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Introduction

Labellings

Definition

A k-labelling of a graph G is a function ℓ ∶ E(G) → {1, . . . , k}.

Definition

We call resulting sum (relative to a labelling ℓ) of a vertex u the sum of labels on
edges incident to u. We denote it σℓ(u).

Definition
We say a labelling ℓ is distinguishing if for every two adjacent vertices u and v of
G , σℓ(u) ≠ σℓ(v).
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Introduction

Conjectures and knowledge

These are the main conjectures and theorems in the field:

1-2-3 Conjecture (Karoński et al., 2004)

All graphs admit a distinguishing 3-labelling.

1-2-3-4-5 Theorem (Kalkowski et al., 2010)

All graphs admit a distinguishing 5-labelling.

And some specific cases. For instance, the 1-2-3 Conjecture is known to hold for
3-colorable graphs.
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Introduction

Labellings (again)

Definition

A k-labelling of a graph G is a function ℓ ∶ E(G) → {1, . . . , k}.

Definition

We can resulting sum (relative to a labelling ℓ) of a vertex u the sum of labels on
edges incident to u. We denote it σℓ(u).

Definition
We said a labelling ℓ is distinguishing if for every two adjacent vertices u and v of
G , σℓ(u) ≠ σℓ(v).
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Definition

We can resulting sum (relative to a labelling ℓ) of a vertex u the sum of labels on
edges incident to u. We denote it σℓ(u).
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Introduction

Small examples (again)

Definition
We say a labelling ℓ is degenerate if the resulting sums by ℓ induce forests.

2

3

5

4

3

4

5

1

1
1

2

1

1

2

3

1
3

2

4

4

4 3

2

2
2

1

1
2

Bensmail, Hocquard, Marcille Degenerate sums with 2-labellings March 2023 7 / 22



Introduction

Small examples (again)

Definition
We say a labelling ℓ is degenerate if the resulting sums by ℓ induce forests.

2

3

5

4

3

4

5

1

1
1

2

1

1

2

3

1
3

2

4

4

4 3

2

2
2

1

1
2

Bensmail, Hocquard, Marcille Degenerate sums with 2-labellings March 2023 7 / 22



Introduction

Conjecture

There are results and problems similar to those of the 1-2-3 Conjecture:

Degenerate 1-2-3 Theorem (Gao et al., 2015)

All graphs admit a degenerate 3-labelling.

In the same paper, the authors conjectured the following:

Degenerate 1-2 Conjecture (Gao et al., 2015)

All graphs admit a degenerate 2-labelling.

They proved the conjecture for:
Graphs with mad ≤ 3.
Series-parallel graphs.
Complete bipartite graphs.
Cycles.
Complete graphs.
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Our results

Our contribution

From this exploratory work, our contribution consists in multiple things:
Re-defining the problem in usual terms;
Link it to several well-known graph notions;
Improve the result on complete bipartite graphs to all bipartite graphs;
Improve the results on series-parallel graphs to all 2-degenerate graphs;
Improve the mad bound to 10

3 .

Theorem (Bensmail et al., 2023+)

Let G be a graph. If G is bipartite, 2-degenerate or of mad < 10
3 , then G admits a

degenerate 2-labelling.
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Bipartite graphs

Bipartite graphs

Theorem
Let G be a bipartite graph. Then G admits a degenerate 2-labelling.

We use a classical technique of path swapping from the field.
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2-degenerate graphs

2-degenerate graphs

Theorem
Let G be a 2-degenerate graph. Then G admits a degenerate 2-labelling.

We swap paths according to a degenerate 2-coloring layout.

v

v1

v2
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MAD results

Main result

mad(G) is the maximum density of an induced subgraph of G .

Theorem (Gao et al., 2015)

Let G be a graph of mad ≤ 3. Then G admits a degenerate 2-labelling.

Corollary

Let G be a planar graph of girth 6. Then G admits a degenerate 2-labelling.

Theorem (Bensmail et al., 2023+)

Let G be a graph of mad < 10
3 . Then G admits a degenerate 2-labelling.

