Sparse graphs with bounded induced cycle packing number have logarithmic treewidth

Marthe Bonamy1 Édouard Bonnet2 Hugues Déprés2 Louis Esperet3
Colin Geniet2 Claire Hilaire1 Stéphan Thomassé2 Alexandra Wesolek4

1Univ. Bordeaux, France
2ENS de Lyon, France
3Univ. Grenoble, France
4Simon Fraser Univ., Canada

Symposium on Discrete Algorithms 2023
Erdős Pósa property

Cycle packing $cp(G)$: maximum size of a collection of vertex-disjoint cycles in G.

Feedback-vertex-set $fvs(G)$: minimum number of vertices required to intersect all cycles of G.

Theorem (Erdős–Pósa) $fvs(G) \leq f(cp(G))$ with $f(k) = O(k \log k)$.

A graph with $cp(G)$ bounded is a tree plus a bounded number of vertices.
Erdős Pósa property

Cycle packing $cp(G)$: maximum size of a collection of vertex-disjoint cycles in G.

Feedback-vertex-set $fvs(G)$: minimum number of vertices required to intersect all cycles of G.

\[fvs(G) \leq f(cp(G)) \text{ with } f(k) = O(k \log k) \]

A graph with $cp(G)$ bounded is a tree plus a bounded number of vertices.

\Rightarrow algorithmically simple graphs
Odd cycles packing

Odd cycle packing $ocp(G)$: same with only odd cycles.

Theorem (Fiorini, Joret, Weltge, Yuditsky, '21)

In graphs with $ocp(G) \leq k$, maximum independent set can be solved in polynomial time.
Odd cycles packing

Odd cycle packing $ocp(G)$: same with only odd cycles.

Theorem (Fiorini, Joret, Weltge, Yuditsky, '21)

In graphs with $ocp(G) \leq k$, maximum independent set can be solved in polynomial time.

Induced odd cycle packing $iopc(G)$: only consider packings of non-adjacent odd cycles.

Theorem (Bonamy et al., '18)

For graphs with $iopc(G)$ bounded, VC-dimension bounded, and linear size independent sets, there is an EPTAS for maximum independent set.

Applications to disk and unit ball graphs.
Induced cycle packing

Induced cycle packing $icp(G)$: maximum number of vertex-disjoint *and non-adjacent* cycles in G.

We study the class of graphs with $icp(G) \leq k$ (k constant).

Problems:
- Testing $icp(G) \leq k$
- Algorithms in this class for independent set, …

Question: Does $icp(G) \leq k$ imply $fvs(G) \leq f(k)$?

No: cliques have $icp(K_t) = 1$ but $fvs(K_t) = t - 2$.

Colin Geniet (ENS de Lyon)
Induced cycle packing

Induced cycle packing $icp(G)$: maximum number of vertex-disjoint *and non-adjacent* cycles in G.

We study the class of graphs with $icp(G) \leq k$ (k constant).

Problems:

- Testing $icp(G) \leq k$
- Algorithms in this class for independent set, …
Induced cycle packing

Induced cycle packing $icp(G)$: maximum number of vertex-disjoint *and non-adjacent* cycles in G.

We study the class of graphs with $icp(G) \leq k$ (k constant).

Problems:
- Testing $icp(G) \leq k$
- Algorithms in this class for independent set, ...

Question

Does $icp(G) \leq k$ imply $fvs(G) \leq f(k)$?
Induced cycle packing

Induced cycle packing $icp(G)$: maximum number of vertex-disjoint *and* non-adjacent cycles in G.

We study the class of graphs with $icp(G) \leq k$ (k constant).

Problems:
- Testing $icp(G) \leq k$
- Algorithms in this class for independent set, ...

Question

Does $icp(G) \leq k$ imply $fvs(G) \leq f(k)$?

No: cliques have $icp(K_t) = 1$ but $fvs(K_t) = t - 2$.
Induced cycle packing

Induced cycle packing $icp(G)$: maximum number of vertex-disjoint *and non-adjacent* cycles in G.

We study the class of graphs with $icp(G) \leq k$ (k constant).

Problems:
- Testing $icp(G) \leq k$
- Algorithms in this class for independent set, ...

Question

Does $icp(G) \leq k$ and no $K_{t,t}$ subgraph imply $fvs(G) \leq f(k, t)$?

