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Context

Since the early days of parallel computing, industry is pushing towards programming models,
languages and compilers to help the programmer in the tedious task to parallelize a program.
Task-based programming models [1, 8, 7] view the program as a composition of coarse-grain
tasks to be executed in a dataflow fashion. A runtime is generally in charge of orchestrating the
computation, and mapping the tasks to processing units so load balancing and data transfers are
optimized. Usually, the task partitioning is driven algorithmically, (eg BLAS calls for StarPU),
though better, but less intuitive, partionings may be inferred at compile-time [2] with compilation
techniques from the polyhedral model [6].

Goals

In this internship, we investigate polyhedral compilation techniques to translate a sequential C
kernel into a task-based program, and to guide the runtime for an optimized parallel execution.
We focus on a new runtime paradigm, where processing units are viewed as data storages offering
a computing service. During the execution, the processing units receive the code of the task to
be executed, not the data (or as less as possible). Starting from a sequential C kernel, the intern
will:

• Exploit affine loop tiling [3] to partition the computation into tasks at compile-time and
propose a specification langage for the partitioning.

• Identify the compile-time informations required by the runtime (data dependences, in/out
data flow, etc) and investigate compiler algorithms to compute them.

• Test the proposed approach on scientific computing benchmarks.

Skills expected. Notions in compilers, parallelism and experience with C++.
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