Twin-Width of Groups and Graphs of Bounded Degree

Édouard Bonnet Colin Geniet
Romain Tessera Stéphan Thomassé

18 Mars 2022
Twin-Width

Contractions:
- Any pair of vertices can be contracted (not just edges)
- Loops and double edges are removed

Contraction sequence: G_n, \ldots, G_1, where
- G_i is result of a contraction in G_{i+1}
- G_1 has just one vertex

Twin-width:

$$
tw(G) = \min_{G=G_n, \ldots, G_1 \text{ contr. seq.}} \max_{i \in [n]} \max_{v \in V(G_i)} d_{red}(v)
$$

Simplified definition for graphs of bounded degree.
Examples

- Paths, cycles have $\text{tww} = 2$
- Trees have $\text{tww} = \Delta$
- Grids have $\text{tww} = 4$
- d-dimensional grids have $\text{tww} = O(d)$
Example: Bilu–Linial Expanders

2-lift of G:

- Duplicate each vertex $v \in V(G)$ into v_0, v_1.
- For $uv \in E(G)$ add either
 - the edges $u_0 v_0$ and $u_1 v_1$ (straight),
 - or the edges $u_0 v_1$ and $u_1 v_0$ (crossing).

Theorem (Bilu and Linial, '06)
Iterated 2-lifts starting from K_4, with random choices of straight/crossing, yield cubic expanders almost surely.

All iterated 2-lifts of K_4 have $\delta(G) \leq 6$: reverse the lift sequence.
Example: Bilu–Linial Expanders

2-lift of G:

- Duplicate each vertex $v \in V(G)$ into v_0, v_1.
- For $uv \in E(G)$ add either
 - the edges u_0v_0 and u_1v_1 (straight),
 - or the edges u_0v_1 and u_1v_0 (crossing).

Theorem (Bilu and Linial, ’06)

Iterated 2-lifts starting from K_4, with random choices of straight/crossing, yield cubic expanders almost surely.

All iterated 2-lifts of K_4 have $tww \leq 6$: reverse the lift sequence.
Why Twin-Width

For classes of graphs with bounded twin-width:

- FPT first-order model checking (given a contraction sequence) [É.B., E.J. Kim, S.T., R.Watrigant].
- Quasi-polynomially χ-bounded [Mi.Piliczuk, M.Sokołowski]
- Some FPT and approximation algorithms for independent set, dominating set [É.B., C.G., E.J. Kim, S.T., R.Watrigant].
Small Classes

When counting graphs on n vertices in a class C, we count graphs in C with vertices labeled from 1 to n.

A class is small if the number of graphs on n vertices is

$$O(n! \cdot c^n) = 2^{n \log n + O(n)}$$

Examples:

- Trees
- Proper minor-closed classes [Norine, Seymour, Thomas, Wollan]

Theorem (É.B., C.G., E.J. Kim, S.T., R.Watrigant)

Any class with bounded twin-width is small.
Not Small Classes

Number of cubic graphs on n vertices:

$$2^{3/2 \cdot n \log n + \Omega(n)}$$

Number of graphs of twin-width k on n vertices:

$$2^{n \log n + O_k(n)}$$

Corollary

Expected twin-width of random cubic graphs is unbounded.
Questions

1. Can we find explicit constructions of graphs with bounded degree and unbounded twin-width?
2. Do all small (hereditary) classes have bounded twin-width?
Power of Graphs

The kth power of G is the graph $G^{(k)}$ with

- vertices $V(G)$
- an edge xy whenever $d_G(x, y) \leq k$

Lemma

$$\text{tww} \left(G^{(k)} \right) \leq \text{tww}(G)^k$$

Generalisation (for the general definition of twin-width):

Theorem

For any first-order transduction Φ and graph G,

$$\text{tww}(\Phi(G)) \leq f(\text{tww}(G), \Phi)$$
Power of Graphs (Proof)

Contraction sequence of width t:

$$G = G_n, \ldots, G_1 = K_1$$

same sequence on $G^{(k)}$:

$$G^{(k)} = G'_n, \ldots, G'_1 = K_1$$

G'_i is a subgraph of $G^{(k)}_i$:

$$\Delta(G'_i) \leq \Delta\left(G^{(k)}_i\right) \leq \Delta(G_i)^k \leq t^k$$
Coarse Geometry

$f : X \rightarrow Y$ is a λ-quasi-isometric embedding if

$$\lambda^{-1}d_X(x, y) - \lambda \leq d_Y(f(x), f(y)) \leq \lambda d_X(x, y) + \lambda$$
Coarse Geometry

$f : X \to Y$ is a λ-quasi-isometric embedding if

\[\lambda^{-1}d_X(x, y) - \lambda \leq d_Y(f(x), f(y)) \leq \lambda d_X(x, y) + \lambda \]

