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Abstract
Church’s synthesis problem asks whether there exists a finite-state stream transducer satisfying a
given input-output specification. For specifications written in Monadic Second-Order Logic over
infinite words, Church’s synthesis can theoretically be solved algorithmically using automata
and games. We revisit Church’s synthesis via the Curry-Howard correspondence by introducing
SMSO, a non-classical subsystem of MSO, which is shown to be sound and complete w.r.t.
synthesis thanks to an automata-based realizability model.
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1 Introduction

Church’s synthesis [5] consists in the automatic extraction of stream transducers (or Mealy
machines) from input-output specifications, typically written in some subsystem of Monadic
Second-Order Logic (MSO) over ω-words. MSO over ω-words is a decidable logic by Büchi’s
Theorem [3]. It subsumes non-trivial logics used in verification such as LTL (see e.g. [16, 10]).

Traditional approaches to synthesis (see e.g. [17]) are based, via McNaughton’s The-
orem [9], on the translation of MSO-formulae to deterministic automata on ω-words (such as
Muller or parity automata)1. Such automata are then turned into game graphs, in which the
Opponent O (∀bélard) plays input characters to which the Proponent P (∃loïse) replies with
output characters. Solutions to Church’s synthesis are then given by the Büchi-Landweber
Theorem [4], which says that in such games, either P or O has finite-state winning strategy.

Fully automatic approaches to synthesis suffer from prohibitively high computational
costs, essentially for the following two reasons. First, the translation of MSO-formulae
to automata is non-elementary, and McNaughton Theorem involves a non-trivial powerset
construction (such as Safra construction, see e.g. [16, 10]). Second, similarly as with other
automatic verification techniques based on Model Checking, the solution of parity games
ultimately relies on exhaustive state exploration. While they have had (and still have)
considerable success for verifying concurrency properties, such techniques hardly managed
up to now to give practical algorithms for synthesis (even for fragments of LTL, see e.g. [1]).

∗ This work was partially supported by the ANR-14-CE25-0007 - RAPIDO and the ANR-BLANC-SIMI-
2-2011 - RECRÉ.
† UMR 5668 CNRS ENS Lyon UCBL INRIA
1 A solution is also possible via tree automata [11].
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29:2 A Curry-Howard Approach to Church’s Synthesis

In this work, we propose a Curry-Howard approach to Church’s synthesis based on a
proof system allowing for human intervention and compositional reasoning. In a typical
usage scenario, the user interactively performs some proofs steps and delegate the generated
subgoals to automatized synthesis procedures. The partial proof tree built by the user is
then translated to a combinator able to compose the transducers synthesized by the auto-
matic procedures2. Having in mind that interactive proof systems (such as Coq [15]) have
known in the last decade an explosion of large developments, we believe that semi-automatic
approaches like ours could ultimately help mitigate the algorithmic costs of synthesis, in par-
ticular in helping to combine automatic methods with human intervention.

The Curry-Howard correspondence asserts that, given a suitable proof system, any proof
therein can be interpreted as a program. Actually, via the Curry-Howard correspondence,
the soundness of many type/proof systems is proved by means of realizability, which tells
how to read a formula from the logic as a specification for a program. Our starting point
is the fact that MSO on ω-words can be completely axiomatized as a subsystem of second-
order Peano arithmetic [14] (see also [12]). From the classical axiomatization of MSO, we
derive an intuitionistic system SMSO equipped with an extraction procedure which is sound
and complete w.r.t. Church’s synthesis: proofs of existential statements can be translated to
Mealy machines and such proofs exist for all solvable instances of Church’s synthesis. The
key point in our approach is that on the one hand, finite-state realizers3 are constructively
extracted from proofs in SMSO, while on the other hand, their correctness involves the full
power of MSO. So in particular, our adaptation of the usual Adequacy Lemma of realizability
does rely on the non-constructive proof of correctness of deterministic automata obtained by
McNaughton’s Theorem (see e.g. [16]), while these automata do not have to be concretely
built during the extraction procedure.

The paper is organized as follows. We first recall in §2 some background on MSO and
Church’s synthesis. Our intuitionistic system SMSO is then presented in §3. Section 4
provides some technical material as well as detailed examples on the representation of Mealy
machines in MSO, and §5 presents our realizability model.

2 Church’s Synthesis and MSO on Infinite Words

Notations. Alphabets (denoted Σ,Γ, etc) are finite non-empty sets. Concatenation of
words s, t is denoted either s.t or s ·t, and ε is the empty word. We use the vectorial notation
both for words and finite sequences, so that e.g. B denotes a finite sequence B1, . . . , Bn and
a denotes a word a1. · · · .an ∈ Σ∗. Given an ω-word (or stream) B ∈ Σω and n ∈ N we write
B�n for the finite word B(0). · · · .B(n − 1) ∈ Σ∗. For each k ∈ N, we still write k for the
function from N to 2 which takes n to 1 iff n = k.

Church’s Synthesis and Synchronous Functions. Church’s synthesis consists in the auto-
matic extraction of stream transducers (orMealy machines) from input-output specifications
(see e.g. [17]). As a typical specification, consider, for a machine which outputs streams

2 We thank the anonymous referee who urged us to state this explicitly.
3 We use the word realizer with two historically distinct meanings. In the context of Church’s synthesis,
a realizer of a ∀∃-formula is a transducer which witnesses the ∀∃ by computing an instantiation of the
existential variables while reading input values for the universal variables (see e.g. [1]). In (constructive)
proof theory, realizability is a relation between programs (the realizers) and formulae, usually defined
by induction on formulae (see e.g. [8]). A realizer of a ∀∃-formula consists of a function witnessing the
∀∃, together with a realizer witnessing the correctness of that function.
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Figure 1 Examples of Mealy Machines (where a transition a|b outputs b from input a).

B ∈ 2ω from input streams A ∈ 2ω, the behavior (from [17]) expressed by

Φ(A,B) def.⇐⇒


∀n(A(n) = 1 =⇒ B(n) = 1) and
∀n(B(n) = 0 =⇒ B(n+ 1) = 1) and
(∃∞n A(n) = 0) =⇒ (∃∞n B(n) = 0)

(1)

In words, the relation Φ(A,B) imposes B(n) ∈ 2 to be 1 whenever A(n) ∈ 2 is 1, B not
to be 0 in two consecutive positions, and moreover B to be infinitely often 0 whenever A is
infinitely often 0. We are interested in the realization of such specifications by finite-state
stream transducers or Mealy machines.

I Definition 2.1 (Mealy Machine). A Mealy machineM with input alphabet Σ and output
alphabet Γ (notation M : Σ → Γ) is given by a finite set of states Q with a distinguished
initial state qı ∈ Q, and a transition function ∂ : Q× Σ→ Q× Γ.

We often write ∂o for π2 ◦ ∂ : Q × Σ → Γ and ∂∗ for the map Σ∗ → Q obtained by
iterating ∂ from the initial state: ∂∗(ε) := qı and ∂∗(a.a) := π1(∂(∂∗(a), a)).

A Mealy machineM : Σ→ Γ induces a function F : Σω → Γω obtained by iterating ∂o
along the input: F (B)(n) = ∂o(∂∗(B�n), B(n)). Hence F can produce a length-n prefix of
its output from a length-n prefix of its input. These functions are called synchronous.

I Definition 2.2 (Synchronous Function). A function F : Σω → Γω is synchronous if for all
n ∈ N and all A,B ∈ Σω we have F (A)�n = F (B)�n whenever A�n = B�n. We say that a
synchronous function F is finite-state if it is induced by a Mealy machine.

I Example 2.3. (a) The identity function Σω → Σω is induced by the Mealy machine with
state set 1 = {•} and identity transition function ∂ : (•, a) 7−→ (•, a).

(b) The Mealy machine depicted on Fig. 1 (left) induces a synchronous function F : 2ω → 2ω
such that F (B)(n+ 1) = 1 iff B(n) = 1.

(c) The Mealy machine depicted on Fig. 1 (right), taken from [17], induces a synchronous
function which realizes the specification (1).

(d) Synchronous functions are obviously continuous (taking the product topology on Σω and
Γω, with Σ,Γ discrete), but there are continuous functions which are not synchronous,
for instance the function P : 2ω → 2ω such that P (A)(n) = 1 iff A(n+ 1) = 1.

For the definition and adequacy of our realizability interpretation, it turns out to be con-
venient to work with a category of finite-state synchronous functions.

I Definition 2.4. Let M be the category whose objects are alphabets and whose maps from
Σ to Γ are finite-state synchronous functions F : Σω → Γω.

Note that functions f : Σ→ Γ induce M-maps [f] : Σ→M Γ. Also, M has finite products.