Still no!
$icp(G) = 1$ and FVS unbounded.
Feedback vertex set is logarithmic

Theorem

If G is a graph with $icp(G) \leq k$ and without $K_{t,t}$ subgraph, then

$$fvs(G) \leq f(k, t) \cdot \log n$$
Feedback vertex set is logarithmic

Theorem

If G is a graph with $icp(G) \leq k$ and without $K_{t,t}$ subgraph, then

$$fvs(G) \leq f(k, t) \cdot \log n$$

Some problems with algorithms in time $2^{O(tw(G))} \cdot poly(n)$:

- Maximum independent set
- 3-coloring
- Hamiltonian cycle
- ...
- Testing $icp(G) \leq k$ [Mi. Pilipczuk, '22]

When $fvs(G)$ is logarithmic in n, these algorithms are polynomial.
Solving Maximum Independent Set

F feedback vertex set of size $O(\log n)$.
Solving Maximum Independent Set

For each \(v \in F \), branch on \(v \):
- either pick \(v \in I \), and delete \(N[v] \),
- or \(v \notin I \), and delete \(v \).

After this, only a forest is left \(\Rightarrow \) pick leafs greedily.

Branching is polynomial because \(F \) is logarithmic.

\(F \) feedback vertex set of size \(O(\log n) \).

We construct \(I \) independent.

Colin Geniet (ENS de Lyon)
Graphs with bounded induced cycle packing
SODA23 6 / 10
Solving Maximum Independent Set

F feedback vertex set of size $O(\log n)$.

We construct I independent.
For each $v \in F$, branch on v:
- either pick $v \in I$, and delete $N[v]$,
- or $v \notin I$, and delete v.

After this, only a forest is left \Rightarrow pick leafs greedily.
Solving Maximum Independent Set

F feedback vertex set of size $O(\log n)$.

We construct I independent.
For each $v \in F$, branch on v:

- either pick $v \in I$, and delete $N[v]$,
- or $v \notin I$, and delete v.

After this, only a forest is left \Rightarrow pick leafs greedily.

Branching is polynomial because F is logarithmic.
Solving MIS in the dense case

Theorem

For any fixed k, Maximum Independent Set can be solved in quasipolynomial time $n^{O \left(\log n \right)}$ on graphs with $icp(G) \leq k$.
Solving MIS in the dense case

Theorem

For any fixed k, Maximum Independent Set can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with $icp(G) \leq k$.

Let S the set of cycles with length 4.
Solving MIS in the dense case

Theorem

For any fixed k, Maximum Independent Set can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with $\text{icp}(G) \leq k$.

Let S the set of cycles with length 4.

Fix $C \in S$. All cycles are adjacent to C.
Theorem

For any fixed k, Maximum Independent Set can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with $icp(G) \leq k$.

Let S the set of cycles with length 4.

Fix $C \in S$. All cycles are adjacent to C.
Thus some $v \in C$ is adjacent to $1/4$ of the cycles of S.

C

v

Graphs with bounded induced cycle packing

SODA23 7/10
Solving MIS in the dense case

Theorem

For any fixed k, **Maximum Independent Set** can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with $\text{icp}(G) \leq k$.

Let S the set of cycles with length 4.

Fix $C \in S$. All cycles are adjacent to C. Thus some $v \in C$ is adjacent to $1/4$ of the cycles of S.

Branch on v:

- Take v and delete $N(v) \Rightarrow$ destroys $1/4$ cycles in S,
- Delete $v \Rightarrow$ destroys C

This kind of branching is quasipolynomial.
Solving MIS in the dense case

Theorem

For any fixed k, **Maximum Independent Set** can be solved in quasipolynomial time $n^{O(\log n)}$ on graphs with $icp(G) \leq k$.

Let S the set of cycles with length 4.

Fix $C \in S$. All cycles are adjacent to C.

Thus some $v \in C$ is adjacent to $1/4$ of the cycles of S.

Branch on v:
- Take v and delete $N(v)$ ⇒ destroys $1/4$ cycles in S,
- Delete v ⇒ destroys C

This kind of branching is quasipolynomial.

When $S = \emptyset$, we are in the $K_{2,2}$-free case.
Theorem

If G is a graph with $icp(G) \leq k$ and without $K_{t,t}$ subgraph, then $fvs(G) \leq f(k, t) \cdot \log n.$
Theorem

If G is a graph with $\text{icp}(G) \leq k$ and with girth > 10, then G has average degree $\leq 2k + 2$.
Back to the main theorem

Theorem

If G is a graph with $\text{icp}(G) \leq k$ and with girth > 10, then G has average degree $\leq 2k + 2$.

