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Abstract

This paper deals with the problem of deciding whether a System of Affine Recurrent
Equations (SARE) is an instantiation of a SARE template. A solution to this
problem would be a step toward algorithm template recognition and open new
perspectives in program analysis, optimization and parallelization. The problem is
known to be undecidable and we show that there exists a semi-decision procedure, in
which the key ingredient is the computation of transitive closures of affine relations.
This is a non-effective process which has been extensively studied. We then describe
the limitations of our algorithm and point to unsolved problems.

Keywords: algorithm recognition, SARE, templates, unification, preliminary ap-
proach.

1 Introduction

Algorithm recognition is an old problem in computer science. Basically, one
would like to submit a piece of code to an analyzer, and get answers like “Lines
10 to 23 are an implementation of Gaussian elimination”. Such a facility would
enable many important techniques:

e Program optimization: if we have the necessary items in our library, we may
replace lines 10 to 23 by a hand optimized version, or by a sparse version, or
a parallel version. If we are bold enough, we may even replace the relevant
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part of the code by a completely different implementation, as for instance
an iterative solver.

e Program comprehension and reverse engineering.

e Program verification: if we know that the program specification asks for
Gaussian elimination and the analyzer does not find it, we may suspect an
error.

e Hardware-software codesign: if we recognize in the source program a piece
of code for which we have a hardware implementation (e.g. as a coprocessor
or an Intellectual Property) we can remove the code and replace it by an
activation of the hardware.

Simple cases of algorithm recognition have already been solved, mostly us-
ing pattern matching as the basic technique. An example is reduction recog-
nition, which is included in many parallelizing compilers. A reduction is the
application of an associative commutative operator to a data set. It can be
detected by normalizing the input program, then matching it with a set of
patterns which should include the most common associative operators (addi-
tion, multiplication, and, or, max, min ...). See [13] and its references. This
approach has been recently extended to more complicated patterns by sev-
eral researchers (see the recent book by Metzger [12] and its references). In
contrast, the starting point of the algorithm recognition procedure proposed
by [3,4] and [15] are systems of affine recurrences. From this normal form
the method described in [4] is able to find the equivalence of two programs,
modulo transformations such as variable hoisting, data expansion/shrinking,
affine transformations of the iteration domain, or common sub-expression op-
timizations.

All these methods recognize only algorithms that have exactly the same
semantics as the code they match. Many algorithms however are better de-
scribed in generic terms, abstracting away the details of implementation. For
instance, Gaussian elimination is one instance of the well-known algebraic path
problem (APP), as the Warshall’s transitive closure algorithm and Floyd’s
shortest path algorithm are also instances of this same APP. The only dif-
ference is the underlying algebraic structure. The only way to handle them
by the previous methods is to consider one different pattern for each instan-
tiation. Such generic algorithms are called algorithm templates and many
efficient implementations of templates have been proposed. See [16] for ma-
trix manipulations, [11] for graph algorithms or [17] for the APP, to name a
few. Compilation of an instantiated pattern consists in compiling the code
tailored by the programmer with the optimized code of the template.

The aim of this paper is to propose a method in order to perform some
algorithm template recognition and to find out how the instantiation is per-
formed. This important issue have never been tackled before in the framework
of algorithm recognition. This preliminary work is based on the framework
presented in [3]. As in most algorithm recognition methods, the first step is
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to normalize the given program as much as possible. One candidate for such
a normalization is conversion to a System of Affine Recurrence Equations
(SARE). It has been shown that static control programs [6] can be automat-
ically converted to SARESs, and such a conversion already was the first step
in [13]. The next step is to design an equivalence test between SAREs and
SARE templates. This is the main theme of this paper.

Section 2 introduces some essential definitions about SAREs and provides
the necessary background on rewriting systems. Section 4 defines the rules
in order to match a SARE template with a SARE and Section 5 build the
semi-algorithm performing this unification and we conclude in Section 6.

2 Preliminaries

We assume the reader is familiar with term rewriting systems [2]. These
preliminaries give the definitions of linearly indexed terms and of SAREs and
templates used in the rest of this paper.