I Proposition 2.5. The category M has finite products. The product of Σ1, . . . ,Σn (for
n ≥ 0) is given by the Set-product Σ1 × · · · × Σn (so that 1 is terminal in M).

FSCD 2017
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Atoms: α ::= x
.= y | x ≤̇ y | S(x, y) | Z(x) | x ∈̇ X | > | ⊥

Deterministic formulae: δ, δ′ ::= α | δ ∧ δ′ | ¬ϕ

MSO formulae: ϕ,ψ ::= δ | ϕ ∧ ψ | ∃xϕ | ∃X ϕ

Figure 2 The Formulae of MSO.

Monadic Second-Order Logic (MSO) on Infinite Words. We consider a formulation of
MSO based on a purely relational two-sorted language, with a specific choice of atomic
formulae. There is a sort of individuals, with variables x, y, z, etc, and a sort of (monadic)
predicates, with variables X,Y, Z, etc. Our formulae for MSO, denoted ϕ,ψ, etc are given
on Fig. 2. They are defined by mutual induction with the deterministic formulae (denoted
δ, δ′, etc) from atomic formulae ranged over by α.

MSO formulae are interpreted in the standard model N of ω-words as usual. Individual
variables range over natural numbers n,m, . . . ∈ N and predicate variables range over sets of
natural numbers A,B, . . . ∈ P(N) ' 2ω. The atomic predicates are interpreted as expected:
.= is equality, ∈̇ is membership, ≤̇ is the relation ≤ on N, S is the successor relation, and Z
holds on n iff n = 0. We often write X(x) or even Xx for x ∈̇ X. As usual we let:

ϕ→ ψ := ¬(ϕ ∧ ¬ψ) ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) ∀(−)ϕ := ¬∃(−)¬ϕ

MSO on ω-words is known to be decidable by Büchi’s Theorem [3].

I Theorem 2.6 (Büchi [3]). MSO over N is decidable.

Following [3] (but see also e.g. [10]), the (non-deterministic) automata method for deciding
MSO proceeds by a recursive translation of MSO-formulae to Büchi automata. A Büchi
automaton is a non-deterministic finite state automaton running on ω-words. Büchi auto-
mata are equipped with a set of final states, and a run on an ω-word is accepting if it has
infinitely many occurrences of final states.

The crux of Büchi’s Theorem is the effective closure of Büchi automata under comple-
ment. Let us recall a few known facts (see e.g. [16, 7]). First, the translation of MSO-formulae
to automata is non-elementary. Second, its is known that deterministic Büchi automata are
strictly less expressive than non-deterministic ones. Finally, it is known that complementa-
tion of Büchi automata is algorithmically hard: there is a family of languages (Ln)n>0 such
that each Ln can be recognized by a Büchi automaton with n+ 2 states, but such that the
complement of Ln can not be recognized by a Büchi automaton with less than n! states.

Church’s Synthesis for MSO. Church’s synthesis problem for MSO is the following. Given
as input an MSO formula ϕ(X;Y ) (where X = X1, . . . , Xq and Y = Y1, . . . , Yp), (1) decide
whether there exist finite-state synchronous functions F = F1, . . . , Fp : 2q →M 2 such that
N |= ϕ(A;F (A)) for all A ∈ (2ω)q ' (2q)ω, and (2), construct such F whenever they exist.

I Example 2.7. The specification Φ displayed in (1) can be officially written in the language
of MSO as the following formula φ(X;Y ) (where ∃∞t ϕ(t) stands for ∀x∃t(t ≥̇ x ∧ ϕ(t))):

φ(X;Y ) := ∀t (Xt→ Y t) ∧ ∀t, t′ (S(t, t′) → ¬Y t → Y t′) ∧ [(∃∞t¬Xt)→ (∃∞t¬Y t)]

Church’s synthesis has been solved by Büchi & Landweber [4], using automata on ω-words
and infinite two-player games (a solution is also possible via tree automata [11]): there is
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an algorithm which, on input ϕ(X;Y ), (1) decides when a synchronous realizer of ϕ(X;Y )
exists, (2) provides a finite-state Mealy machine implementing it4, and (3) moreover provides
a synchronous finite-state counter realizer (i.e. a realizer of ψ(Y ;X) := ¬ϕ(X;Y )) when no
synchronous realizer of ϕ(X;Y ) exists.

The standard algorithm solving Church’s synthesis for MSO (see e.g. [17]) proceeds via
McNaughton’s Theorem ([9], see also e.g. [10, 16]), which states that Büchi automata can
be translated to equivalent deterministic finite state automata, but equipped with stronger
acceptance conditions than Büchi automata. There are different variants of such conditions
(Muller, Rabin, Streett or parity conditions, see e.g. [16, 7]). All of them allow to specify
which states an infinite run must not see infinitely often. For the purpose of this paper, we
only need to consider the simplest of them, the Muller conditions. A Muller condition is
given by a family of set of states T , and a run is accepting when the set of states occurring
infinitely often in it belongs to the family T .

I Theorem 2.8 (McNaughton [9]). Each Büchi automaton is equivalent to a deterministic
Muller automaton.

There is a lower bound in 2O(n) for the number of states of a Muller automaton equivalent
to a Büchi automaton with n states. The best known constructions for McNaughton’s
Theorem (such as Safra’s construction or its variants) give deterministic Muller automata
with 2O(n log(n)) states from non-deterministic Büchi automata with n states.

The standard solution to Church’s synthesis for MSO starts by translating ϕ(X;Y ) to
a deterministic Muller automaton, and then turns this deterministic automaton into a two-
player sequential game, in which the Opponent ∀bélard plays inputs bit sequences in 2p
while the Proponent ∃loïse replies with outputs bit sequences in 2q. The game is equipped
with an ω-regular winning condition (induced by the acceptance condition of the Muller
automaton). The solution is then provided by Büchi-Landweber’s Theorem, which states
that ω-regular games on finite graphs are effectively determined, and moreover that the
winner always has a finite state winning strategy.

I Example 2.9. Consider the last conjunct φ2[X,Y ] := (∃∞t ¬Xt) → (∃∞t ¬Y t) of the
formula φ(X;Y ) of Ex. 2.7. When translating φ2 to a finite state automaton, the positive
occurrence of (∃∞t ¬Y t) can be translated to a deterministic Büchi automaton. However,
the negative occurrence of (∃∞t ¬Xt) corresponds to (∀∞t Xt) = (∃n∀t ≥̇ nXt) and can
not be translated to a deterministic Büchi automaton. Even if a very simple two-state
Muller automaton exists for (∀∞t Xt), McNaughton’s Theorem 2.8 is in general required
for positive occurrences of the form ∀∞t (−).

An Axiomatization of MSO. Our approach to Church’s synthesis relies on the fact that
the MSO-theory of N can be completely axiomatized as a subsystem of second-order Peano
arithmetic [14] (see also [12]). We consider a specific set of axioms which consists of the
rules depicted on Fig. 3 together with the following comprehension and induction rules

ϕ ` ϕ[ψ[y]/X]
ϕ ` ∃X ϕ

ϕ,Z(z) ` ϕ[z/x] ϕ,S(y, z), ϕ[y/x] ` ϕ[z/x]
ϕ ` ϕ

(2)

where z and y do not occur free in ϕ,ϕ, and where ϕ[ψ[y]/X] is the usual formula substitu-
tion, which commutes over all connectives (avoiding the capture of free variables), and with
(x ∈̇ X)[ψ[y]/X] = ψ[x/y].

4 It follows from the finite-state determinacy of ω-regular games that a finite-state synchronous realizer
exists whenever a synchronous realizer exists (see e.g. [17]).

FSCD 2017



29:6 A Curry-Howard Approach to Church’s Synthesis

ϕ ` t .= t

ϕ ` ϕ[t/z] ϕ ` t .= u

ϕ ` ϕ[u/z]
ϕ ` x ≤̇ y ϕ ` y ≤̇ x

ϕ ` x .= y

ϕ ` x ≤̇ x
ϕ ` S(x, y)
ϕ ` x ≤̇ y

ϕ ` x ≤̇ y ϕ ` y ≤̇ z
ϕ ` x ≤̇ z ϕ,S(x, y),Z(y) ` ⊥

ϕ ` ∃y Z(y) ϕ ` ∃y S(x, y) ϕ,S(y, y′), x ≤̇ y′,¬(x .= y′) ` x ≤̇ y

ϕ,S(y, x), S(z, x) ` y .= z ϕ,Z(x),Z(y) ` x .= y ϕ,S(x, y), S(x, z) ` y .= z

Figure 3 Arithmetic Rules of MSO and SMSO.

I Theorem 2.10 ([14]). For every (closed) MSO-formula ϕ, we have N |= ϕ if and only if
` ϕ is derivable in classical two-sorted predicate logic with the rules of Fig. 3 and (2).

