computation/communication of the program
beyond the ratio peak performance/communication band-
width of the target architecture. Figure 3.(a) depicts the
iteration domain of compute and the new execution order
after tiling loops t and i. For presentation reasons, we de-
pict a domain bigger than in Figure 1.(b) (with bigger N
and M) and we depict only a part of the domain. In the
polyhedral model, a loop tiling is specified by hyperplanes
with linearly independent normal vectors ~τ1, . . . ,~~τd where d
is the number of nested loops (here ~τ1 = (0, 1) for the vertical
hyperplanes and ~τ2 = (1, 1) for the diagonal hyperplanes).
Roughly, hyperplans along each normal vector ~τi are placed
at regular intervals bi (here b1 = b2 = 2) to cut the iteration
domain in tiles. Then, each tile is identified by an iteration
vector (φ1, . . . , φd), φk being the slice number of an iteration
~i along normal vector ~τk: φk = ~τk ·~i ÷ bk. The result is a
Presburger iteration domain, here D̂ = {(φ1, φ2, t, i), 2φ1 ≤
t < 2(φ1+1)∧2φ2 ≤ t+i < 2(φ2+1)}: the polyhedral model
is closed under loop tiling. In particular, the tiled domain
can be scheduled. For instance, θ̂S(φ1, φ2, t, i) = (φ1, φ2, t, i)
specifies the execution order depicted in Figure 3.(a)): tile
with point (4,4) is executed, then tile with point (4,8), then
tile with point (4,12), and so on. For each tile, the iterations
are executed for each t, then for each i.

2.3 Polyhedral Process Networks
Given the iteration domains and the flow dependence rela-

tion,→, we derive a polyhedral process network by partition-
ing iterations domains into processes and flow dependence
into channels. More formally, a polyhedral process network

2



for i := 0 to N + 1
• load(a[0, i]);
for t := 1 to T

for i := 1 to N
• a[t, i] := a[t− 1, i− 1] + a[t− 1, i] + a[t− 1, i+ 1];
for i := 1 to N
◦ store(a[T, i]);

i

i

t

i

0

1

2

3

4

5

6

N = 7

1 2 3 4 5 = T

1 1

3

2

1

3 3

6

5

4

7

7

7

7

7

7

Load 2

1

3

C

4

5

6

7 Store

(a) Jacobi 1D kernel (b) Flow dependences (c) Polyhedral process network

Figure 1: Motivating example: Jacobi-1D kernel

is a couple (P, C) such that:

• Each process P ∈ P is specified by an iteration do-
main DP and a sequential schedule θP inducing an
execution order ≺P over DP . Each iteration ~i ∈ DP
realizes the execution instance µP (~i) in the program.
The processes partition the execution instances in the
program: {µP (DP ) for each process P} is a partition
of the program computation.

• Each channel c ∈ C is specified by a producer process
Pc ∈ P, a consumer process Cc ∈ P and a dataflow
relation →c relating each production of a value by Pc
to its consumption by Cc: if ~i →c

~j, then execution ~i
of Pc produces a value read by execution ~j of Cc. →c

is a subset of the flow dependences from Pc to Cc and
the collection of →c for each channel c between two
given processes P and C, {→c, (P,C) = (Pc, Cc)}, is
a partition of flow dependences from P to C.

The goal of this paper is to find out a partition of flow de-
pendences for each producer/consumer couple (P,C), such
that most channels from P to C can be realized by a FIFO.
Figure 1.(c) depicts the PPN obtained with the canonical

partition of computation: each execution 〈S,~i〉 is mapped
to process PS and executed at process iteration ~i: µPS (~i) =
〈S,~i〉. For presentation reason the compute process is de-
picted as C. Dependences depicted as k on the depen-
dence graph in (b) are solved by channel k. To read the
input values in parallel, we use a different channel per cou-
ple producer/read reference, hence this partitioning. We
assume that, locally, each process executes instructions in
the same order than in the original program: θload(i) = i,
θcompute(t, i) = (t, i) and θstore(i) = i. Remark that the lead-
ing constant (0 for load, 1 for compute, 2 for store) has dis-
appeared: the timestamps only define an order local to their
process: ≺load, ≺compute and ≺store. The global execution
order is driven by the dataflow semantics: the next process
operation is executed as soon as its operands are available.
The next step is to detect communication patterns to figure
out how to implement channels.