2.1 Terms

A signature is a set X of function symbols. The set 7 (3, V) of terms built from
a signature X and a set of variables V is the smallest set containing V such that
f(t1,...,ty) € T(X,V) whenever ti,...,t, are in 7(X,V). A substitution is
a map between V and 7 (X,V). If o is a substitution and ¢ a term then to
denotes the result of applying o to t. We note Dom(c) the set of variables
substituted by o. If two substitutions o, ¢’ provide two different values to
the same variable then o o ¢’ is equal to the error substitution, denoted L.
Composition with the error substitution gives the error substitution.

We consider a signature Y consisting of functions F, of arrays A and of
the Presburger arithmetic signature (Z,+). Arrays are constants indexed by
affine expressions. We assume that F N A = (). The set of affine expressions
is a set of terms 7 ((Z,+),C) with C a set of index variables. We use an array
notation X|[c] to represent the array X indexed by the vector of expressions
c and small letters will denote functions of F. Terms with arrays have been
introduced by [8] (called primal terms) in order to finitely represent an infinite
number of terms, as it arises in divergent rewriting term systems. Although
we are not concerned with divergent rewriting systems, we use them to define
systems of affine recurrent equations.

In order to represent templates, we consider a set ® of function variables,
and a set U of array variables, indexed by affine expressions. The set of all
variables V is therefore ® x ¥ x C. We make a difference between index vari-
ables and the other variables, and ground terms denote terms from 7 (%, C).
Symbols from ¥ and ® are chosen among Greek letters.
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2.2 Systems of Affine Recurrence Equations

Systems of affine recurrence equations (SARE) are a convenient way to repre-
sent algorithms: they can be obtained from imperative programs by reaching
definition analysis [6] and already eliminate some syntactic aspects of the
programs since they represent the computations with explicit dataflow infor-
mation. The basic reference on SAREs is [5]. We present here the SAREs as
systems of equations between ground terms and for SARE templates, equa-
tions between terms.

Definition 2.1 A System of Affine Recurrence Equations is a set of ground
equations of 7 (X, V), called clauses, of the form:
where ¢ is a vector of C, D, a domain of integer vectors, X,Y € A, f, € F
and uyy is a function of C. We introduce the following definitions: free index
variables in the equations are called parameters of the SARE and all arrays
appearing in the SARE are called SARFE variables; Domains are assumed to
be union of Z-polyhedra. They can be finite sets, parametrically bounded
(the domains are finite but their sizes depend on unbounded parameters), or
infinite; Dx denotes the union of all the sets Dy, for all k, defining the clauses
of X; Functions uyy, are called dependence functions and are affine w.r.t. index
variables. SARE variables that do not appear in the left-hand side (lhs) of
any clause are called the inputs of the SARE. The outputs are special SARE
variables defined in a lhs of some clauses. Note that there can be several
output variables in a SARE.

Moreover a SARE must satisfy the single assignment property, i.e. each
value of X is defined uniquely, and we assume that all values of arrays which
are not inputs are defined in the SARE.

The example of Fig. 1 illustrates the transformation from a program to
a SARE. The output, O is set to the last element of the recurrence in Fig.
1.(b), the input is the array A and the variable s has been expanded into a
one dimensional array S.

O = Sn|
=0 i=0: S = Al = Ali,
for (i=1; i<=n; i++)
s = s+al[il*alil; 1<i<n:S[i]=S[i—1]+ Afi] x Ald],
(a) (b)

Fig. 1. (a). Sum of the squares (b). Corresponding SARE

A SARE does not describe a computation by itself. One possibility is to
build a schedule, i.e. a function giving the date (X, ) at which each SARE
variable X[i] must be evaluated. A schedule must satisfy the following causal-
ity constraint, stating that X[i] cannot be computed before the computation
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O = T|n],
i=0: Tli] = ¥[d],
1<i<n:T[i] =Ti—1],¢[]),

Fig. 2. Template of a reduction

of the array variables appearing in the rhs:
Vi€ Dy :0(X,i) > 0(Y,uyp(i)) + 1

for all dependences in the SARE. If the domains are bounded, a schedule exists
iff the given SARE has no dependence cycle. The scheduling problem for
parametrically bounded SAREs is undecidable [14]. However, the existence
of affine schedules for SAREs is decidable [7]. Note that in general, these
schedules have a parametric latency. We only consider in this paper SARESs
with a schedule.