3 A Synchronous Intuitionistic Restriction of MSO

We now introduce SMSO, an intuitionistic restriction of MSO. As expected, SMSO contains
MSO via negative translation. But thanks to its vocabulary without primitive universals,
SMSO actually admits a Glivenko Theorem, so that SMSO proves ¬¬ϕ whenever MSO ` ϕ.
Moreover, SMSO is equipped with an extraction procedure which is sound and complete
w.r.t. Church’s synthesis: proofs of existential statements can be translated to finite state
synchronous realizers, and such proofs exist for all solvable instances of Church’s synthesis.

As it is common with intuitionistic versions of classical systems, SMSO has the same
language as MSO, and its deduction rules are based on intuitionistic predicate calculus.
Moreover, since (monadic) predicate variables are computational objects in our realizability
interpretation, similarly as with higher-type Heyting arithmetic (see e.g. [8]), SMSO has a
comprehension scheme which corresponds to the negative translation of the full comprehen-
sion scheme of MSO5. On the other hand, for the extraction of synchronous realizers from
proofs, SMSO has a restricted induction scheme corresponding to the negative translation
of the induction scheme of MSO. As a consequence, and in contrast with usual versions of
intuitionistic (Heyting) arithmetic, this restricted induction scheme is not able to prove the
elimination of double negation on atomic formulae. Fortunately, all atomic formulae of MSO
can be interpreted by deterministic Büchi automata, and have a trivial computational con-
tent. This more generally leads to the notion of deterministic formulae (see Fig. 2), which
contain negative formulae and atomic formulae. Deterministic formulae will be interpreted
by deterministic (not nec. Büchi) automata, and have trivial realizers. We can therefore
have as axiom the elimination of double negation for deterministic formulae, which are thus
the SMSO counterpart of the formulae of Heyting arithmetic admitting elimination of double
negation (see e.g. [8]).

Furthermore, SMSO is equipped with a positive synchronous restriction of comprehen-
sion, which allows to have realizers for all solvable instances of Church’s synthesis. The

5 In contrast with Girard’s System F [6], in which second-order variables have no computational content.
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ϕ,ϕ ` ϕ
ϕ ` ψ ϕ,ψ ` ϕ

ϕ ` ϕ ϕ,¬¬δ ` δ
ϕ ` ϕ ϕ ` ¬ϕ

ϕ ` ⊥
ϕ ` ⊥
ϕ ` ϕ

ϕ ` ϕ ϕ ` ψ
ϕ ` ϕ ∧ ψ

ϕ ` ϕ ∧ ψ
ϕ ` ϕ

ϕ ` ϕ ∧ ψ
ϕ ` ψ

ϕ ` ϕ[y/x]
ϕ ` ∃xϕ

ϕ ` ϕ[Y/X]
ϕ ` ∃X ϕ

ϕ,ϕ ` ψ ϕ ` ∃xϕ
ϕ ` ψ

(x not free in ϕ,ψ) ϕ,ϕ ` ψ ϕ ` ∃X ϕ

ϕ ` ψ
(X not free in ϕ,ψ)

Figure 4 Logical Rules of SMSO (where δ is deterministic).

synchronous restriction of comprehension asks the comprehension formula to be uniformly
bounded in the following sense.

I Definition 3.1. (i) Given MSO-formulae ϕ and θ and a variable y, the relativization of
ϕ to θ[y] (notation ϕ�θ[y]), is defined by induction on ϕ as usual:

α�θ[y] := α (ϕ ∧ ψ)�θ[y] := ϕ�θ[y] ∧ ψ�θ[y] (¬ϕ)�θ[y] := ¬ϕ�θ[y]

(∃X ϕ)�θ[y] := ∃X ϕ�θ[y] (∃xϕ)�θ[y] := ∃x (θ[x/y] ∧ ϕ�θ[y])

where, in the clauses for ∃, the variables x and X are assumed not to occur free in θ.
Note that y does not occur free in ϕ�θ[y].

(ii) An MSO-formula ϕ̂ is bounded by x if it is of the form ψ�(y ≤̇ x)[y] (notation ψ�[− ≤̇ x]).
It is uniformly bounded if moreover x is the only free individual variable of ϕ̂.

As we shall see in §4.3, bounded formulae are exactly those definable in MSO over finite
words. We are now ready to define the system SMSO.

I Definition 3.2 (SMSO). The logic SMSO has the same language as MSO. Its deduction
rules are those given in Fig. 4 together with the rules of Fig. 3 and with the following rules
of resp. negative comprehension, deterministic induction (where x and y do not occur free
in ϕ, δ) and synchronous comprehension in which ϕ̂ is uniformly bounded by y:

ϕ ` ψ[ϕ[y]/X]
ϕ ` ¬¬∃X ψ

ϕ,Z(z) ` δ[z/x] ϕ, S(y, z), δ[y/x] ` δ[z/x]
ϕ ` δ

ϕ ` ψ[ϕ̂[y]/X]
ϕ ` ∃X ψ

I Remark. The axiom ϕ,¬¬δ ` δ of double negation elimination for deterministic formulae
would already be derivable in a version of SMSO where this axiom is weakened to double
negation elimination for atomic formulae. We take ϕ,¬¬δ ` δ as an axiom because it admits
trivial realizers. Similarly, the cut rule is admissible, but we include it since we have a direct
composition of realizers. J

A Glivenko Theorem for SMSO. Thanks to its limited vocabulary, SMSO satisfies a
Glivenko theorem, and thus a very simple negative translation from MSO. Glivenko’s the-
orem is usually stated only for propositional logic, but can be extended to formulae con-
taining existentials; the impossible case is the universal quantification. In particular, should
one extend the logical constructs with universal quantification by freely adjoining them to
SMSO, this would no longer hold. This would actually not be such a severe consequence since
our results would also hold with a usual recursive negative translation instead of ¬¬(−).

I Theorem 3.3. If MSO ` ϕ, then SMSO ` ¬¬ϕ.

FSCD 2017



29:8 A Curry-Howard Approach to Church’s Synthesis

The Main Result. We are now ready to state the main result of this paper, which says
that SMSO is correct and complete (w.r.t. its provable existentials) for Church’s synthesis.

I Theorem 3.4 (Main Theorem). Consider an MSO-formula ϕ(X;Y ).

(i) From a proof of ∃Y ¬¬ϕ(X;Y ) in SMSO, one can extract a finite-state synchronous
realizer of ϕ(X;Y ).

(ii) If ϕ(X;Y ) admits a (finite-state) synchronous realizer, then SMSO ` ∃Y ¬¬ϕ(X;Y ).

The correctness part (i) of Thm. 3.4 will be proved in §5 using a notion of realizability for
SMSO based on automata and synchronous finite-state functions. The completeness part (ii)
will be proved in §4.1, relying the completeness of the axiomatization of MSO (Thm. 2.10)
together with the correctness of the negative translation ¬¬(−) (Thm. 3.3).

4 On the Representation of Mealy Machines in MSO

This section gathers several (possibly known) results related to the representation of Mealy
machines in MSO. We begin in §4.1 with the completeness part of Thm. 3.4, which follows
usual representations of automata in MSO (see e.g. [16, §5.3]). We then recall from [14,
12] the Recursion Theorem, which is a convenient tool to reason on runs of deterministic
automata in MSO (§4.2). In §4.3 we state a Lemma for the correctness part of Thm. 3.4,
which relies on the usual translation of MSO-formulae over finite words to DFA’s (see e.g. [16,
§3.1]). Finally, in §4.4 we give a possible strengthening of the synchronous comprehension
rule of SMSO (but which is based on Büchi’s Theorem 2.6).

We work with the following notion of representation.

I Definition 4.1. Let ϕ be a formula with free variables among z, x1, . . . , xp, X1, . . . , Xq.
We say that ϕ z-represents F : 2p × 2q −→M 2 if for all n ∈ N, all A ∈ (2ω)q, and all
k ∈ (2ω)p such that ki ≤ n for all i ≤ p, we have

F (k,A)(n) = 1 iff N |= ϕ[n/z, k/x,A/X] (3)

4.1 Internalizing Mealy Machines in MSO
The completeness part (ii) of Thm. 3.4 relies on the following simple fact.

I Proposition 4.2. For every finite-state synchronous F : 2p −→M 2, one can build a
deterministic uniformly bounded formula δ[X,x] which x-represents F .