Communication Patterns.
A channel c ∈ C might be implemented by a FIFO iff the

consumer Cc read the values from c in the same order than
the producer Pc write them to c (in-order) and each value is

read exactly once (unicity) [14, 16]. The in-order constraint
can be written:

in-order(→c,≺P ,≺C) :=
∀x→c x

′, ∀y →c y
′ : x′ ≺C y′ ⇒ x �P y

The unicity constraints can be written:

unicity(→c) :=
∀x→c x

′,∀y →c y
′ : x′ 6= y′ ⇒ x 6= y

Notice that unicity depends only on the dataflow relation
→c, it is independent from the execution order of the pro-
ducer process ≺P and the consumer process ≺C . Further-
more, ¬in-order(→c,≺P ,≺C) and ¬unicity(→c) amount to
check the emptiness of a convex polyhedron, which can be
done by most LP solvers.
Finally, a channel may be implemented by a FIFO iff it

verifies both in-order and unicity constraints:

fifo(→c,≺P ,≺C) :=
in-order(→c,≺P ,≺C) ∧ unicity(→c)

When the consumer reads the data in the same order than
they are produced but a datum may be read several times:
in-order(→c,≺P ,≺C) ∧ ¬unicity(→c), the communication
pattern is said to be in-order with multiplicity: the channel
may be implemented with a FIFO and a register keeping the
last read value for multiple reads. However, additional cir-
cuitry is required to trigger the write of a new datum in the
register [14]: this implementation is more expensive than
a single FIFO. Finally, when we have neither in-order nor
unicity: ¬in-order(→c,≺P ,≺C)∧¬unicity(→c), the commu-
nication pattern is said to be out-of-order without multiplic-
ity: significant hardware resources are required to enforce
flow- and anti- dependences between producer and consumer
and additional latencies may limit the overall throughput of
the circuit [4, 20, 15, 17].
Consider Figure 1.(c), channel 5, implementing depen-

dence 5 (depicted on (b)) from 〈•, t − 1, i〉 (write a[t, i]) to
〈•, t, i〉 (read a[t − 1, i]). With the schedule defined above,
the data are produced (〈•, t − 1, i〉) and read (〈•, t − 1, i〉)
in the same order, and only once: the channel may be im-
plemented as a FIFO. Now, assume that process compute
follows the tiled execution order depicted in Figure 3.(a).
The execution order now executes tile with point (4,4), then
tile with point (4,8), then tile with point (4,12), and so on.
In each tile, the iterations are executed for each t, then for

3



1 split(→c,θP ,θC)
2 for k := 1 to n
3 add(→c ∩{(x, y), θP (x)�k θC(y)});
4 add(→c ∩{(x, y), θP (x) ≈n θC(y)});

5 fifoize((P, C))
6 for each channel c
7 {→1

c , . . . ,→
n+1
c } := split(→c,θPc ,θCc );

8 if fifo(→k
c ,≺θPc

,≺θCc
) ∀k

9 remove(→c);
10 insert(→k

c ) ∀k;

Figure 2: Our algorithm for partitioning channels

each i. Consider iterations depicted in red as 1, 2, 3, 4 in
Figure 3.(b). With the new execution order, we execute
successively 1,2,4,3, whereas an in-order pattern would have
required 1,2,3,4. Consequently, channel 5 is no longer a
FIFO. The same hold for channel 4 and 6. Now, the point
is to partition dependence 5 and others so FIFO communi-
cation pattern hold.
Consider Figure 3.(c). Dependence 5 is partitioned in 3

parts: red dependences crossing tiling hyperplane φ1 (di-
rection t), blue dependences crossing tiling hyperplane t+ i
(direction t + i) and green dependences inside a tile. Since
the execution order in a tile is the same than the original
execution order (actually a subset of the original execution
order), green dependences will clearly verify the FIFO com-
munication pattern. As concerns blue and red dependences,
source and target are executed in the same order because the
execution order is the same for each tile and dependence 5
happens to be short enough. In practice, this partitioning
is effective to reveal FIFO channels. In the next section, we
propose an algorithm to find such a partitioning.