A SARE template has the same definition as a SARE, except that in the
definition of the clauses, f; isin FU® and Y is in AU V.

We can assume, without loss of generality, that equations contains at most
one functional variable.

3 Matching Problem

Consider two scheduled SAREs S and S’, with S a template. Suppose that
we are given a bijection between the output variables of the two SAREs and
a mapping between input variables. These pairings must have the property
that corresponding variables have the same domain.

We define the matching problem between S and S’ as follows:

Definition 3.1 The template S matches the SARE S’ w.r.t. a pair of output
variables if there exists a substitution of the variables of S such that the
outputs evaluate to the same values provided the inputs are equal.

For example, the template of Figure 2 matches the SARE of Figure 1 with
the substitution: [p — Azy.x + vy, 1; — Ali] x A[i] (0 <i <n)], when n > 1.

This problem depends clearly on the underlying algebra associated to .
It is clear, however, that equivalence in the Herbrand universe implies equiv-
alence in all conforming algebras. We only consider in this paper equivalence
in the initial algebra. The word problem between two SAREs has been proved
undecidable in [4], therefore the matching problem, which is at least as difficult
as the equivalence problem, is also undecidable.

4 Matching procedure

This matching procedure provides the rules in order to match a template
with a SARE. This boils down to a simultaneous computation of both SARE
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and template outputs, finding out the substitutions for the variables. We
will show that this procedure is correct and complete. However, it may take
a parametric number of steps to terminate. The next section proposes to
address this termination problem by the construction of an automaton.

4.1  Matching clauses

We call context a boolean expression, conjunction of affine relations on index
variables.

Consider a SARE on terms of 7 (X) and a template 7 (%, V).

Definition 4.1 A matching clause is either:

e a triplet o, R : t ~ ¢ where ¢ is a substitution, R a context and ¢ Z ¢ an
equation between terms of 7 (X, V) and 7 (X);
e 1, the failure matching clause;

e or T¢, the success matching clause, where C' is a set of couples (o, R) of
substitutions o with their context R.

1 and T are called solved forms. 1 means that the SARE and template
are not equivalent and have no unifier. T means that the SARE and template
have the set of unifiers given in C', provided their context is true. A solved
form is said unreachable when its context is false.

We define the following operations on solved forms:

Temy V T ry = TR R} THemy VL= Ter)

Temy U T ry = Here.r)y  TerpULl=1

Temy N T ry = Teoo marny  THemy AL =1
Moreover, these rules extend element-wise to matching clauses with sets of
unifiers and contexts. For any context R, T gy = L, meaning that an

error substitution leads to non unifiable terms.
Let S and S’ be two SAREs with outputs respectively O[] and O'[7],

Vv € D. The initial clause associated to the SARE matching problem S L
is:

Id, (7€ D): Ofi = O'[i]

We say that two clauses o1, Ry : t; - t) and o9, Ry : ty - t}, are equivalent
(o1, Ry - t4 - t)) = (09, Ry : to S t,) if oy = 0y and there exists a renaming of
function variables o : V — V such that o(t1) =syntactic t2 and o(t)) =syntactic ts-

We describe here a matching procedure that takes as input the initial clause
and compute its value according to the solved forms.

4.2 Description of the rules

The matching procedure presented here is a combination of the Huet’s algo-
rithm to perform syntactic term unification [9] with the algorithm in [4] to test

6



C. Avrias, D. BARTHOU

the equivalence of two SAREs. It solves a SARE matching problem § Zg
by beginning with its initial clause and by repeatedly applying the following
rules.

If an expression E in matching clauses is obtained from o, R : ¢ Zy by

application of one of the transition rules, we denote it by o, R : t ¢+ E.
The subscript @ in ¢ indicates the explicit use of the transition rule ) in
the deduction step. By " we denote the reflexive and transitive closure of |-.

Rules Decompose, Delete and Conflict are the usual rules of unification and
cope with rigid-rigid pairs.