Proof. The proof is a simple adaptation of the usual pattern (see e.g. [16, §5.3]). Let
F : 2p →M 2 be induced by a Mealy machine M. W.l.o.g. we can assume the state set of
M to be of the form 2q. Then F is represented by a formula of the form

δ[X,x] := ∀Q,Y
([
∀t ≤̇ x(Z(t)→ I[Q(t)]) ∧
∀t, t′ ≤̇ x (S(t, t′)→ H[Q(t), X(t), Y (t), Q(t′)])

]
−→ Y (x)

)
(4)

where X = X1, . . . , Xp codes sequences of inputs, Y codes sequences of outputs, and where
Q = Q1, . . . , Qq codes runs. J

I Remark. In the proof of Prop. 4.2, sinceM is deterministic, we can assume the formula
I[Q(t)] to be of the form

∧
1≤i≤q[Qi(t)↔ Bi] with Bi ∈ {>,⊥}, and, for some propositional

formulae O[−,−],D[−,−], the formula H[Q(t), X(t), Y (t), Q(t′)] to be of the form(
Y (t)←→ O[Q(t), X(t)]

)
∧

∧
1≤i≤q

(
Qi(t′)←→ Di[Q(t), X(t)]

)
(5)



P. Pradic and C. Riba 29:9

I Example 4.3. The function induced by the Mealy machine of Ex. 2.3.(c) (depicted on
Fig. 1, right), is represented by a formula of the form (4), where Q = Q (since the machine
has state set 2), X = X, where I[−] := [(−)↔ ⊥] (since state 0 is initial) and

O[Q(t), X(t)] = D[Q(t), X(t)] = (¬Q(t) ∨ [Q(t) ∧X(t)]) (6)

The completeness of our approach to Church’s synthesis is obtained as follows.

Proof of Thm. 3.4.(ii). Assume that ϕ(X;Y ) admits a realizer C : 2q −→M 2p. Using the
Cartesian structure of M (Prop. 2.5), we assume C = C = C1, . . . , Cp with Ci : 2q →M 2.
We thus have N |= ϕ[B/X,C(B)/Y ] for all B ∈ (2ω)q ' (2q)ω. Now, by Prop. 4.2 there
are uniformly bounded (deterministic) formulae δ = δ1, . . . , δp, with free variables among
X,x, and such that (3) holds for all i = 1, . . . , p. It thus follows that N |= ∀Xϕ[δ[x]/Y ].
Then, by completeness (Thm. 2.10) we know that ` ϕ[δ[x]/Y ] is provable in MSO, and by
negative translation (Thm. 3.3) we get SMSO ` ¬¬ϕ[δ[x]/Y ]. We can then apply (p times)
the synchronous comprehension scheme of SMSO and obtain SMSO ` ∃Y ¬¬ϕ(X;Y ). J

I Example 4.4. Recall the specification (1) from [17], represented in MSO by the formula
φ(X;Y ) of Ex. 2.7. Write φ(X;Y ) = φ0[X,Y ] ∧ φ1[X,Y ] ∧ φ2[X,Y ] where

φ0[X,Y ] := ∀t (Xt → Y t)
φ1[X,Y ] := ∀t, t′ (S(t, t′) ∧ ¬Y t → Y t′)
φ2[X,Y ] := (∃∞t ¬Xt) → (∃∞t ¬Y t)

Note that φ0 and φ1 are monotonic in Y , while φ2 is anti-monotonic in Y . The formula
φ0 is trivially realized by the identity function 2 →M 2 (see Ex. 2.3.(a)), which is itself
represented by the deterministic uniformly bounded formula δ0[X,x] := (x ∈̇ X). For φ1
(which asks Y not to have two consecutive occurrences of 0), consider

δ1[X,x] := δ0[X,x] ∨ ∃t ≤̇ x[S(t, x) ∧ ¬X(t)]

We have MSO ` φ0[X, δ1[x]/Y ] since δ0 `MSO δ1 and moreover MSO ` φ1[X, δ1[x]/Y ] since

S(t, t′) , ¬Xt , ¬∃u(S(u, t) ∧ ¬Xu) `MSO Xt′ ∨ ∃t′′(S(t′′, t′) ∧ ¬Xt′′) J

The case of φ2 in Ex. 4.4 is more complex. The point is that φ2[δ1[x]/Y ] does not hold
because if ∀∞t ¬Xt (that is if X remains constantly 0 from some time on), then δ1 will
output no 1’s. On the other hand, the machine of Ex. 2.3.(c) involves an internal state, and
can be represented using a fixpoint formula of the form (4). Reasoning on such formulae is
easier with more advanced tools on MSO, that we provide in §4.2.

4.2 The Recursion Theorem
Theorem 3.4.(ii) ensures that SMSO is able to handle all solvable instances of Church’s
synthesis, but it gives no hint on how to actually produce proofs. When reasoning on
fixpoint formulae as those representing Mealy machines in Prop. 4.2, a crucial role is played
by the Recursion Theorem for MSO [14] (see also [12]). The Recursion Theorem says that
MSO allows to define predicates by well-founded induction w.r.t. the relation <̇ defined as
(x <̇ y) := (x ≤̇ y ∧ ¬(x .= y)). Given a formula ψ and variables X and x, we say that ψ is
x-recursive in X when the following formula RecxX(ψ) holds:

RecxX(ψ) := ∀z ∀Z,Z ′ (∀y <̇ z [Zy ←→ Z ′y] −→ [ψ[Z/X, z/x]←→ ψ[Z ′/X, z/x]])

(where z, Z, Z ′ do not occur free in ψ). For ψ[X,x] x-recursive in X, the Recursion Theorem
says that, provably in MSO, the equation ∀x(Xx←→ ψ[X,x]) has a unique solution.
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I Theorem 4.5 (Recursion Theorem [14]). If MSO ` RecxX(ψ) then

∀z
(
Zz ←→ ∀X

[
∀x ≤̇ z(Xx↔ ψ) −→ Xz

])
`MSO ∀x (Zx←→ ψ[Z/X])

and ∀x(Zx←→ ψ[Z/X]) , ∀x(Z ′x←→ ψ[Z ′/X]) `MSO ∀x (Zx←→ Z ′x)

I Example 4.6. (a) W.r.t. the representation used in Prop. 4.2, let θ[X,Q, Y, x] be

∀t ≤̇ x(Z(t) −→ I[Q(t)]) ∧ ∀t, t′ ≤̇ x (S(t, t′) −→ H[Q(t), X(t), Y (t), Q(t′)])

so that δ[X,x] = ∀Q,Y
(
θ[X,Q, Y, x]→ Y (x)

)
. The Recursion Theorem 4.5 implies

that, provably in MSO, for all X there are unique predicates Q,Y s.t. ∀x.θ[X,Q, Y, x].
Indeed, assuming I and H are as in (5) we have that θ[X,Q, Y, x] is equivalent to
θo[Q,X, Y, x] ∧

∧
1≤i≤q θi[Q,X, Y, x], where

θo[X,Q, Y, x] := ∀t ≤̇ x (Yi(t) ←→ Oi[Q(t), X(t)])
θi[X,Q, Y, x] := ∀t ≤̇ x (Qi(t) ←→ θ̃i[Q,X, t])

with θ̃i[X,Q, t] := (Z(t) ∧ Bi) ∨ ∃u ≤̇ t
(
S(u, t) ∧ Di[Q(u), X(u)]

)
Now, apply Thm. 4.5 to O[Q(t), X(t)] (resp. θ̃i), which is t-recursive in Y (resp. in Qi).

(b) The machine of Ex. 2.3.(c) is represented as in (a) with O and D given by (6) (see
Ex. 4.3, recalling that the machine as only two states). Hence MSO proves that for all
X there are unique Q, Y such that ∀x.θ[X,Q, Y, x]. Continuing now Ex. 4.4, let

δ2[X,x] := ∀Q,Y (θ[X,Q, Y, x] −→ Y (x))

It is not difficult to derive MSO ` φ0[δ2[x]/Y ]∧φ1[δ2[x]/Y ]. In order to show φ2[δ2[y]/Y ],
one has to prove ∃∞t (¬Xt) `MSO ∃∞t ∃Q,Y (θ[X,Q, Y, t] ∧ ¬Y t). Thanks to
Thm. 4.5, this follows from ∀x.θ[X,Q, Y, x] , ∃∞t (¬Xt) `MSO ∃∞t (¬Y t) which
itself can be derived using induction.
It is not difficult to derive MSO ` φ0[δ2[x]/Y ]∧φ1[δ2[x]/Y ]. In order to show φ2[δ2[y]/Y ],
one has to derive

∃∞t (¬Xt) `MSO ∃∞t ∃Q,Y (θ[X,Q, Y, t] ∧ ¬Y t)

One can proceed as follows. First note that if 0 is read from state 1, then the machine
outputs 0. Moreover between two occurrences of 0 in the input with no intermediate
input 1’s, the only visited state of the machine is 1. Using induction, we thus have

θ[X,Q, Y, t′] , t <̇ t′ , ¬Xt , ¬Xt′ , ¬∃z(t <̇ z <̇ t′ ∧ X(z)) ` ¬Q(t′)
so that θ[X,Q, Y, t′] , t <̇ t′ , ¬Xt , ¬Xt′ , ¬∃z(t <̇ z <̇ t′ ∧ X(z)) ` ¬Y (t′)

It follows that if there are infinitely many 0’s in the input, then there are infinitely many
0’s in the output. Indeed, using induction and the excluded middle, we have

∀x.θ[X,Q, Y, x] , ∃∞t (¬Xt) ` ∃t, t′ ≥̇ n [¬Xt ∧ ¬Xt′ ∧ ¬∃z(t <̇ x <̇ t′ ∧ X(z))]

and therefore ∀x.θ[X,Q, Y, x] , ∃∞t (¬Xt) `MSO ∃∞t (¬Y t).