3. OUR ALGORITHM
Figure 2 depicts our algorithm for partitioning channels

given a polyhedral process network (P, C) (line 5). For
each channel c from a producer P = Pc to a consumer
C = Cc, the channel is partitioned by depth along the lines
described in the previous section (line 7). DP and DC are
assumed to be tiled with the same number of hyperplanes.
P and C are assumed to share a schedule with the shape:
θ(φ1, . . . , φn,~i) = (φ1, . . . , φn,~i). This case arise frequently
with tiling schemes for I/O optimization [4]. If not, the
next channel →c is considered (line 6). The split is realized
by procedure split (lines 1–4). A new partition is build
starting from the empty set. For each depth (hyperplane)
of the tiling, the dependences crossing that hyperplane are
filtered and added to the partition (line 3): this gives de-
pendences →1

c , . . . ,→n
c . Finally, dependences lying in a tile

(source and target in the same tile) are added to the par-
tition (line 4): this gives →n+1

c . θP (x) ≈n θC(y) means
that the n first dimensions of θP (x) and θC(y) (tiling co-
ordinates (φ1, . . . , φn)) are the same: x and y belong to
the same tile. Consider the PPN depicted in Figure 1.(c)
with the tiling and schedule discussed above: process com-
pute is tiled as depicted in Figure 3.(c) with the schedule
θcompute(φ1, φ2, t, i) = (φ1, φ2, t, i). Since processes load and
store are not tiled, the only channels processed by our al-
gorithm are 4,5 and 6. split is applied on the associated
dataflow relations →4, →5 and →6. Each dataflow relation
is split in three parts as depicted in Figure 3.(c). For →5:

→1
5 crosses hyperplane t (red), →2

5 crosses hyperplane t+ i
(blue) and →3

5 stays in a tile (green).
This algorithm works pretty well for short uniform de-

pendences →c: if fifo(c) before tiling, then, after tiling, the
algorithm can split c in such a way that we get FIFOs. How-
ever, when dependences are longer, e.g. (t, i) → (t, i + 2),
the target operations (t, i + 2) reproduce the tile execution
pattern, which prevents to find a FIFO. The same happens
when the tile hyperplanes are “too skewed”, e.g. τ1 = (1, 1),
τ2 = (2, 1), dependence (t−1, i−1)→ (t, i). Figure 3.(d) de-
picts the volume of data to be stored on the FIFO produced
for each depth. In particular, dotted line with k indicates
iterations producing data to be kept in the FIFO at depth
k. FIFO at depth 1 (dotted line with 1) must store N data
at the same time. Similarly, FIFO at depth 2 stores at most
b1 data and FIFO at depth 3 stores at most b2 data. Hence,
on this example, each transformed channel requires b1 + b2
additional storage. In general the additional storage require-
ments are one order of magnitude smaller than the original
FIFO size and stays reasonable in practice, as shown in the
next section.

4. EXPERIMENTAL EVALUATION
This section presents the experimental results obtained on

the benchmarks of the polyhedral community. We demon-
strate the capabilities of our algorithm at recovering FIFO
communication patterns after loop tiling and we show how
much additional storage is required.

Experimental Setup.
We have run our algorithm on the kernels of PolyBench/C

v3.2 [11]. Tables 2 and 1 depicts the results obtained for each
kernel. Each kernel is tiled to reduce I/O while exposing
parallelism [4] and translated to a PPN using our research
compiler, Dcc (DPN C Compiler). Dcc actually produces
a DPN (Data-aware Process Network), a PPN optimized
for a specific tiled pattern. DPN features additional control
processes and synchronization for I/O and parallelism which
have nothing with our optimization. So, we actually only
consider the PPN part of our DPN. We have applied our
algorithm to each channel to expose FIFO patterns. For
each kernel, we compare the PPN obtained after tiling to
the PPN processed by our algorithm.

Results.
Table 2 depicts the capabilities of our algorithm to find

out FIFO patterns. For each kernel, we provide the channels
characteristics on the original tiled PPN (Before Partition-
ing) and after applying our algorithm (After Partitioning).
We give the total number of channels (#channel), the FIFO
found among these channels (#fifo), the number of channels
which were successfully turned to FIFO thanks to our algo-
rithm (#fifo-split), the ratios #fifo/#channel (%fifo) and
#fifo-split/#channel (%fifo-split), the cumulated size of the
FIFO found (fifo-size) and the cumulated size of the chan-
nels found, including FIFO (total-size). On every kernel, our
algorithm succeeds to expose more FIFO patterns (%fifo vs
%fifo-split). On a significant number of kernels (11 among
15), we even succeed to turn all the compute channels to
FIFO. On the remaining kernels, we succeed to recover all
the FIFO communication patterns disabled by the tiling.
Even though our method is not complete, as discussed in