Lemma

If $f : H \to G$ is a λ-quasi-isometric embedding of graphs of bounded degree,

\[\text{tww}(H) \leq f(\lambda, \text{tww}(G)) \]
Coarse Geometry

\(f : X \to Y \) is a \(\lambda \)-quasi-isometric embedding if

\[
\lambda^{-1} d_X(x, y) - \lambda \leq d_Y(f(x), f(y)) \leq \lambda d_X(x, y) + \lambda
\]

Lemma

If \(f : H \to G \) is a \(\lambda \)-quasi-isometric embedding of graphs of bounded degree,

\[
tww(H) \leq f(\lambda, tww(G))
\]

For \(G \) infinite, define

\[
tww(G) = \sup_{H \subset_{\text{fin}} G} tww(H)
\]

For infinite graphs with bounded degree, finite twin-width is preserved by quasi-isometries.
Cayley Graphs

Let Γ group generated by S finite.
The Cayley graph $\text{Cay}(\Gamma, S)$ has
- vertices Γ
- an edge from x to xs for every $x \in \Gamma$, $s \in S$.

Examples:
- $\text{Cay}(\mathbb{Z}, \{1\})$ is the infinite path
- $\text{Cay}(\mathbb{Z}/n\mathbb{Z}, \{1\}) = \mathbb{C}_n$
- $\text{Cay}(\mathbb{Z}_2, \{(0,1), (1,0)\})$ is the infinite grid (d-dimensional grid for \mathbb{Z}^d)

If $F(S)$ is the group freely generated by S, $\text{Cay}(F(S), S)$ is the $2|S|$-regular tree.
Cayley Graphs

Let Γ group generated by S finite.
The Cayley graph $\text{Cay}(\Gamma, S)$ has

- vertices Γ
- an edge from x to xs for every $x \in \Gamma$, $s \in S$.

Examples:

- $\text{Cay}(\mathbb{Z}, \{1\})$ is the infinite path
- $\text{Cay}(\mathbb{Z}/n\mathbb{Z}, \{1\}) = C_n$
- $\text{Cay}(\mathbb{Z}^2, \{(0, 1), (1, 0)\})$ is the infinite grid (d-dimensional grid for \mathbb{Z}^d)
- If $\mathbb{F}(S)$ is the group freely generated by S, $\text{Cay}(\mathbb{F}(S), S)$ is the $2|S|$-regular tree.
Twin-Width of Groups

Lemma

All Cayley graphs of Γ are quasi-isometric.

Finite twin-width is well-defined on groups.

Examples:

- \mathbb{Z}, $\mathbb{Z}/n\mathbb{Z}$
- Free groups
- Products of groups with finite twin-width
- (Finitely generated) commutative groups
Cayley Graphs

Let \(\Gamma \) group generated by \(S \).
Let \(C \) be the class of finite induced subgraphs of \(\text{Cay}(\Gamma, S) \).

Lemma

\(C \) is small.

Proof.

Any \(G \in C \) is characterized by a directed spanning tree, with edges labelled with \(S \cup S^{-1} \).
Cayley Graphs

Let Γ group generated by S. Let C be the class of finite induced subgraphs of $\text{Cay}(\Gamma, S)$.

Lemma

C is small.

Proof.

Any $G \in C$ is characterized by a directed spanning tree, with edges labelled with $S \cup S^{-1}$.

Suppose Γ has infinite twin-width.

- C is class of graphs with bounded degree and unbounded twin-width
- C is a small class of graphs with unbounded twin-width
Group with Infinite Twin-Width

Theorem (Osajda, 2020)

Let \((G_n)_{n \in \mathbb{N}}\) be a sequence of graphs with

\[\Delta(G_n) \leq D \]
\[\text{diam}(G_n)/\text{girth}(G_n) \leq A \]
\[\text{girth}(G_{n+1}) \geq \text{girth}(G_n) + 6 \]

There exists a group \(\Gamma\) finitely generated by \(S\) such that \(\text{Cay}(\Gamma, S)\) contains all \(G_n\) as isometric subgraphs.
Group with Infinite Twin-Width

Theorem (Osajda, 2020)

Let \((G_n)_{n \in \mathbb{N}}\) be a sequence of graphs with

- \(\Delta(G_n) \leq D\)
- \(\text{diam}(G_n)/\text{girth}(G_n) \leq A\)
- \(\text{girth}(G_{n+1}) \geq \text{girth}(G_n) + 6\)

There exists a group \(\Gamma\) finitely generated by \(S\) such that \(\text{Cay}(\Gamma, S)\) contains all \(G_n\) as isometric subgraphs.