4.3 From Bounded Formulae to Mealy Machines
We now turn to a useful fact for part (i) of Thm. 3.4, namely, for synchronous comprehension,
the extraction of finite-state synchronous functions from bounded formulae. This relies on
the standard translation of MSO-formulae over finite words to DFA’s (see e.g. [16, §3.1]).
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I Lemma 4.7. Let ϕ̂ be a formula with free variables among z, x1, . . . , xp, X1, . . . , Xq, and
which is bounded by z. Then ϕ̂ z-represents a finite-state synchronous C : 2p × 2q →M 2
induced by a Mealy machine computable from ϕ̂.

I Remark. Given C : 2p × 2q →M 2 z-represented by ψ�[− ≤̇ z] (with z not free in ψ), for
all n ∈ N, all A ∈ (2ω)q and all k ∈ (2ω)p with ki ≤ n, we have C(k,A)(n) = 1 if and only
if 〈k,A�(n+ 1)〉 |= ψ (in the sense of MSO over finite words). It follows that if C is induced
by a Mealy machineM = (Q, qı, ∂), then with the DFA A := (Q×2 + {qı}, qı, ∂A, Q×{1})
where ∂A(qı, a) := ∂(qı, a) and ∂A((q, b), a) := ∂(q, a), we have C(k,A)(n) = 1 iff A accepts
the finite word 〈k,A�(n+ 1)〉. Hence M must pay the price of the non-elementary lower-
bound for translating MSO-formulae over finite words to DFAs (see e.g. [7, Chap. 13]). J

I Example 4.8. Recall the continuous but not synchronous function P of Ex. 2.3.(d). The
function P can be used to realize a predecessor function, and thus is represented (in the
sense of (3)) by a formula ϕ[X,Y, x] such that N |= ϕ[A,B, n] iff A = {k + 1} and B = {k}
for some k ≤ n. But ϕ is not equivalent to a bounded formula, since by Lem. 4.7 bounded
formulae represent synchronous functions.

4.4 Internally Bounded Formulae
The synchronous comprehension scheme of MSO is motivated by Lem. 4.7, which tells that
uniformly bounded formulae induce Mealy machines. However, being uniformly bounded
may seem to be a strict syntactic requirement, and one may wish to relax synchronous
comprehension to formulae which behave as bounded formulae, that is to formulae ψ[X,x]
such that the following formula Bx

X
(ψ[X,x]) holds (where z, Z, Z ′ do not occur free in ψ):

Bx
X

(ψ[X,x]) := ∀z∀ZZ ′(∀y ≤̇ z[Zz ←→ Z ′z] −→ [ψ[Z/X, z/x]←→ ψ[Z ′/X, z/x]])

I Theorem 4.9. If MSO ` Bx
X

(ψ[X,x]) and the free variables of ψ are among x,X, then
there is a uniformly bounded formula ϕ̂[X,x] which is effectively computable from ψ and
such that MSO ` ∀X ∀x (ψ[X,x]←→ ϕ̂[X,x]).

I Remark. Theorem 4.9 relies on the decidability of MSO. Note that Thm. 4.9 in part.
applies if SMSO ` Bx

X
(ψ[X,x]). Moreover, if ψ[X,x] is recursive (in the sense of §4.2), then

BxX(ψ[X,x]) holds, but not conversely.

5 The Realizability Interpretation of SMSO

This Section presents our realizability model for SMSO, and uses it to prove Thm. 3.4.(i).
Our approach to Church’s synthesis via realizability uses automata in two different ways.
First, from a proof D in SMSO of an existential formula ∃Y ϕ(X;Y ), one can compute a
finite-state synchronous realizer F of ϕ(X;Y ). Second, the adequacy of realizability (and in
particular the correctness of F w.r.t. ϕ(X;Y )) is proved using automata for ϕ(X;Y ) obtained
by McNaughton’s Theorem, but these automata do not have to be built concretely.

5.1 Uniform Automata
The adequacy of realizability will be proved using the notion of uniform automata (adapted
from [13]). In our context, uniform automata are essentially usual non-deterministic auto-
mata, but in which non-determinism is expressed via an explicitly given set of moves. This
allows a simple inheritance of the Cartesian structure of synchronous functions (Prop. 2.5),

FSCD 2017



29:12 A Curry-Howard Approach to Church’s Synthesis

and thus to interpret the positive existentials of SMSO similarly as usual (weak) sums of
type theory. In particular, the set of movesM(A) of an automaton A interpreting a formula
ϕ will exhibit the strictly positive existentials of ϕ as M(A) = M(ϕ) where

M(α) 'M(¬ϕ) ' 1 M(ϕ ∧ ψ) 'M(ϕ)×M(ψ) M(∃(−)ϕ) ' 2×M(ϕ) (7)

I Definition 5.1 ((Non-Deterministic) Uniform Automata). A (non-deterministic) uniform
automaton A over Σ (notation A : Σ) has the form

A = (QA , qıA , M(A) , ∂A , ΩA) (8)

where QA is the finite set of states, qıA ∈ QA is the initial state,M(A) is the finite non-empty
set of moves, the acceptance condition ΩA is an ω-regular subset of QωA, and the transition
function ∂A has the form

∂A : QA × Σ −→ M(A) −→ QA

A run of A on an ω-word B ∈ Σω is an ω-word R ∈M(A)ω. We say that R is accepting
(notation R  A(B)) if (qk)k∈N ∈ ΩA for the sequence of states (qk)k∈N defined as q0 := qıA
and qk+1 := ∂A(qk, B(k), R(k)). We say that A accepts B if there exists an accepting run
of A on B, and we let L(A) be the set of ω-words accepted by A.

Following the usual terminology, an automaton A as in (8) is deterministic if M(A) ' 1.
Let us now sketch how uniform automata will be used in our realizability interpretation

of SMSO. First, by adapting to our context usual constructions on automata (§5.2), to each
MSO-formula ϕ with free variables among (say) X = X1, . . . , Xq, we associate a uniform
automaton JϕK over 2q (Fig. 5). Then, from an SMSO-derivation D of a sequent (say) ϕ ` ψ
(with free variables among X as above), we will extract a finite-state synchronous function
FD : 2q ×M(JϕK) −→M M(JψK), such that FD(B,R)  JψK(B) whenever R  JϕK(B).
In the case of ` ∃Y φ(X;Y ), the finite-state realizer FD will be of the form 〈C,G〉 with C
and G finite-state synchronous functions C : 2q −→M 2 and G : 2q −→M M(φ) such that
G(B)  JφK(B,C(B)) for all B. This motivates the following notion.

I Definition 5.2 (The Category AutΣ). For each alphabet Σ, the category AutΣ, has auto-
mata A : Σ as objects. Morphisms F from A to B (notation A  F : B) are finite-state syn-
chronous maps F : Σ×M(A) −→M M(B) such that F (B,R)  B(B) whenever R  A(B).

I Remark. (a) Note that if B  F : A for some F , then L(B) ⊆ L(A).
(b) One could also consider the category AUTΣ defined as AutΣ, but with maps not required

to be finite-state. All statements of this Section hold for AUTΣ, but for Cor. 5.10, which
would lead to non necessarily finite-state realizers and would not give Thm. 3.4.(i).

(c) Uniform automata are a variation of usual automata on ω-words, which is convenient for
our purposes, namely the adequacy of our realizability interpretation. Hence, while it
would have been possible to define uniform automata with any of the usual acceptance
condition (see e.g. [16]), we lose nothing by assuming their acceptance condition to be
given by arbitrary ω-regular sets. J

5.2 Constructions on Automata
We gather here constructions on uniform automata that we will need to interpret MSO
formulae. First, automata are closed under the following operation of finite substitution.
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I Proposition 5.3. Given A : Σ and a function f : Γ → Σ, let A[f] : Γ be the automaton
identical to A, but with ∂A[f](q, b, u) := ∂A(q, f(b), u). Then B ∈ L(A[f]) iff f ◦B ∈ L(A).

