MP* - Séries, familles sommables

Exercice 1: Etudier la convergence de $\sum u_n$ lorsque u_n vaut :

- 1. $\ln(1+1/n)$.
- 2. $\ln(1+(-1)^n/n)$.
- 3. $\ln(1+(-1)^n/\sqrt{n})$.
- 4. $\sin(\pi\sqrt{n^2+n+1})$

Exercice 2: $\alpha > 0$. Étudier l'existence de $\lim_{n \to +\infty} \prod_{k=2}^{n} \left(1 - \frac{1}{k^{\alpha}}\right)$. (plusieurs cas. la limite est calculable dans certains cas)

Exercice 3:

- 1. Justifier la convergence de $\sum_{n\geq 1} \frac{1}{n+n^4}$.
- 2. Comment calculer une valeur approchée de la somme à 10^{-4} près?
- 3. Déterminer un équivalent quand $n \to +\infty$ de $\sum_{k=0}^{+\infty} \frac{1}{k+k^4}$.

Exercice 4: Une permutation de terme

1. On note $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.

Exprimer S_{2n} avec des H_k , et montrer que $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} = -\ln(2)$

2. Changement de l'ordre de sommation. Au lieu de faire $-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\dots$, on considère maintenant: $-1-\frac{1}{3}+\frac{1}{4}-\dots$ $\frac{1}{2} - \frac{1}{5} - \frac{1}{7} + \frac{1}{4} - \dots \text{ (dans l'ordre, deux négatifs, un positif, répétés)}$ On note W_n les sommes partielles de cette nouvelle série, n commençant à 1. Exprimer W_{3n} avec des H_k , et calculer $a = \lim_{n \to +\infty} W_{3n}$. On notera que $a \neq -\ln(2)$.

Justifier que $W_n \xrightarrow[n \to +\infty]{} a$.

Exercice 5: Permutation de termes: cas général Soit $(a_n) \in \mathbb{R}^{\mathbb{N}}$ telle que $\sum a_n$ converge et $\sum |a_n|$ diverge. On note $P = \{n \in \mathbb{N} \mid a_n \geq 0\}$, et $N = \mathbb{N} \setminus P$.

- 1. Justifier que $(a_n)_{n\in\mathbb{N}}$ et $(a_n)_{n\in\mathbb{N}}$ sont non sommables.
- 2. Soit $b \in \mathbb{R}$. Montrer qu'il existe une permutation σ de \mathbb{N} telle que $\sum_{n=0}^{\infty} a_{\sigma(n)} = b$. On définira σ en piochant dans P et N, de sorte à osciller autour de b

Exercice 6: On pose
$$S_n = \sum_{k=1}^n \frac{1}{k(2k+1)}$$
 et $W_n = \sum_{k=1}^n \frac{1}{k}$

- 1. Justifier que (S_n) converge.
- 2. Vérifier que $\sum_{k=0}^{n-1} \frac{1}{2k+1} = W_{2n} \frac{W_n}{2}$.
- 3. A l'aide d'une décomposition en éléments simples et du développement asymptotique de W_n , calculer $\sum_{i=1}^{+\infty} \frac{1}{k(2k+1)}$

1

Exercice 7: En utilisant les méthodes vues pour la série harmonique, déterminer un développement asymptotique à trois termes de $s_n = \sum_{k=1}^n \frac{1}{k^2}$. On admettra que $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$.

Exercice 8 : Soient $a, b \in \mathbb{R}$ avec |a| < 1. (u_n) vérifie $u_{n+1} = a\sin(u_n) + b$. Montrer que $|u_{p+1} - u_p| \le |a|^p |u_1 - u_0|$. En déduire que (u_n) converge.

Exercice 9: On se donne une fonction $f: \mathbb{R}^+ \to \mathbb{R}$ telle que $f(x) - \ln(x) \xrightarrow[x \to +\infty]{} 0$ et $\forall x \in \mathbb{R}^+$, $f(x+1) - f(x) = \frac{1}{x+1}$.

Montrer que $\forall x \in \mathbb{R}^+$, $f(x) = -\gamma + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x}\right)$ (γ est la constante d'Euler).

Exercice 10:

- 1. Trouver un équivalent de $\sum_{k=1}^{n} \frac{1}{\sqrt{2k}}$ quand $n \to +\infty$.
- 2. Soit (a_k) une suite de réels > 0. On pose $S_n = \sum_{k=0}^{\infty} a_k$.

On suppose $S_n \sim \frac{1}{n \to +\infty} \frac{1}{a}$.

- (a) Etudier la convergence de la série de terme général a_n .
- (b) Déterminer α tel que $S_{n+1}^{\alpha} S_n^{\alpha}$ admette une limite finie non nulle quand $n \to +\infty$.
- (c) Utilisant le théorème de Cesaro, trouver un équivalent de a_n .