Pick C cycle with minimal length.
Theorem

If G is a graph with $\text{icp}(G) \leq k$ and with girth > 10, then G has average degree $\leq 2k + 2$.

Pick C cycle with minimal length.

Let N its neighbourhood, $R = G \setminus (C \cup N)$,
If G is a graph with $icp(G) \leq k$ and with girth > 10, then G has average degree $\leq 2k + 2$.

Pick C cycle with minimal length. Let N its neighbourhood, $R = G \setminus (C \cup N)$, and S the second neighbourhood of C.
Back to the main theorem

Theorem

If G is a graph with $icp(G) \leq k$ and with girth > 10, then G has average degree $\leq 2k + 2$.

Pick C cycle with minimal length. Let N its neighbourhood, $R = G \setminus (C \cup N)$, and S the second neighbourhood of C.

C is the only cycle in $G[C \cup N \cup S]$, otherwise C would not be minimal \Rightarrow average degree ≤ 2.

Colin Geniet (ENS de Lyon)
Graphs with bounded induced cycle packing
SODA23 8/10
Theorem

If G is a graph with $icp(G) \leq k$ and with girth > 10, then G has average degree $\leq 2k + 2$.

Pick C cycle with minimal length. Let N its neighbourhood, $R = G \setminus (C \cup N)$, and S the second neighbourhood of C.

C is the only cycle in $G[C \cup N \cup S]$, otherwise C would not be minimal \Rightarrow average degree ≤ 2.

$G[R]$ is disjoint from C, so $icp(G[R]) \leq k - 1$. \Rightarrow average degree $\leq 2k$ by induction.
Summary

For graphs with $icp(G) \leq k$ and no $K_{t,t}$ subgraph: (sparse setting)

- Feedback vertex set is logarithmic + tight up to the constant.
Summary

For graphs with \(icp(G) \leq k \) and no \(K_{t,t} \) subgraph: (sparse setting)

- Feedback vertex set is logarithmic + tight up to the constant.
- Polynomial algorithm for independent set, and many other problems.
- Polynomial algorithm to compute \(icp(G) \).

For graphs with \(icp(G) \leq k \): (dense setting)

- Quasi-polynomial algorithms for independent set and 3-coloring.

Related result:
Theorem (Nguyen, Scott, Seymour + Le, '22)

In graphs with \(icp(G) \leq k \), there are at most \(|V(G)| f(k) \) induced paths.

Implies a polynomial algorithm to test \(icp(G) \leq k \).
Summary

For graphs with $icp(G) \leq k$ and no $K_{t,t}$ subgraph: (sparse setting)

- Feedback vertex set is logarithmic + tight up to the constant.
- Polynomial algorithm for independent set, and many other problems.
- Polynomial algorithm to compute $icp(G)$.

For graphs with $icp(G) \leq k$: (dense setting)

- Quasi-polynomial algorithms for independent set and 3-coloring.

Related result:

Theorem (Nguyen, Scott, Seymour + Le, ’22)

In graphs with $icp(G) \leq k$, there are at most $|V(G)|^{f(k)}$ induced paths.

Implies a polynomial algorithm to test $icp(G) \leq k$.
Summary

For graphs with $icp(G) \leq k$ and no $K_{t,t}$ subgraph: (sparse setting)
- Feedback vertex set is logarithmic + tight up to the constant.
- Polynomial algorithm for independent set, and many other problems.
- Polynomial algorithm to compute $icp(G)$.

For graphs with $icp(G) \leq k$: (dense setting)
- Quasi-polynomial algorithms for independent set and 3-coloring.

Related result:

Theorem (Nguyen, Scott, Seymour + Le, ’22)

In graphs with $icp(G) \leq k$, there are at most $|V(G)|^{f(k)}$ induced paths.

Implies a polynomial algorithm to test $icp(G) \leq k$.
Open Questions

- In the dense settings, can quasi-polynomial algorithms be improved to be polynomial?
- Any FPT algorithms with $icp(G)$ as parameter?
- What about restricting packing of specific types of cycles? (E.g., packing nonadjacent induced cycles of length ≥ 4.)
Open Questions

- In the dense settings, can quasi-polynomial algorithms be improved to be polynomial?
- Any FPT algorithms with $icp(G)$ as parameter?
- What about restricting packing of specific types of cycles? (E.g., packing nonadjacent induced cycles of length ≥ 4.)

Thank you!