I Example 5.4. Assume A interprets a formula ϕ with free variables among X, so that
B ∈ L(A) iff N |= ϕ[B/X]. Then ϕ is also a formula with free variables among X,Y , and
we have BB′ ∈ L(A[π]) iff N |= ϕ[B/X/B′/Y ], where π : X × Y → X is a projection.

The Cartesian structure of M lifts to AutΣ. This gives the interpretation of conjunctions.

I Proposition 5.5. For each Σ, the category AutΣ has finite products. Its terminal object is
the automaton I = (1, •,1, ∂I,1ω), where ∂I(−,−,−) = •. Binary products are given by

A× B := (QA ×QB , (qıA, qıB) , M(A)×M(B) , ∂ , Ω)
where ∂((qA, qB), a, (u, v)) := (∂A(qA, a, u) , ∂B(qB, a, v))

and where (qn, q′n)n ∈ Ω iff ((qn)n ∈ ΩA and (q′n)n ∈ ΩB). Note that Ω is ω-regular
since ΩA and ΩB are ω-regular (see e.g. [10, Ex. I.11.3.7]). Moreover, L(I) = Σω and
L(A× B) = L(A) ∩ L(B).

Uniform automata are equipped with the obvious adaptation of the usual projection
on non-deterministic automata, which interprets existentials. Given a uniform automaton
A : Σ× Γ, its projection on Σ is the automaton

(∃ΓA : Σ) := (QA , qıA , Γ×M(A) , ∂ , ΩA) where ∂(q, a, (b, u)) := ∂A(q, (a, b), u)

I Proposition 5.6. Given A : Σ × Γ and B : Σ, the realizers B  F : ∃ΓA are exactly the
M-pairs 〈C,G〉 of synchronous functions C : Σ×M(B)→M Γ and G : Σ×M(B)→M M(A)
such that G(B,R)  A〈B,C(B,R)〉 for all B ∈ Aω and all R  B(B).

The negation ¬(−) of SMSO is interpreted by an operation ∼(−) on uniform automata
which involves McNaughton’s Theorem 2.8.

I Proposition 5.7. Given a uniform automaton A : Σ, there is a uniform deterministic
∼A : Σ such that B ∈ L(∼A) iff B /∈ L(A).

5.3 The Realizability Interpretation
Consider a formula ϕ with free variables among x = x1, . . . , xp and X = X1, . . . , Xq. Its
interpretation JϕKx,X is the uniform automaton over 2p × 2q defined by induction over ϕ in
Fig. 5, where Aα is a deterministic uniform automaton for the atomic formula α, Sing : 2 is
a deterministic uniform automaton accepting the B ∈ 2ω ' P(N) such that B is a singleton,
and π, π′ are suitable projections. We write JϕK when x,X are irrelevant or understood from
the context. Note that the set of moves M(ϕ) of JϕK indeed satisfies (7), so in particular
JδK is deterministic for a deterministic δ. Moreover, as expected we get:

I Proposition 5.8. Given an MSO-formula ϕ with free variables among x = x1, . . . , xp
and X = X1, . . . , Xq, for all k ∈ (2ω)p ' (2p)ω and all B ∈ (2ω)q ' (2q)ω, we have
(k,B) ∈ L(JϕKx,X) iff N |= ϕ[k/x,B/X].

Let ϕ1, . . . , ϕn, ϕ be MSO-formulae with free variables among x = x1, . . . , xp and X =
X1, . . . , Xq. Then we say that a synchronous function

F : 2p × 2q ×M(ϕ1)× · · · ×M(ϕn) −→M M(ϕ)

realizes the sequent ϕ1, . . . , ϕn ` ϕ (notation ϕ1, . . . , ϕn  F : ϕ or ϕ  F : ϕ) if

Jϕ1Kx,X × · · · × JϕnKx,X  F : JϕKx,X
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JαKx,X := Aα[π] J¬ψKx,X := ∼JψKx,X J∃X ψKx,X := ∃2(JψKx,X,X)

Jψ1 ∧ ψ2Kx,X := Jψ1Kx,X × Jψ2Kx,X J∃xψKx,X := ∃2(Sing[π]× JψKx,x,X [π′])

Figure 5 Interpretation of MSO-Formulae as Uniform Automata.

I Theorem 5.9 (Adequacy). Let ϕ,ϕ be MSO-formulae with variables among x,X. From
an SMSO-derivation D of ϕ ` ϕ, one can compute an M-morphism FD s.t. ϕ x,X FD : ϕ.

Proof. The proof is by induction on derivations. Note that if ϕ `SMSO ϕ, then ϕ |=N ϕ. In
part., for all rules whose conclusion is of the form ϕ ` δ with δ deterministic, it follows from
Prop. 5.8 and (7) that the unique M-map with codomain M(δ) ' 1 (and with appropriate
domain) is a realizer. A similar argument applies to the Ex Falso rule (elimination of ⊥),
but in this case the realizer of ϕ ` ϕ is not canonical, and elimination of equality is direct
from Prop. 5.8. Adequacy for synchronous comprehension is deferred to §5.3.1. As for the
rules of Fig. 4, the first two rules follow from the fact that M is a category with finite limits
(Prop. 2.5), and the rules for conjunction (resp. existentials) follow from Prop. 5.5 (resp.
Prop. 5.6). It remains the rules ϕ ` ∃y Z(y) and ϕ ` ∃y S(x, y) of Fig. 3. For the latter, we
use the Mealy machine depicted on Fig. 1 (left) (Ex. 2.3.(b)) together with the fact that
S(−,−) is deterministic. The case of the former is similar and simpler. J

Adequacy of realizability, together with Prop. 5.6, directly gives Thm. 3.4.(i).

I Corollary 5.10 (Thm. 3.4.(i)). Given a derivation D in SMSO of ` ∃Y ϕ(X;Y ) with
X = X1, . . . , Xq and Y = Y1, . . . , Yp, we have FD = 〈C,G〉 where C = C1, . . . , Cp with
Ci : 2q −→M 2 and N |= ϕ(B,C(B)) for all B ∈ (2ω)q ' (2q)ω.

5.3.1 Realization of Synchronous Comprehension
We now turn to the adequacy of the synchronous comprehension rule. It directly follows
from the existence of finite-state characteristic functions for bounded formulae (Lem. 4.7)
and from the following semantic substitution lemma, which allows, given a synchronous
function Cϕ̂ y-represented by ϕ̂, to lift a realizer of ψ[ϕ̂[y]/Y ] into a realizer of ∃Y ψ.

I Lemma 5.11. Let x = x1, . . . , xp and X = X1, . . . , Xq. Let ϕ̂ be a formula with free
variables among y,X, and assume that ϕ̂ y-represents Cϕ̂ : 2q −→M 2. Then for every
MSO-formula ψ with free variables among x,X, there is a finite-state synchronous function

Hψ : M(ψ[ϕ̂[y]/Y ]) −→M M(ψ)

such that for all k ∈ (2ω)p, all A ∈ (2ω)q and all R ∈M(ψ)ω, we have

R  Jψ[ϕ̂[y]/Y ]Kx,X(k,A) =⇒ Hψ(R)  JψKx,X,Y (k,A,Cϕ̂(A)) (9)

Adequacy of synchronous comprehension then directly follows.

I Lemma 5.12. Let ψ with free variables among x,X, Y and let ϕ̂ be a formula with free
variables among y,X and which is uniformly bounded by y. Then there is a finite-state
realizer ψ[ϕ̂[y]/Y ] x,X F : ∃Y ψ, effectively computable from ψ and ϕ.

Proof. Let Cϕ̂ satisfying (3) be given by Lem. 4.7, and let Hψ satisfying (9) be given by
Lem. 5.11. It then directly follows from Prop. 5.6 and Len. 5.11 that ψ[ϕ̂[y]/Y ] x,X
〈Cϕ̂ ◦ [π], Hψ ◦ [π′]〉 : ∃Y ψ, where π, π′ are suitable projections. J
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6 Conclusion

In this paper, we revisited Church’s synthesis via an automata-based realizability interpret-
ation of an intuitionistic proof system SMSO for MSO on ω-words, and we demonstrated
that our approach is sound and complete, in the sense of Thm. 3.4. As it stands, this
approach must still pay the price of the non-elementary lower-bound for the translation of
MSO formulae over finite words to DFA’s (see the Remark after Lem. 4.7, §4.3) and the
system SMSO is limited by its set of connectives and its restricted induction scheme.

