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Context: With the rise of computationally intensive deep learning applications such as large language
models (LLM), reducing the power consumption, memory footprint, and training and inference time of
neural network computations has become one of the most pressing and important challenges. Two very
different classes of methods have been explored and have encountered much success: first, low precision
arithmetics (e.g., 16-bit or lower), nowadays ubiquitous in deep learning, are used to quantize the net-
work weights to smaller sizes, while accuracy is retained with the use of stochastic rounding or mixed
precision arithmetic. Second, the matrices associated with the network layers are compressed by exploit-
ing structured representations, such as sparse, low-rank, or butterfly representations. Butterfly matrices in
particular have attracted growing interest due to their extreme sparsity and strong expressivity, as they are
a fundamental tool in many fast linear transforms such as the Fast Fourier Transform (FFT). While both
techniques (quantization and compression) have been extensively studied independently, their combined
use remains largely unexplored, and raises several important questions, both theoretical and practical.

Objectives: This internship will investigate the accuracy of the FFT and related operations with structured
matrices in the presence of rounding errors, and in settings typical of deep learning applications. The FFT
was introduced in 1965 by Cooley and Tukey in its modern form [4, 5, 10]. There is a large literature on the
error analysis of the FFT [13, 14, 7, 11, 12], most authors bounding the relative mean-square error, either in
the worst case or in the average case. For some applications, we also need bounds in terms of the infinity
norm; in particular, such an analysis was made by Henrici for the worst case [6] and, recently, an improved
bound was given in [2] together with the construction of “bad input cases”, for which the attained error is
close to this new bound.

While providing suitable worst-case models, error analyses such as the one in [2] tend to be highly pes-
simistic for average-case situations. Indeed these analyses do not exploit specific features of the hardware
or the application that lead to small errors in practice. In particular, deep learning computations commonly
employ mixed precision matrix-multiply accumulate operations [1] and/or stochastic rounding [3], both of
which can reduce the error accumulation. Moreover, in the recent years several new, modern probabilistic
analyses have been proposed to model the somewhat random nature of both rounding errors [8] and the
matrix coefficients [9] in typical neural network applications. However, these more refined analyses have
been focused on dense (unstructured) linear algebra computations. The goal of this internship is therefore
to extend these analyses to structured computations, including the FFT, in order to improve the current
worst-case bounds. The improvement of the error bounds will be experimentally validated by performing
an empirical study of the average accuracy of structured matrix products in deep learning applications.

Practical details

• The internship will take place at LIP laboratory of ENS de Lyon.

• The intern will receive indemnities if her/his status allows.

• Depending on the results of the internship, an opportunity to continue with a PhD thesis could be
available.
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