Corollary

Let G be a planar graph of girth 5. Then G admits a degenerate 2-labelling.
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MAD results reduction

Main ideas

Definition

We say a graph G with mad(G) < 10
3 is a minimal counter example (relative to a

theorem) if there is no H with mad(H) < 10
3 such that

∣E(H)∣ + ∣V (H)∣ < ∣E(G)∣ + ∣V (G)∣.

Suppose we have a minimal counterexample (minimal CE) to the theorem;
Prove that it cannot contain some sparse structures;
Put charge d(v) − 10

3 on every vertex v ;
Move charges between vertices;
Prove that the mad is too big.
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MAD results reduction

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4−-vertex adjacent to a
2−-vertex.

4− 2−

σℓ(v) + 1

σℓ(v) + 1

v u
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MAD results reduction

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4−-vertex adjacent to a
2−-vertex.

By minimality of G , we can compute ℓ′

a degenerate 2-labelling of G − {uv}. 4− 2−

σℓ(v) + 1

σℓ(v) + 1

v u
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MAD results reduction

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4−-vertex adjacent to a
2−-vertex.

Suppose d(v) = 4.
Then σℓ(v) > σℓ(u). 4− 2−

σℓ(v) + 1

σℓ(v) + 1

v u
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Theorem
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Suppose d(v) = 4.
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MAD results reduction

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4−-vertex adjacent to a
2−-vertex.

3− 2−

σℓ(v) + 1

σℓ(v) + 1

v u
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MAD results reduction

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4−-vertex adjacent to a
2−-vertex.

Suppose d(u) = 1. 3− 2−

σℓ(v) + 1

σℓ(v) + 1

v u
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MAD results reduction

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4−-vertex adjacent to a
2−-vertex.

Suppose d(u) = 1.
By arguments very similar. 3− 1

σℓ(v) + 1

σℓ(v) + 1

v u

1

σℓ(v) + 1

σℓ(v) + 1
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MAD results reduction

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4−-vertex adjacent to a
2−-vertex.

Suppose d(v) = 2. 2 2

σℓ(v) + 1

σℓ(v) + 1

v u
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MAD results reduction

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4−-vertex adjacent to a
2−-vertex.

Suppose d(v) = 2.
We can choose a label such that
σℓ(v) + ℓ

′
(uv) is not equal to the

resulting sum of the only neighbour of v
other than u.

2 2

σℓ(v) + 1

σℓ(v) + 1

v u
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MAD results reduction

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4−-vertex adjacent to a
2−-vertex.

We can now assume d(v) = 3. 3 2

σℓ(v) + 1

σℓ(v) + 1

v u
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MAD results reduction

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4−-vertex adjacent to a
2−-vertex.

We can now assume d(v) = 3.
We just pick a label by ℓ′ for uv such
that σℓ(v) + ℓ

′
(uv) ≠ σℓ(w). 3 2

σℓ(v) + 1

σℓ(v) + 1

v u

w
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MAD results reduction

An example of a reducible configuration

Theorem

Let G be a minimal CE. Then G does not contain a 4−-vertex adjacent to a
2−-vertex.

We can now assume d(v) = 3.
We generalize the idea in a lemma. 3 2

σℓ(v) + 1

σℓ(v) + 1

v u
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MAD results reduction

reducible configurations

4− 2− 3

3

33

5 2−

2−

5 2−

3

4

3

3

33

4 3

3

3

4 3

3

3

3

3

(3d1 + d2 + 1)−

3 3

2−2−

d2

d1
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

We need to consider possible inner
edges, and complete a labelling of
G − {u} and without the inner edges.