Rules Generalize, Compute, Input Failure and Input Success are specific to
the computation of the arrays with the SAREs. Rule Generalize rewrites an
index expression into a new index variable, which is necessary to apply rule
Compute. Rule Compute unfolds the arrays according to their definition in the
SAREs, into as many values as there are clauses defining the array. Due to the
property of single assignment, note that at most one of the derived contexts
is true; We consider that the mapping between inputs of the SARE and the
template is the identity (inputs are equal if their indices are the same).

o, R: f(B) = f()

Decompose: 5 >
(o,R:t1=t))N...AN(0,R: t,, =1,)
Rit=t
Delete: o=t
TR}
? -
R:f(t) =gt
Conflict: ik f(E 9(t') if f# gand R = true
?
R:S =t -
Generalize: ik — (@] — where ¢/ is a new vector
o, RA(V =u(@)): S =1 of index variables
o R: S =t
Compute: - — . if 7 is vector of index
Lliz1 o, RA(@E Dy)  t =t/ variables, and : S[i] =
ty (V€ Dy)
)
Empt o,false: t =t/
y: e
T{(J,false)}
oo lp > u Rit=t
Substitute: ? S if ¢ occurs in t

ol ul,R:tlp/u] =



Project/Imitate:

Project 1:

Project 2:

Input Variable:

Input Success:

Input Failure:
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o, R: p(f) = f (1)

Vi_joo0[p— AZ.ag], R : t L f(t_;)
Voolp— N2 f(H\Z,..., H,Z)], R :
FULE, .. Hyf) = f(F)

o, R: p(f) = f(T)

n - ? 7
Vi_joolp— A, Rty = f(t)

o, R o(f) = IV]
Vi_ioo0[p— AZ.xi), Rt L I[ﬁ]

,
o, R:y=1t
T{(ool(wrt', R),R)}

—.

o, R I[]) = I[7]
T{(R)}

? -

o,R:I[7) = I[V]
1

if ¢ & Dom(o) and
no clause e = o,R :
20 z f(¥) has been
previously computed

if ¢ ¢ Dom(o) and
a clause e = o,R
o(t) L f(¥) has been
previously computed

if o & Dom(o)

if RA(T#7) = true

Rules Project/Imitate, Project, and Substitute are the same as in Huet’s
algorithm and find unifiers. To prevent from infinite branches, Imitation is
not applied if this would lead to a matching clause equivalent to a matching
clause previously computed (in this case, we apply Projectl). Rule Project 2
performs projection, since inputs cannot be computed nor imitated.

4.3 Soundness and Completeness

Consider a SARE S and a template S’. Then the following theorem proves
the soundness and completeness of the procedure.

Theorem 4.2 The instantiation of S’ with substitution o is equivalent to S

iff Id,i € D : O[i] = O'[i] +* T¢ with (o, true) € C.

Proof. Only if part: This part corresponds to the soundness of the procedure.
We show by induction on the length of derivation n that o, R : ¢ Ly Te
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implies that for any ¢ in C, ¢t and ¢’ have the same value in the context R
with substitution o. All rules producing directly a solved form are clearly

correct. For Compute, suppose that o, R N Dy, : L ¢ pnt Te¢, and that
for any oy, € Cy, ti, has the same value as t) in the context R N Dy with the
substitution oy; as S[i] = tx when i € Dy, then S[¢] is equal to ¢’ with the
substitution o} and in the context R N Dy. According to the computation on

solved forms, this implies that the hypothesis is true for o, R : S[i] Z ¢ and
the rule is correct. Likewise, Decompose and Generalize are correct. Moreover,
the correction of Project/Imitate, Projectl, Project2 and Substitute have been
shown by Huet [9]. Therefore, for any n, if o, R : t =t F" T, then ¢ and ¢/
are equal with any substitution ¢ in C. The conclusion follows by applying
this result to the initial clause.