Further Works. First, following the approach of [13], SMSO could be extended with prim-
itive universal quantifications and implications as soon as one goes to a linear deduction
system. In particular, primitive universals and implications would allow to extend the logic
with atomic formulae for Mealy machines with defining axioms of the form (4). We expect
this to give better lower bounds w.r.t. completeness (for each solvable instance of Church’s
synthesis, to provide proofs with realizers of a reasonable complexity). Among other out-
comes of going to a linear deduction system, following [13] we expect similar proof-theoretical
properties as with the usual Dialectica interpretation (see e.g. [8]), such as realizers of linear
Markov rules and choices schemes. On the other hand, we do not know yet if effective com-
putations of modulus of uniform continuity could be pertinent for Church’s synthesis (e.g.
for a non-linear Markov rule). Moreover, we expect that a linear variant of MSO on finite
words could help (for some classes of formulae) to mitigate the Remark of §4.3.

The case of induction is more complex. One possibility to have finite-state realizers for a
more general induction rule would be to rely on saturation techniques for regular languages.
Another possibility, which may be of practical interest, is to follow the usual Curry-Howard
approach and allow possibly infinite-state realizers.

Another direction of future work is to incorporate specific reasoning principles on Mealy
machines. For instance, a translation from (a subsystem of) [2] could be interesting.
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A Proofs of §2 (Church’s Synthesis and MSO on Infinite Words)

I Theorem 1.1 (Thm. 2.10). The theory of MSO over N is completely axiomatized by
deduction in classical two-sorted predicate logic with the axioms of Fig. 3 and the folllowing
comprehension and induction rules (where z and y do not occur free in ϕ,ϕ):

ϕ ` ϕ[ψ[y]/X]
ϕ ` ∃X ϕ

ϕ,Z(z) ` ϕ[z/x] ϕ,S(y, z), ϕ[y/x] ` ϕ[z/x]
ϕ ` ϕ

where ϕ[ψ[y]/X] is the usual formula substitution, which commutes over all connectives
(avoiding variable capture), and with (x ∈̇ X)[ψ[y]/X] = ψ[x/y].

The difference between [12] and the present system is that the axiomatization of [12] is
expressed in terms of the <̇ relation and that comprehension is formulated in the usual way
with the following axiom scheme (where X is not free in ϕ):

∃X∀x (X(x) ←→ ϕ[x/y]) (10)

We thus proceed to show that we can bridge these gaps.
Let us first recapitulate the non-logical axioms of MSO (omitting equality):

(i) ≤̇ is a partial order:

ϕ ` x ≤̇ x
ϕ ` x ≤̇ y ϕ ` y ≤̇ z

ϕ ` x ≤̇ z
ϕ ` x ≤̇ y ϕ ` y ≤̇ x

ϕ ` x .= y

(ii) Basic Z and S axioms (total injective relations):

ϕ ` ∃y Z(y) ϕ ` ∃y S(x, y)

ϕ,S(y, x), S(z, x) ` y .= z ϕ,Z(x),Z(y) ` x .= y ϕ,S(x, y), S(x, z) ` y .= z

(iii) Arithmetic axioms:

ϕ,S(x, y),Z(y) ` ⊥
ϕ ` S(x, y)
ϕ ` x ≤̇ y ϕ,S(y, y′), x ≤̇ y′,¬(x .= y′) ` x ≤̇ y

Comprehension. The comprehension scheme of the present version of MSO directly im-
plies (10); indeed, using

∀x (ϕ[x/y] ←→ ϕ[x/y]) = ∀x (X(x) ←→ ϕ[x/y]) [ϕ[y]/X]

we have

` ∀x (ϕ[x/y] ←→ ϕ[x/y])
` ∃X∀x (X(x) ←→ ϕ[x/y])

Arithmetic axioms. Concerning the arithmetic axioms of [12], let

(x <̇ y) :=
[
x ≤̇ y ∧ ¬(x .= y)

]
We have to check that S(−,−) is indeed a successor in the sense of [12], that is

∀x, y [S(x, y) ←→ (x <̇ y ∧ ¬∃z(x <̇ z <̇ y))]
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Moreover, we have to show the linear order axioms

¬(x <̇ x) (x <̇ y <̇ z → x <̇ z) (x <̇ y ∨ x
.= y ∨ y <̇ x)

as well as the predecessor and unboundeness axioms

∀x [∃y(y <̇ x) → ∃yS(y, x)] ∀x∃y(x <̇ y)

and the axiom of <̇-induction

∀X [∀x(∀y(y <̇ x→ X(y))→ X(x))→ ∀x X(x)]

We now proceed to derive a list of basic theorems following from our axiomatization
(where ` refers to provability in this setting), from which the axioms of [12] follow.

(a) ` ¬(x <̇ x)

Proof. From reflexivity of equality. J

(b) x <̇ y, y <̇ z ` x <̇ z

Proof. We have x <̇ y, y <̇ z ` x ≤̇ z and x <̇ y, y <̇ z, x
.= z ` ⊥ by the partial order

axioms for ≤̇. J

(c) S(x, y), x .= y ` ⊥

Proof. By induction on y, we show

φ[y] := ∀x(S(x, y)→ ¬(x .= y))

We have Z(y) ` φ[y] by the first arithmetic axiom. We now show φ[y], S(y, y′) ` φ[y′],
that is

φ[y],S(y, y′), S(x, y′), x .= y′ ` ⊥

Note that

S(y, y′),S(x, y′), x .= y′ ` x .= y ∧ y
.= y′ ∧ S(x, y)

From which follows that

φ[y],S(y, y′), S(x, y′), x .= y′ ` ⊥

J

(d) ` ∀x∃y x <̇ y.

Proof. The basic and arithmetic axioms above ensure that every x has a successor y,
and that the successor satisfies x ≤̇ y. Thus, in combination with (c), we get that
x <̇ y. J

(e) S(y, y′), x ≤̇ y, x .= y′ ` ⊥
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Proof. Because

S(y, y′), x ≤̇ y, x .= y′ ` y′ ≤̇ y

and by the partial order axioms for ≤̇ together with the second arithmetic axiom, we
have

S(y, y′), x ≤̇ y, x .= y′ ` y′ .= y

and we conclude by (c). J

(f) Z(x) ` x ≤̇ y

Proof. By induction on y. J

(g) x ≤̇ y,Z(y) ` Z(x)

Proof. By (f), we have Z(y) ` y ≤̇ x and we conclude by the partial order axioms for
≤̇. J

(h) ∀y(x ≤̇ y) ` Z(x)

Proof. We have

∀y(x ≤̇ y),Z(z) ` x ≤̇ z

Hence by (g) we get

∀y(x ≤̇ y),Z(z) ` Z(x)

and we conclude by the basic axioms for Z. J

(i) x <̇ y,S(x, x′) ` x′ ≤̇ y

Proof. By induction on y, we show

φ[y] := ∀x, x′
(
x <̇ y → S(x, x′)→ x′ ≤̇ y

)
First, the base case Z(y) ` φ[y] follows from the fact that Z(y), x <̇ y ` ⊥ by (g). For
the induction step, we show

S(y, y′), φ[y], x <̇ y′, S(x, x′) ` x′ ≤̇ y′

We use the excluded middle on x .= y, and we are left to show

S(y, y′), φ[y], x <̇ y′,¬(x .= y), S(x, x′) ` x′ ≤̇ y′

But by the arithmetic axioms, S(y, y′), x <̇ y′ ` x ≤̇ y, so that

S(y, y′), φ[y], x <̇ y′,¬(x .= y), S(x, x′) ` x <̇ y

But

φ[y], x <̇ y,S(x, x′) ` x′ ≤̇ y

and we are done. J
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(j) x ≤̇ y,S(x, x′),S(y, y′) ` x′ ≤̇ y′

Proof. By induction on z we show

φ[z] := ∀x, x′, y
(
x ≤̇ y → S(x, x′)→ S(y, z)→ x′ ≤̇ z

)
We trivially have Z(z) ` φ[z]. We now show S(z, z′), φ[z] ` φ[z′], that is

S(z, z′), φ[z], x ≤̇ y,S(x, x′), S(y, z′) ` x′ ≤̇ z′

By the basic Z and S axioms, this amounts to show

φ[z], x ≤̇ z,S(x, x′), S(z, z′) ` x′ ≤̇ z′

Now, using the excluded middle on x .= z, we are left with showing

φ[z], S(x, x′), S(z, z′), x <̇ z ` x′ ≤̇ z′

But by (i) we have

x <̇ z,S(x, x′) ` x′ ≤̇ z

and we are done. J

(k) ` ∀x∀y
[
y <̇ x ←→ ∃z(y ≤̇ z ∧ S(z, x))

]
Proof. The right-to-left direction follows from (c). For the left-to-right direction, by
induction on x, we show

φ[x] := ∀y
(
y <̇ x→ ∃z(y ≤̇ z ∧ S(z, x))