Bensmail, Hocquard, Marcille Degenerate sums with 2-labellings March 2023 16 / 22



MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3
Assume ∣E(G [{n0,n1,n2,n3}])∣ = 4.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

2
2

2
2
2 1

22 Assume ∣E(G [{n0,n1,n2,n3}])∣ = 4.
Then G is a wheel of order 5.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3
Assume ∣E(G [{n0,n1,n2,n3}])∣ = 3.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

n′3

n′2

2
2

2
2

Assume ∣E(G [{n0,n1,n2,n3}])∣ = 3.
We ensure a large sum for u.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

n′3

n′2

2
2

2
2

Assume ∣E(G [{n0,n1,n2,n3}])∣ = 3.
We ensure a large sum for u. We pick
remaining labels according to the
resulting sums of n′2 and n′3.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3
Assume ∣E(G [{n0,n1,n2,n3}])∣ = 2.

There are two subcases.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

Assume ∣E(G [{n0,n1,n2,n3}])∣ = 2.
Assume inner edges are incident to a
common vertex.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

Assume ∣E(G [{n0,n1,n2,n3}])∣ = 2.
Assume inner edges are incident to a
common vertex. We have no control
over the label of un2.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

2
22

Assume
∣E(G [{n0,n1,n2,n3}])∣ = 2. Assume
inner edges are incident to a common
vertex. We can still ensure that the
resulting sum of u is large.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

2
22

Assume ∣E(G [{n0,n1,n2,n3}])∣ = 2.
Assume inner edges are incident to a
common vertex. We can still ensure
that the resulting sum of u is large.
We conclude with Lemma.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3
Assume ∣E(G [{n0,n1,n2,n3}])∣ = 2.

Now assume this configuration.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

2
2

2
2

Assume ∣E(G [{n0,n1,n2,n3}])∣ = 2.
Now assume this configuration. The
resulting sum of u is large.

Bensmail, Hocquard, Marcille Degenerate sums with 2-labellings March 2023 16 / 22



MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

n′3

n′2

2
2

2
2

Assume ∣E(G [{n0,n1,n2,n3}])∣ = 2.
Now assume this configuration. The
resulting sum of u is large. We pick
labels for n1n2 and n0n3 to differentiate
them from their neighbours.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3
Assume

∣E(G [{n0,n1,n2,n3}])∣ = 1.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

2
22

Assume
∣E(G [{n0,n1,n2,n3}])∣ = 1. If we have
the choice for at least one of un2 or un3,
we can ensure a large resulting sum for
u, and pick a label for n0n1 like in last
case.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

Assume
∣E(G [{n0,n1,n2,n3}])∣ = 1.
Otherwise, we pick fitting labels for un2,
un3, and we can make the resulting sum
of one of n0 or n1 strictly bigger than the
other.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3
Assume

∣E(G [{n0,n1,n2,n3}])∣ = 0.
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MAD results reduction

Some more reductions

Configuration 5

Let G be a minimal CE. Then G does not contain a 4-vertex adjacent to four
3-vertices.

4
u

3
n0

3
n2

3 n13n3

Assume
∣E(G [{n0,n1,n2,n3}])∣ = 0. We have
a lemma.
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MAD results reduction

Another reduction

Configuration 8

Let G be a minimal CE, d1, d2 two integers such that 3d1 + d2 + 1 ≥ 6. Then G
does not contain a (3d1 + d2 + 1)−-vertex adjacent to d2 3-vertices and d1
2−-vertices.

u

3 3

2−2−

d2

d1

We consider a labelling of
G − {uv1, . . . ,uvd1 ,uw1, . . . ,uwd2} and
we extend it.
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MAD results reduction

Another reduction

Configuration 8

Let G be a minimal CE, d1, d2 two integers such that 3d1 + d2 + 1 ≥ 6. Then G
does not contain a (3d1 + d2 + 1)−-vertex adjacent to d2 3-vertices and d1
2−-vertices.

u

3 3

2−2−

d2

d1

We consider a labelling of
G − {uv1, . . . ,uvd1 ,uw1, . . . ,uwd2} and
we extend it. G [{w1, . . . ,wd2}] has
maximum degree 2. Its connected
component are either cycles, paths or
isolated vertices.
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MAD results reduction