If part: This part corresponds to the completeness of the procedure. As-
sume an instantiation of the template with the substitution o is equivalent
to the SARE. Rules Decompose, Delete, Conflict and Empty are complete for
the same reasons as in a usual unification setting. Compute corresponds to
a rewrite step for S and is complete and Generalize is just an index variable
renaming (the value of the rhs does not change for these two rules). The
completeness of the rules modifying the substitution are complete as well, due
to Huet’s algorithm, provided that rule Projectl is never applied. Indeed, this
corresponds to the possible substitutions that are not found by Rule Imitate.
If the same equation appears in a previous step of the rewriting, modulo a
renaming of the variables, then one of the Hj, of a previous application of the
rule is applied to a term containing f and Hj, which is defined likewise. Thus
f is a symbol repeated in the final substitution. O

5 Semi-algorithm for matching SARE templates

The matching procedure unfolds the recurrences defined by the SARE, thus
may take a parametric number of steps. The idea of this semi-algorithm,
following the approach of [4], is to implement the procedure with an automaton
and analyze the automaton, without executing it, in order to construct the set
of unifiers. The automaton, a Memory State Automaton (MSA) is described
below.

5.1 Memory State Automata

5.1.1 Definition
The state of an MSA has two parts: an element of a finite set and a vector of
integers. The vector associated to state p is denoted v, and the full state is
(p,vp). The dimension of v, is determined by p and is noted n,,.

A transition in an MSA has three elements: a start state, p, an arrival
state ¢, and a firing relation F,, in N" x N"¢. A transition from (p,v,) to
(q,v,) can occur only if (v,, v,) € F,,. There is an edge from p to ¢ in an MSA
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iff £, # 0.
Let (po, vp,) be the initial state of the automaton. A state (p,v,) is reach-
able iff there exists a finite sequence of transitions from the initial state to

(P, vp):
Elpla te >pn>vp1a e >Upn : (pn =p A <Upi—17vpi> € Fpi—l:pi)'

The reachable set of p, noted A, is the set of vectors v, such that (p,v,)
is reachable from the initial state.

5.1.2  Computing the Reachability Relation

One method for computing the reachability relation consists of characteriz-
ing all possible paths in the MSA, then computing the relation associated to
each path and “summing” the results. This can be done by associating a
letter from a new alphabet to each edge of the MSA. This results in a finite
state automaton on the given alphabet. Familiar algorithms [1] allow one to
associate to each state a regular expression representing all paths from the
initial state to the current state. To obtain the reachability relation from such
a regular expression, replace each letter by the corresponding firing relation,
concatenation by relation composition, alternation by union and Kleene star
by transitive closure. The reachable set is obtained by composing the result
with the reachable set of the initial state.

5.2 Construction of the matching MSA

Let us consider a SARE matching problem S Z S'. We assume the index
variables of the left SARE will be denoted 7, of the right 4’

5.2.1 States
)
Each state of our matching MSA has two part: a clause o : t = t’ with o a
substitution, and a vector of integers v,, which is the concatenation of 7 and
J.
The initial state is Id : O[] Z 0 [//], where O and O’ are corresponding
outputs of S and S’. Its reachable set is {(z,')|7'= ¢'}.

The final states are either:
* T{(,E)}, Where o is a substitution, and F is a context 4.e. conditions on
parameters for which o is valid ;
e 1.

5.2.2  Transitions

In order to make the correspondence between automaton and rewriting rules,
the firing relations will correspond to the relations between the index variables
defined by the contexts.
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We describe thereafter the main transitions:

« Decompose From a state with label o : f(#(7)) L F(F(¥)) starts a transition
to each state o : tx(?) < t.(+/), with the firing relation Id : {7 — 7, 7 — o/}
All these transitions constitute an and-branching.

» Generalize From a state with label o : X[u(?)] Z ¢ starts a transition to
state o @ X|[i] L ', with the firing relation: {7 — u(®), v — 7'}, as seen in
section 4. There is a similar rule for the rhs.

o Compute From a state with label o : X[i] Z ¢ starts an transition to each
state o : t4(?) Z ¢, with the firing relation: {t1— 77— 7e Dy} Al
these transitions constitute an Li-branching. There is a similar rule for the

rhs.

* Huet’s rules produce an or-branching between each Project and Imitate.
The firing relation is /d since they do not modify the index variables.

o Input Variable From a state with label: o : 7 Z ¢ starts a transition to
T{(oo[(sot',E),E)}- Firing relation is Id. E will be computed during the
MSA analysis.