Exercice 11 : étude asymptotique d'une suite récurrente

La suite (x_n) vérifie $x_0 \in]0,1[$ et $\forall n \in \mathbb{N}, x_{n+1} = x_n - x_n^2$

- 1. Montrer que $\forall n \in \mathbb{N}, x_n \in]0,1[$ et que $x_n \xrightarrow[n \to +\infty]{} 0.$
- 2. Montrer que $\frac{1}{x_{n+1}} \frac{1}{x_n} = 1 + x_n + o(x_n)$. En utilisant le théorème de Cesaro, montrer que $x_n \sim \frac{1}{n \to +\infty}$
- 3. Montrer que $\frac{1}{x_{n+1}} \frac{1}{x_n} = 1 + \frac{1}{n} + o\left(\frac{1}{n}\right)$.
- 4. En déduire que $\frac{1}{x_n} n \underset{n \to +\infty}{\sim} \ln(n)$.
- 5. Montrer que $x_n = \frac{1}{n \to +\infty} \frac{1}{n} \frac{\ln(n)}{n^2} + o\left(\frac{\ln(n)}{n^2}\right)$.

Exercice 12: On se donne $x \in \mathbb{R}^+$. On définit $(\varepsilon_n) \in \{0,1\}^{\mathbb{N}^*}$ par: $\varepsilon_1 = 1$ si $x \geq 1$, $\varepsilon_1 = 0$ si x < 1.

$$\varepsilon_1 = 1 \text{ si } x \ge 1, \ \varepsilon_1 = 0 \text{ si } x < 1.$$

Si
$$n \ge 2$$
, $\varepsilon_n = 1$ si $x \ge \frac{1}{n} + \sum_{k=1}^{n-1} \frac{\varepsilon_k}{k}$ et $\varepsilon_n = 0$ sinon.

- 1. Montrer qu'il existe une infinité de n tels que $\varepsilon_n = 0$.
- 2. Montrer que $\sum_{n \in \mathbb{N}^*} \frac{\varepsilon_n}{n}$ converge et que $\sum_{n \in \mathbb{N}^*} \frac{\varepsilon_n}{n} = x$
- 3. Y-a-t-il une unique suite $(\varepsilon_n) \in \{0,1\}^{\mathbb{N}^*}$ telle que $x = \sum_{\varepsilon \in \mathbb{N}^*} \frac{\varepsilon_n}{n}$?

Exercice 13: On s'intéresse à la convergence de $\sum_{n=0}^{\infty} \frac{(-1)^{E(\sqrt{n})}}{n}$.

On pose
$$a_n = \sum_{k=n^2}^{(n+1)^2 - 1} \frac{1}{k}$$
.

- 1. A l'aide d'un encadrement intégral de a_n , montrer que (a_n) est décroissante à partir d'un certain rang et que
- 2. Montrer que $\sum_{n\geq 1} (-1)^n a_n$ converge, puis que $\sum_{n\geq 1} \frac{(-1)^{E(\sqrt{n})}}{n}$ converge.

Exercice 14:

1. Calculer
$$\sum_{k,n\in\mathbb{N},\ k\geq n} \frac{1}{k!}$$
.

2. Calculer
$$\sum_{p,q\geq 2} \frac{1}{p^q}$$

3. Calculer
$$\sum_{p,q\in\mathbb{N}} 2^{-3q-p-(p+q)^2}.$$

4. CNS sur
$$a, b \in \mathbb{C}$$
 pour que $\left(\frac{a^p b^q}{(p+q)!}\right)_{(p,q)\in\mathbb{N}^2}$ soit sommable?

5. CNS sur
$$\alpha > 0$$
 pour que $\left(\frac{1}{(q+p+1)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^2}$ soit sommable?

6. Montrer que
$$\sum_{n=1}^{+\infty} \sum_{p \in \mathbb{N}^*, p \neq n} \frac{1}{n^2 - p^2} \neq \sum_{p=1}^{+\infty} \sum_{n \in \mathbb{N}^*, p \neq n} \frac{1}{n^2 - p^2}$$
 (on calculera les sommes). Conclusion?

7. Si
$$|x| < 1$$
, montrer que $\sum_{n=1}^{+\infty} \frac{x^n}{1-x^n} = \sum_{n=1}^{+\infty} d(n)x^n$, où $d(n)$ est le nombre de diviseurs positifs de n .

Exercice 15:

1. Soit
$$(a_k)_{k\geq 2}$$
 une suite telle que $a_k \in \{0, 1, ..., k-1\}$ et $S = \sum_{k=2}^{+\infty} \frac{a_k}{k!}$.

(a) Justifier l'existence de
$$S$$
.

(b) Calculer
$$\sum_{k=n}^{+\infty} \frac{k-1}{k!}$$
. Montrer que $\sum_{k=n}^{+\infty} \frac{a_k}{k!} = O(1/(n-1)!)$.