Lemma

There exists graphs \(G\) with arbitrarily large twin-width, and

- \(\Delta(G) \leq 6\)
- \(\text{diam}(G) \leq 3 \log n\)
- \(\text{girth}(G) \geq \frac{\log n}{K}\)
Lemma
There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $diam(G) \leq 3 \log n$
- $girth(G) \geq \frac{\log n}{K}$

Sketch:
- Start from a random cubic graph.
- With probability $\frac{1}{2}$, there are not too many short ($< \log n$) cycles.
- Cut these short cycles (remove an edge in each).
- Choose a maximum packing X of vertices at distance pairwise $> \log n$, and join them with a balanced cubic tree.
- The graph obtained satisfies the first 3 conditions.
- The above requires only $n^{1-\varepsilon}$ edge editions. This implies that the class of graphs satisfying the first 3 conditions is not small.
Lemma

There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $\text{diam}(G) \leq 3 \log n$
- $\text{girth}(G) \geq \frac{\log n}{K}$

Sketch:

- Start from a random cubic graph.
Lemma
There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $\text{diam}(G) \leq 3 \log n$
- $\text{girth}(G) \geq \frac{\log n}{K}$

Sketch:

- Start from a random cubic graph.
- With probability $> \frac{1}{2}$, there are not too many short ($< \frac{\log n}{K}$) cycles. Cut these short cycles (remove an edge in each).
Lemma

There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $diam(G) \leq 3\log n$
- $girth(G) \geq \frac{\log n}{K}$

Sketch:

- Start from a random cubic graph.
- With probability $> \frac{1}{2}$, there are not too many short ($< \frac{\log n}{K}$) cycles. Cut these short cycles (remove an edge in each).
- Choose a maximum packing X of vertices at distance pairwise $> \log n$, and join them with a balanced cubic tree.

This implies that the class of graphs satisfying the first 3 conditions is not small.
Lemma
There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $diam(G) \leq 3\log n$
- $girth(G) \geq \frac{\log n}{K}$

Sketch:

- Start from a random cubic graph.
- With probability $> \frac{1}{2}$, there are not too many short ($< \frac{\log n}{K}$) cycles.
 Cut these short cycles (remove an edge in each).
- Choose a maximum packing X of vertices at distance pairwise $> \log n$, and join them with a balanced cubic tree.
- The graph obtained satisfies the first 3 conditions.
Lemma
There exists graphs G with arbitrarily large twin-width, and

- $\Delta(G) \leq 6$
- $diam(G) \leq 3 \log n$
- $girth(G) \geq \frac{\log n}{K}$

Sketch:

- Start from a random cubic graph.
- With probability $> \frac{1}{2}$, there are not too many short ($< \frac{\log n}{K}$) cycles. Cut these short cycles (remove an edge in each).
- Choose a maximum packing X of vertices at distance pairwise $> \log n$, and join them with a balanced cubic tree.
- The graph obtained satisfies the first 3 conditions.
- The above requires only $n^{1-\epsilon}$ edge editions. This implies that the class of graphs satisfying the first 3 conditions is not small.
There is a group with infinite twin-width.
We have no idea what it looks like.
It doesn’t help with constructing graphs of bounded degree and unbounded twin-width.
There is a small class of graphs with unbounded twin-width.
Grid Characterisation

A k-grid is a $k \times k$-division in which every zone has a ‘1’.

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1 \\
\end{array}
\]

Grid number = maximum size of a grid.

Theorem

- A matrix M has bounded twin-width if and only if it has bounded grid number.
- A graph G has bounded twin-width if and only if there is an order $<$ on $V(G)$ such that the adjacency matrix of G has bounded grid number.
For $x \in \Gamma$, \prec order on Γ, $M^<_x$ is the permutation matrix of

$$(y \in \Gamma) \mapsto y \cdot x$$

Claim

The adjacency matrix of $\text{Cay}(\Gamma, S)$ with order \prec is

$$\bigvee_{s \in S \cup S^{-1}} M^<_s$$

Lemma

Γ has finite twin-width if and only if there is an order \prec on Γ such that for every $x \in \Gamma$, $M^<_x$ has finite grid number.
Definition

Γ has finite twin-width if there is an order \prec on Γ such that for every $x \in \Gamma$, M_x^\prec has finite twin-width.

This definition works for non finitely generated groups.
Matrix Definition

Definition
Γ has finite twin-width if there is an order $<$ on Γ such that for every $x \in \Gamma$, $M_x^<$ has finite twin-width.

This definition works for non finitely generated groups.

Definition
Uniform twin-width is

$$\text{utww}(\Gamma) = \inf_{< \text{ order on } \Gamma} \sup_{x \in \Gamma} \text{tww}(M_x^<)$$
Lemma

If G is a group, $H \leq G$ a subgroup

$$\text{utww}(G) \leq \max(\text{utww}(H), \text{utww}(G/H))$$

Groups with finite uniform twin-width:

- Ordered groups
- Finitely generated abelian groups.
- Polycyclic groups
- Polynomial growth
Open Questions

- Explicit construction for groups (or graphs of bounded degree) with infinite twin-width?
- Separating twin-width and uniform twin-width for groups?
- Is there a universal bound on uniform twin-width of finite groups?
Open Questions

- Explicit construction for groups (or graphs of bounded degree) with infinite twin-width?
- Separating twin-width and uniform twin-width for groups?
- Is there a universal bound on uniform twin-width of finite groups?

3-dim. grid with diagonals has infinite stack number [Eppstein et. al.]
Stack number is not a group invariant, but queue number is!
- Matrix characterisation, uniform variants adapt to queue number.
- Separating queue number and twin-width?