Another reduction

Configuration 8

Let G be a minimal CE, d1, d2 two integers such that 3d1 + d2 + 1 ≥ 6. Then G
does not contain a (3d1 + d2 + 1)−-vertex adjacent to d2 3-vertices and d1
2−-vertices.

u

3 3

2−2−

3 3

1 1

We consider a labelling of
G − {uv1, . . . ,uvd1 ,uw1, . . . ,uwd2} and
we extend it. G [{w1, . . . ,wd2}] has
maximum degree 2. Its connected
component are either cycles, paths or
isolated vertices. For each component
with edges, we pick one arbitrary wi and
assign label 1 to every other uwj of the
component.
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MAD results reduction

Another reduction

Configuration 8

Let G be a minimal CE, d1, d2 two integers such that 3d1 + d2 + 1 ≥ 6. Then G
does not contain a (3d1 + d2 + 1)−-vertex adjacent to d2 3-vertices and d1
2−-vertices.

u

3 3

2−2−

3 3

We consider a labelling of
G − {uv1, . . . ,uvd1 ,uw1, . . . ,uwd2} and
we extend it. We assign a fitting
label to every remaining uwi .
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MAD results reduction

Another reduction

Configuration 8

Let G be a minimal CE, d1, d2 two integers such that 3d1 + d2 + 1 ≥ 6. Then G
does not contain a (3d1 + d2 + 1)−-vertex adjacent to d2 3-vertices and d1
2−-vertices.

u

3 3

2−2−

We consider a labelling of
G − {uv1, . . . ,uvd1 ,uw1, . . . ,uwd2} and
we extend it. There can be no cycle
with one of the wi . We only need to be
sure that u does not have the same
resulting sum as two of its neighbours.
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MAD results reduction

Another reduction

Configuration 8

Let G be a minimal CE, d1, d2 two integers such that 3d1 + d2 + 1 ≥ 6. Then G
does not contain a (3d1 + d2 + 1)−-vertex adjacent to d2 3-vertices and d1
2−-vertices.

u

3 3

2−2−

We consider a labelling of
G − {uv1, . . . ,uvd1 ,uw1, . . . ,uwd2} and
we extend it.
We have a Lemma.
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MAD results Discharging process

Our discharging process

Degree 1 2 3 4 5 6
Initial charge −7

3
−4
3

−1
3

2
3

5
3

9
3

Final charge −4
3

2
3 0 0 0 0

Weak 3-vertices

A weak 3-vertex is a 3-vertex adjacent to exactly one 4+-vertex, and it is a
4-vertex.

4− 2− 3

3

33

5 2−

2−

5 2−

3

4

3

3

33

4 3

3

3

4 3

3

3

3

3

(3d1 + d2 + 1)−

3 3

2−2−

d2

d1

(R1) Every 5+-vertex sends 1 to each of
its 2−-neighbours.

(R2) Every 5+-vertex sends 1
3 to each of

its 3-neighbours.
(R3) Every 4-vertex sends 1

3 to each of
its weak 3-neighbours.

(R4) Every 4-vertex sends 1
6 to each of

its non-weak 3-neighbours.
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MAD results Discharging process

The final weights

Consider for instance v a 3-vertex. Note that ω(v) = − 1
3 , and that we need

ω∗(v) ≥ 0:
If v is weak, then v has only one 4+-neighbour, being a 4-vertex, which sent
1
3 to v by Rule R3.
If v is not weak, then either v neighbours at least one 5+-vertex, or v
neighbours at least two 4-vertices. In the former case, at least one
5+-neighbour of v sent 1

3 to v by Rule R2, while, in the latter case, at least
two 4-neighbours of v both sent 1

6 to v by Rule 4.

We prove the same result for every possible degree.
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MAD results Discharging process

The final weights

Consider for instance v a 3-vertex. Note that ω(v) = − 1
3 , and that we need

ω∗(v) ≥ 0:
If v is weak, then v has only one 4+-neighbour, being a 4-vertex, which sent
1
3 to v by Rule R3.
If v is not weak, then either v neighbours at least one 5+-vertex, or v
neighbours at least two 4-vertices. In the former case, at least one
5+-neighbour of v sent 1

3 to v by Rule R2, while, in the latter case, at least
two 4-neighbours of v both sent 1

6 to v by Rule 4.