(c) Montrer que
$$2\pi n!S - 2\pi n!\sum_{k=0}^{n+1}\frac{a_k}{k!}\underset{n\to+\infty}{\longrightarrow}0$$
 puis que $\sin(2\pi n!S) - \sin\left(2\pi\frac{a_{n+1}}{n+1}\right)\underset{n\to+\infty}{\longrightarrow}0.$

2. Limite de
$$\sin(2\pi n!e)$$
?

3. Etudier la convergence de
$$\sum_{k>0} \sin(2\pi k!e)$$
.

4.
$$x \in [-1, 1]$$
. Montrer qu'il existe $a \in \mathbb{R}$ tel que $\sin(n!a) \xrightarrow[n \to +\infty]{} x$.

Exercice 16:

Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle. On suppose que la série $\sum_{n\geq 0} na_n$ converge.

On pose
$$S_n = \sum_{k=0}^n k a_k$$
, $S = \sum_{k=0}^\infty k a_k$ et $A_n = \sum_{k=1}^n a_k$

On veut montrer que
$$\sum_{n=0}^{\infty} n a_{n+p} \xrightarrow[p \to +\infty]{} 0$$

1. Montrer que
$$A_n = \frac{S_n}{n} + \sum_{k=1}^{n-1} \frac{S_k}{k(k+1)}$$
. (transformation d'Abel)

2. Justifier que
$$(S_n)$$
 est bornée et que $\sum_{k\geq 1} \frac{S_k}{k(k+1)}$ converge absolument. En déduire que la série de terme général a_n converge.

3

3. Montrer que
$$\sum_{k=p}^{\infty} \frac{1}{k(k+1)} = \frac{1}{p}.$$

4. Soit
$$(\varepsilon_k)$$
 une suite convergeant vers 0.

Justifier que
$$\sum_{k\geq 1} \frac{\varepsilon_k}{k(k+1)}$$
 converge absolument, et montrer que $\sum_{k=p}^{+\infty} \frac{\varepsilon_k}{k(k+1)} \underset{p\to +\infty}{=\!\!=\!\!=} o(1/p)$

5. Montrer que
$$\sum_{n=0}^{\infty} n a_{n+p} = \sum_{n=p}^{\infty} n a_n - p \sum_{n=p}^{\infty} a_n$$

6. Montrer que
$$p \sum_{k=n}^{\infty} a_k = S - S_{p-1} + p \sum_{k=n}^{\infty} \frac{S_k - S}{k(k+1)}$$

7. Conclure.

Exercice 17 : Sous-sommes de $\sum_{k=0.15} 1/k^2$

Etant donnée une série $S = \sum_{k > n} a_k$ convergente à termes positifs, on appelle sous-somme de S toute somme du type

 $\sum_{k=p}^{+\infty} \varepsilon_k a_k, \text{ où } \forall k, \, \varepsilon_k \in \{0,1\}. \text{ On note } D(S) \text{ l'ensemble des sous-sommes de } S. \text{ (note : } S \text{ désigne une série, et n'est}$

pas un nombre)

Un résultat général

Soit $(b_n)_{n\in\mathbb{N}}$ une suite de réels positifs telle que $S=\sum_{k>0}b_k$ converge et $\forall n\in\mathbb{N},\ b_n\leq\sum_{k=n+1}^{+\infty}b_k$. Soit $s=\sum_{k=0}^{+\infty}b_k$

1. On se fixe $x \in [0, s[$.

Définissons (ε_k) par récurrence de la sorte :

$$\varepsilon_0 = \left\{ \begin{matrix} 1 & \text{si } b_0 \leq x \\ 0 & \text{sinon} \end{matrix} \right. \; \varepsilon_0, \dots, \; \varepsilon_{n-1} \; \text{\'etant d\'efinis, on pose } \varepsilon_n = \left\{ \begin{matrix} 1 & \text{si } b_n + \displaystyle \sum_{k=0}^{n-1} \varepsilon_k b_k \leq x \\ 0 & \text{sinon} \end{matrix} \right.$$

(a) Montrer que $\sum_{k>0} \varepsilon_k b_k$ converge.

Montrer que $\forall n, \sum_{k=0}^{n} \varepsilon_k b_k \leq x$, et que $a = \sum_{k=0}^{+\infty} \varepsilon_k b_k$ vérifie $a \leq x$. On suppose dans les deux questions suivantes a < x.

- (b) Montrer qu'il existe N tel que $\forall n \geq N$, $\varepsilon_n = 1$, et justifier l'existence de $p = \max\{n \in \mathbb{N} \mid \varepsilon_n = 0\}.$
- (c) p est défini comme dans la question précédente.

Justifier que $\sum_{k=0}^{r} \varepsilon_k b_k > x - b_p$, et trouver une contradiction.

2. Montrer que D(S) = [0, s]

Sous-sommes de $\sum_{k \in \mathbb{N}^*} \frac{1}{k^2}$

3. Ici
$$S = \sum_{k \in \mathbb{N}^*} \frac{1}{k^2}$$
.

A l'aide d'une intégrale, montrer que $\forall n \geq 2, \sum_{k=-1}^{+\infty} \frac{1}{k^2} \geq \frac{1}{n^2}$.

Montrer que $\mathcal{D}(S)$ est réunion de deux segments disjoints à préciser.

On admettra $\sum_{k=0}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \simeq 1, 6.$