? —.

o Input Failure/Input Success From a state with label: o : I[i] = I[//] starts
a transition to Ty gy with the firing relation { — 2,7 — +/,7’ = '}, and
a transition to L with firing relation {7 — %,/ — #.7 # J}. FE will be
computed during the MSA analysis.

Let us prove that the MSA defined has a finite number of states:

Proposition 5.1 Let S ~ 5" be a SARE matching problem, with S a template
and S" a SARFE and A be its corresponding MSA. The number of states of A
1S finite.

Proof. States of the automaton are of the form o : ¢ = ¢. ¢ is one of the pOs-
sible subterms of S’, which are in finite number. ¢ is either a subterm of S, or a
function variable which takes subterms of S as arguments, or an array variable
which has index variables as arguments. The number of function variables ap-
pearing in the template is finite. Assume there exists a parametric number of
new function variables. Then Imitate is applied a parametric number of times.
Because Imitate modifies the current substitution o, these applications can

only appear in a parametric length branch. Let ;(%;) ~ t:, 1 < i < p denote
- : oy 7 oy 7

them. The restriction of Imltate Eule ensures that ¢;(t;) = t; # ;(t;) = t},

if i # j. This entails that t; # ;, or {; # ;. Consequently, we can find a

parametric number of distinct sub-terms of S (or S’). This would lead to a
contradiction. Thus, function variables are in finite number. O
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5.8 Analysis of the matching MSA

We have now to analyze the matching MSA in order to decide whether the
SARE is an instantiation of the template, and to find out the set of unifiers.
This can be done by the following algorithm:

Algorithm 1 Match
IN . A SARE matching problem S Sy

OUT : A set{(o1,¢1),...,(0n,cn)} where o; is an unifier of S S S,

and c; 1s a constraint on parameters for which o; is valid.

(i) Compute the MSA associate to S =" S" by the method describe above ;

(ii) Compute reachability set E of each node, then fiz Input Variable and
Input Success nodes ;

(iii) For each Input Variable node : If 3(7,71), (7,75) € E with o'y # /5 then
replace node by L ;

(iv) Delete unaccessible nodes i.e. nodes whose reachability set is empty ;
(v) Collapse cycles into one node ;

(vi) Transform the obtained DAG into a tree by duplicating all nodes x such
that Ju, v, w nodes verifying u —* v —* x andu —* w —* z, v #w. We
have now a A,V ,U-tree, where each leaf is either Ty gy or L ;

(vii) Compute the set of unifiers by recursively applying rules on A, V and U
described in section 4, up to the root of the tree ;

(viil) If we obtain T ges then return Res, else return ().

Step (ii) is correct because the reachability set gives us all possible values
for 7and 7 in a state, corresponding to the values satisfying the context in
the matching procedure. Step (iii) eliminates ambiguity in the Input Variable
definition. Step (iv) corresponds to the application of the Empty rule. Step
(v) can be applied, because reachability sets were already computed. One can
notice that the MSA has the same transitions than the matching procedure,
with the same context in firing relations. So it computes the same set of
unifiers, which is correct (see correction proof in section 4). This justifies
steps (vii) and (viii).

It may seem at first glance that the algorithm completely solves the match-
ing problem. This is not the case, because the construction of the transitive
closure of a relation is not an effective procedure [10]. So the algorithm works
only when transitive closures are computable.

5.4 An Example

Let us apply our algorithm to the example of reduction presented in prelimi-
naries. We obtain the following MSA :
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o0 =0
T[n] z S[n]
i=0 l i =n i#£0
i’ =0 T[] = S[i'] &A
e(Tli — 1, ;) =
pr—Azy.T +(S[i/ _ 1]’ A[il] w A[i’])
m l e Avy.+(Hioy, Hywy)
-1 < T (st F(HA(T] = 1], 00),
T -1 = wi £ (S — 1],

Hy (T — 1], ) =

+(Sls —11,lA[j1f«?[i1)\A[i1*A[i1) ST =1, A A1)
Landi subst. ¢ ¥

?