4



i

t

3 4 5 6 7 8
4

5

6

7

8

9

10

11

12
i

t

3 4 5 6 7 8
4

5

6

7

8

9

10

11

12

1

2

3

4

i

t

3 4 5 6 7 8
4

5

6

7

8

9

10

11

12 i

t

1

2

2

3

(a) Loop tiling (b) Communication pattern (c) Our solution (d) Storage requirements

Figure 3: Impact of loop tiling on communication pattern

section 3, it happens that all the kernels fulfill the condi-
tions expected by our algorithm (short dependence, tiling
hyperplanes not too skewed).
Table 1 depicts the additional storage required after split-

ting channels. For each kernel, we compare the cumulative
size of channels split and successfully turn to a FIFO (size-
fifo-fail) to the cumulative size of the FIFOs generated by
the splitting (size-fifo-split). The size unit is a datum e.g. 4
bytes if a datum is a 32 bits float. We also quantify the ad-
ditional storage required by split channels compared to the
original channel (∆ := [size-fifo-split - size-fifo-fail] / size-
fifo-fail). It turns out that the FIFO generated by splitting
use mostly the same data volume than the original channels.
Additional storage resources are due to our sizing heuristic
[1], which rounds channel size to a power of 2. Surprisingly,
splitting can sometimes help the sizing heuristic to find out
a smaller size (kernel gemm), and then reducing the storage
requirements. Indeed, splitting decomposes a channel into
channels of a smaller dimension, for which our sizing heuris-
tic is more precise. In a way, our algorithm allows to find
out a nice piecewise allocation function whose footprint is
smaller than a single piece allocation. We plan to exploit
this nice side effect in the future.

kernel size-fifo-fail size-fifo-split ∆
trmm 256 257 0%
gemm 512 288 -44%
syrk 8192 8193 0%
symm 800 801 0%
gemver 32 33 3%
gesummv 0 0
syr2k 8192 8193 0%
lu 528 531 1%
cholesky 273 275 1%
atax 1 1 0%
doitgen 4096 4097 0%
jacobi-2d 8320 8832 6%
seidel-2d 49952 52065 4%
jacobi-1d 1152 1174 2%
heat-3d 148608 158992 7%

Table 1: Impact on storage requirements

5. CONCLUSION
In this paper, we have proposed an algorithm to reorganize

the channels of a polyhedral process network to reveal more
FIFO communication patterns. Specifically, our algorithm
operates producer/consumer processes whose iteration do-
main has been partitioned by a loop tiling. Experimental
results shows that our algorithm allows to recover the FIFO
disabled by loop tiling with almost the same storage require-
ment. Our algorithm is sensible to the dependence size and
the chosen loop tiling. In the future, we plan to design a
reorganization algorithm provably complete, in the meaning
that a FIFO channel will be recovered whatever the depen-
dence size and the tiling used. We also observe that splitting
channels can reduce the storage requirements in some cases.
We plan to investigate how such cases can be revealed au-
tomatically.

6. REFERENCES
[1] C. Alias, F. Baray, and A. Darte. Bee+Cl@k: An

implementation of lattice-based array contraction in
the source-to-source translator Rose. In ACM Conf.
on Languages, Compilers, and Tools for Embedded
Systems (LCTES’07), 2007.

[2] C. Alias, A. Darte, P. Feautrier, and L. Gonnord.
Multi-dimensional rankings, program termination, and
complexity bounds of flowchart programs. In
International Static Analysis Symposium (SAS’10),
2010.

[3] C. Alias, A. Darte, and A. Plesco. Optimizing remote
accesses for offloaded kernels: Application to
high-level synthesis for FPGA. In ACM SIGDA Intl.
Conference on Design, Automation and Test in
Europe (DATE’13), Grenoble, France, 2013.

[4] C. Alias and A. Plesco. Data-aware Process Networks.
Research Report RR-8735, Inria - Research Centre
Grenoble – Rhône-Alpes, June 2015.

[5] C. Alias and A. Plesco. Optimizing Affine Control
with Semantic Factorizations. ACM Transactions on
Architecture and Code Optimization (TACO) ,
14(4):27, Dec. 2017.