Rule R3

Every 4-vertex sends 1
3 to each of its weak 3-neighbours.

We prove the same result for every possible degree.
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MAD results Discharging process

The final weights

Consider for instance v a 3-vertex. Note that ω(v) = − 1
3 , and that we need

ω∗(v) ≥ 0:
If v is weak, then v has only one 4+-neighbour, being a 4-vertex, which sent
1
3 to v by Rule R3.
If v is not weak, then either v neighbours at least one 5+-vertex, or v
neighbours at least two 4-vertices. In the former case, at least one
5+-neighbour of v sent 1

3 to v by Rule R2, while, in the latter case, at least
two 4-neighbours of v both sent 1

6 to v by Rule 4.
We prove the same result for every possible degree.
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MAD results Discharging process

The final weights

Consider for instance v a 3-vertex. Note that ω(v) = − 1
3 , and that we need

ω∗(v) ≥ 0:
If v is weak, then v has only one 4+-neighbour, being a 4-vertex, which sent
1
3 to v by Rule R3.
If v is not weak, then either v neighbours at least one 5+-vertex, or v
neighbours at least two 4-vertices. In the former case, at least one
5+-neighbour of v sent 1

3 to v by Rule R2, while, in the latter case, at least
two 4-neighbours of v both sent 1

6 to v by Rule 4.

Rule R2

Every 5+-vertex sends 1
3 to each of its 3-neighbours.

We prove the same result for every possible degree.
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If v is weak, then v has only one 4+-neighbour, being a 4-vertex, which sent
1
3 to v by Rule R3.
If v is not weak, then either v neighbours at least one 5+-vertex, or v
neighbours at least two 4-vertices. In the former case, at least one
5+-neighbour of v sent 1

3 to v by Rule R2, while, in the latter case, at least
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MAD results Discharging process

The final weights

Consider for instance v a 3-vertex. Note that ω(v) = − 1
3 , and that we need

ω∗(v) ≥ 0:
If v is weak, then v has only one 4+-neighbour, being a 4-vertex, which sent
1
3 to v by Rule R3.
If v is not weak, then either v neighbours at least one 5+-vertex, or v
neighbours at least two 4-vertices. In the former case, at least one
5+-neighbour of v sent 1

3 to v by Rule R2, while, in the latter case, at least
two 4-neighbours of v both sent 1

6 to v by Rule 4.

Rule R4

Every 4-vertex sends 1
6 to each of its non-weak 3-neighbours.

We prove the same result for every possible degree.
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Conclusion

Results

In this presentation, we proved the degenerate 1-2 Conjecture:
for 2-degenerate graphs;
for bipartite graphs;
for graphs of mad < 10

3 .
In fact, it also holds for graph of edge weight 7. We also have a corollary to the
mad result:

Corollary

If G is a planar graph with g(G) ≥ 5, then it admits a degenerate 2-labelling.
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Conclusion

Perspectives

Other classes of graph with vertex arboricity at most 2:
Graphs of maximum degree 4;
Graphs of degeneracy 3.

Denser graphs (with bigger mad).

Thank you for your attention !
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Conclusion

Discharging

We will apply the following result to our minimal CE.

Theorem (Bonamy et al., 2013)

Let G be a graph, m a value and (V1,V2) a partition of V (G). Let ω be the
charge function where ω(v) = d(v) −m for every v ∈ V (G). If there is a
discharging process resulting in a charge function ω∗ such that:

ω∗(v) ≥ 0 for every v ∈ V1, and
ω∗(V ) ≥ ω(v) + dV1(v) for every v ∈ V2,

Then mad(G) ≥ m.

We consider V2 the set of all the 2−-vertices of G . Note that by Configuration 1,
dV1(v) = d(v) for every v ∈ V2.
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