Tl £ _,  e@i-1w)t Hy(T(i — 1], %) & Hy(T[i = 1], ;) £
H(SI =11, Ali'] % ALI']) iz +(ST = 1], Al] * A[i']) sl 1) AL+ A[i']

i=0 o
l it =1 Ho—Aay.a J

¥ = +(S[d’ — 1],

Hy(T[i — 1], ) = =
A['] = A[i]) 1( [ls[i,]] wi) 1 b = Ali'] * Al]

i'=0
(%) / l i #0

Ho > Azy.y

Hy (T — 1], 4) = Hy (Tl — 1], ;) =
Hy—Azy.o A[i'] = A[i'] +(S[i' — 1], A[i’] * A[i']) ~_H1—Azy.y
/ 1 Hy—Aey.y HimAey.w l \
; 2 AT« ALY AT« AT T — 1] £ i £ (Sl - 1],
Tl = Al - Al vi = Al AW H(S[E' = 1, A[i'] * A[i']) Al]  Ali'])
l i—i—1 ir—si—1
Tl Z A[i'] % A[i'] ——Z%—> unreachable st Z"][iL?] . —i=0 5 ynreachable
i=0 l i#0

i#0 @(Tli — 1], 9;) £

_ i’ #£0 +(S[i" — 1], A[i'] = A[i'])
| suvse o
i=0 2

H(Tl = 1] Ha (Tl = 1,90) £ Ha(Tli = 1),9) £

.
i T[] £ 5[
v 1= st H(SIE — 1], Al] * Ali']) Ali'] * Al#] HavAry.o
Ho—Azy.y
i1 Tl — 1] Z S[i' — 1] Wy = A[i'] * A[¢'] 1
il i =1

Final states are surrounded by rectangles. For sake of clarity, arcs are
labeled by shortened notations. Starting from state 7'[¢] Z 3 [i'], label i #
0, i" # 0 represents relation {(i,7") — (i,7')|i # 0,7 # 0}. Label ¢ — Axy.x
indicates the addition of ¢ — Azy.z to the current substitution. The reaching
set of the final state tagged with (*) is:

*
y y o . . i — i . . i — 4

L i =1 i — 14— 1 y y T —1—1 o o

) . . . S . L9 i — g . y y Sy P =t

i=mn i # 0 i — i — 1

, , i #0 i=0

i =mn i #0

Which boils down to: {. — ¢,. — i',i = 0,7 = n,n > 1}. And the substitution
obtained is:

([p = Azy.z, o — +(S[n — 1], A[n] x An])],n > 1)

There remains to apply the same method to the other final states, and to
combine unifiers by applying the rules of A, V and U. The final set of all
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possible solutions is:
([tbo — A[0] x A[0]],n = 0)

([p = Azy.z, 9 — Sn — 1]+ Aln
([p = Azy.y, 1o — Sn — 1] + Aln
(o — Azy.z 4y, = Ali] * A[i](0 < i < n)],n >1)

Each solution is defined by a substitution and the condition on the parame-
ters for which it is valid. Note that only the last solution corresponds to a
reduction, since in the others, ¢ is either not defined or not associative.

6 Conclusions

Algorithm templates represent programming models that convey genericity,
portability, can be easily customized by the programmer to suit its need and
at the same time have efficient implementations. Algorithm template recogni-
tion thus appears as a promising tool for code comprehension, validation and
optimization. In this paper, we have presented a preliminary approach that
provides such recognition for templates described by systems of affine recur-
rent equations. As a consequence, our analysis is able to recognize algorithms
obtained by composition of other algorithms, since templates can be composed
with other templates. While other analyses [18] could recognize an algorithm
made of several known algorithms, ours works also for unknown algorithms.

In future work, we will investigate the feasibility of the approach on bench-
mark applications, with respect to the assumptions that have been made and
by extending the existing prototype developed for the equivalence of SARES.
We would also like to address the recognition of templates parameterized by
constructed types (such as matrices) so that the methods to be instantiated
can be defined by the operations on the elementary types. Finally, the SARE
templates have still some non variable definition domains and non variable
dependence functions. Breaking these constraints would lead to possibly non-
affine systems of recurrence equations and the applicability of our approach
in this case need to be studied.
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