[6] C. Bastoul. Efficient code generation for automatic
parallelization and optimization. In 2nd International
Symposium on Parallel and Distributed Computing

5



Kernel Before Partitioning After Partitioning
#channel #fifo #fifo-split %fifo %fifo-split fifo-size total-size #channel #fifo fifo-size total-size

trmm 2 1 2 50% 100% 256 512 3 3 513 513
gemm 2 1 2 50% 100% 16 528 3 3 304 304
syrk 2 1 2 50% 100% 1 8193 3 3 8194 8194
symm 6 3 6 50% 100% 18 818 7 7 819 819
gemver 6 3 5 50% 83% 4113 4161 7 6 4146 4162
gesummv 6 6 6 100% 100% 96 96 6 6 96 96
syr2k 2 1 2 50% 100% 1 8193 3 3 8194 8194
lu 8 0 3 0% 37% 0 1088 11 6 531 1091
cholesky 9 3 6 33% 66% 513 1074 11 8 788 1076
atax 5 3 4 60% 80% 48 65 5 4 49 65
doitgen 3 2 3 66% 100% 8192 12288 4 4 12289 12289
jacobi-2d 10 0 10 0% 100% 0 8320 18 18 8832 8832
seidel-2d 9 0 9 0% 100% 0 49952 16 16 52065 52065
jacobi-1d 6 1 6 16% 100% 1 1153 10 10 1175 1175
heat-3d 20 0 20 0% 100% 0 148608 38 38 158992 158992

Table 2: Detailed results

(ISPDC 2003), 13-14 October 2003, Ljubljana,
Slovenia, pages 23–30, 2003.

[7] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In Proceedings of
the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ,
USA, June 7-13, 2008, pages 101–113, 2008.

[8] B. da Silva, A. Braeken, E. H. D’Hollander, and
A. Touhafi. Performance modeling for FPGAs:
extending the roofline model with high-level synthesis
tools. International Journal of Reconfigurable
Computing, 2013:7, 2013.

[9] P. Feautrier. Dataflow analysis of array and scalar
references. International Journal of Parallel
Programming, 20(1):23–53, 1991.

[10] W. Kelly, V. Maslov, W. Pugh, E. Rosser,
T. Shpeisman, and D. Wonnacott. The omega
calculator and library, version 1.1. 0. College Park,
MD, 20742:18, 1996.

[11] L.-N. Pouchet. Polybench: The polyhedral benchmark
suite. URL: http://www. cs. ucla. edu/˜
pouchet/software/polybench/[cited July,], 2012.

[12] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation
of efficient nested loops from polyhedra. International
journal of parallel programming, 28(5):469–498, 2000.

[13] E. Rijpkema, E. F. Deprettere, and B. Kienhuis.
Deriving process networks from nested loop
algorithms. Parallel Processing Letters,
10(02n03):165–176, 2000.

[14] A. Turjan. Compiling nested loop programs to process

networks. PhD thesis, Leiden Institute of Advanced
Computer Science (LIACS), and Leiden Embedded
Research Center, Faculty of Science, Leiden
University, 2007.

[15] A. Turjan, B. Kienhuis, and E. Deprettere.
Realizations of the extended linearization model.
Domain-specific processors: systems, architectures,
modeling, and simulation, pages 171–191, 2002.

[16] A. Turjan, B. Kienhuis, and E. Deprettere. Classifying
interprocess communication in process network
representation of nested-loop programs. ACM
Transactions on Embedded Computing Systems
(TECS), 6(2):13, 2007.

[17] S. van Haastregt and B. Kienhuis. Enabling automatic
pipeline utilization improvement in polyhedral process
network implementations. In Application-Specific
Systems, Architectures and Processors (ASAP), 2012
IEEE 23rd International Conference on, pages
173–176. IEEE, 2012.

[18] S. Verdoolaege. ISL: An integer set library for the
polyhedral model. In ICMS, volume 6327, pages
299–302. Springer, 2010.

[19] S. Verdoolaege. Polyhedral Process Networks, pages
931–965. Handbook of Signal Processing Systems.
2010.

[20] C. Zissulescu, A. Turjan, B. Kienhuis, and
E. Deprettere. Solving out of order communication
using CAM memory: an implementation. In 13th
Annual Workshop on Circuits, Systems and Signal
Processing (ProRISC 2002), 2002.

6