)
For the base case Z(x) ` φ[x], by (g) we have Z(x), y ≤̇ x ` Z(y) and we conclude by
the basic Z-axioms. For the induction step, we have to show

S(x, x′), φ[x], y <̇ x′ ` ∃z(y ≤̇ z ∧ S(z, x′))

By the last arithmetic axiom,

S(x, x′), y <̇ x′ ` y ≤̇ x

and we are done. J

(l) ` x <̇ y ∨ x .= y ∨ y <̇ x

Proof. By induction on x, we show

φ[x] := ∀y (x <̇ y ∨ x .= y ∨ y <̇ x)

The base case Z[x] ` φ[x] follows from (f). For the induction step, we have to show

S(x, x′), φ[x] ` ∀y(x′ <̇ y ∨ x′ .= y ∨ y <̇ x′)

By induction on y we show S(x, x′), φ[x] ` ψ[y, x′] where

ψ[y, x′] := x′ <̇ y ∨ x′ .= y ∨ y <̇ x′

The base case follows again from (f). For the induction step, we have to show

S(x, x′), S(y, y′), φ[x], ψ[y, x′] ` ∀y(x′ <̇ y′ ∨ x′ .= y′ ∨ y′ <̇ x′)

and we are done since (j) gives

∀x, x′, y, y′ (x <̇ y → S(x, x′)→ S(y, y′)→ x′ <̇ y′)

J
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(m) ` ∀x, y [S(x, y) ←→ (x <̇ y ∧ ¬∃z(x <̇ z <̇ y))]

Proof. For the left-to-right direction, thanks to (c) we are left to show

S(x, y), x <̇ z, z <̇ y ` ⊥

Assume that y is the successor of x and an intermediate z such that x <̇ z <̇ y (in
particular, we have x <̇ y by (b)). By (j), y ≤̇ z. But then it means that z = y by z ≤̇ y
by antisymmetry, which is contradictory.
Conversely, assume that x <̇ y without any intermediate z. Assume ¬S(x, y) towards
a contradiction. But there exists some z such that S(x, z). Clearly, x <̇ z by (c). But
we also have z ≤̇ y by (i) and ¬y .= z by assumption, so z <̇ y. This contradicts our
assumption of non-existence of intermediate z. J

The linear order axioms ((a), (b), (l)), the successor axiom (m), the unboundedness (d) and
predecessor (k) axioms are thus proved in our axiomatic. Finally, we have to prove that
induction w.r.t. <̇ (also called strong induction) is derivable:

` ∀X [∀x(∀y(y <̇ x→ X(y))→ X(x))→ ∀x X(x)]

The proof holds no surprise.

Proof. We have to show

∀x(∀y(y <̇ x→ X(y))→ X(x)) ` ∀x X(x)

By induction on x we show

∀x(∀y(y <̇ x→ X(y))→ X(x)) ` φ[x]

where

φ[x] := ∀y(y ≤̇ x → X(y))

The base case

∀x(∀y(y <̇ x→ X(y))→ X(x)),Z(x) ` φ[x]

is trivial since by (f),

Z(x) ` ¬∃y(y <̇ x)

For the induction step, we have to show

∀x(∀y(y <̇ x→ X(y))→ X(x)), S(x, x′), φ[x], z ≤̇ x′ ` X(z)

Notice that φ[x] is equivalent to φ′[x′] := ∀y(y <̇ x′ → X(y)) using (k). Using trichotomy (l),
we have three subcase according to:

z <̇ x′ ∨ z .= x′ ∨ x′ <̇ z

The first case enables to use φ′[x′] directly, and the second requires to use the hypothesis
of <̇-induction ∀x(∀y(y <̇ x→ X(y))→ X(x) together with φ′[x′]. The last one leads to a
contradiction using antisymmetry of ≤̇ together with z <̇ x′ = z ≤̇ x′ ∧ ¬z .= x′. J
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B Proofs of §3 (A Synchronous Intuitionistic Restriction of MSO)

I Theorem 2.1 (Thm. 3.3). If MSO ` ϕ then SMSO ` ¬¬ϕ.

Proof. Induction over a derivation ϕ ` ϕ in MSO will prove ϕ ` ¬¬ϕ (which is equivalent
to ¬¬ϕ ` ¬¬ϕ).

The cases of propositional connectives are standard (usual Glivenko’s theorem). The
cases of existential quantifications are explicited on Fig. 6 (top and middle). The compre-
hesion rule of MSO (which behaves as an extended rule of ∃-introduction) requires a bit
reworking of the rule for the introduction of existentials with the double-negated version of
comprehension of SMSO. It is detailed on Fig. 6 (bottom).

We now turn to the rules of Fig. 3. Most of these rules only involve sequents of the form
ϕ ` δ where δ is deterministic. Such rules are handled using the rule ϕ,¬¬δ ` δ of SMSO.
The other rules on Fig. 3 are

ϕ ` ϕ[t/z] ϕ ` t .= u

ϕ ` ϕ[u/z] ϕ ` ∃y Z(y) ϕ ` ∃y S(x, y)

Their cases follow from the fact that ϕ,ϕ `SMSO ¬¬ϕ and the fact that ϕ `SMSO δ whenever
ϕ `SMSO ¬¬δ.

Finally, the induction rule of MSO follows from the fact that ¬¬ϕ is deterministic. J

C Proofs of §4 (On the Representation of Mealy Machines in MSO)

C.1 From Bounded Formulae to Mealy Machines

I Lemma 3.1 (Lem. 4.7). Let ϕ̂ be a formula with free variables among z, x1, . . . , xp, X1, . . . , Xq,
and which is bounded by z. Then ϕ̂ z-represents a finite-state synchronous function C :
2p × 2q −→M 2 induced by a Mealy machine computable from ϕ̂.

Proof. First, given an MSO-formula ϕ̂ with free variables among z, x1, . . . , xp, X1, . . . , Xq,
if ϕ̂ is bounded by z then ϕ̂ is of the form ψ�[− ≤̇ z], where the free variables of ψ are
among z, x1, . . . , xp, X1, . . . , Xq. But note that ψ�[− ≤̇ z] is equivalent to the formula
(∃t(last[t] ∧ ψ[t/z]))�[− ≤̇ z], where last[t] := ∀x(t ≤̇ x → t

.= x) and where t does not
occur free in ψ. We can therefore assume that ϕ̂ is of the form ψ�[− ≤̇ z] where ψ has free
variables among x1, . . . , xp, X1, . . . , Xq.

Then, for all n ∈ N, all A ∈ (2ω)q and all k ∈ (2ω)p with ki ≤ n, we have N |=
ψ[k/x,A/X]�[− ≤̇ n] if and only if the formula ψ holds (in the sense of MSO over finite words)
in the finite word 〈k,A�(n+ 1)〉. Let A = (Q, qı, ∂, F ) be a DFA recognizing the language
of finite words satisfying ψ [16, Thm. 3.1]. Consider the Mealy machine M = (Q, qı, ∂M)
with ∂M(q, a) = (q′, b) where q′ = ∂(q, a) and (b = 1 iff q′ ∈ F ), and let C : 2p × 2q −→M 2
be the function induced byM. We then have

〈k,A�(n+ 1)〉 |= ψ�[− ≤̇ n] (in the sense of MSO over finite words)
⇐⇒ A accepts the finite word 〈k,A�(n+ 1)〉 ⇐⇒ C(k,A)(n) = 1

J
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π

ϕ ` ϕ(t)
ϕ ` ∃x.ϕ(x)

;

π′

ϕ,¬∃x.ϕ(x) ` ¬¬ϕ(t)

ϕ,¬∃x.ϕ(x), ϕ(t) ` ¬∃x.ϕ(x)
ϕ,¬∃x.ϕ(x), ϕ(t) ` ϕ(t)

ϕ,¬∃x.ϕ(x), ϕ(t) ` ∃x.ϕ(x)
ϕ,¬∃x.ϕ(x), ϕ(t) ` ⊥
ϕ,¬∃x.ϕ(x) ` ¬ϕ(t)

ϕ,¬∃x.ϕ(x) ` ⊥
ϕ ` ¬¬∃x.ϕ(x)

π1

ϕ ` ∃x.ϕ(x)
π2

ϕ,ϕ(y) ` ψ
ϕ ` ψ

;

π′
1

ϕ,¬ψ ` ¬¬∃x.ϕ(x)

ϕ,¬ψ,∃x.ϕ(x) ` ∃x.ϕ(x)
π′

2

ϕ,¬ψ,∃x.ϕ(x), ϕ(y) ` ¬¬ψ
ϕ,¬ψ,∃x.ϕ(x) ` ¬¬ψ ϕ,¬ψ,∃x.ϕ(x) ` ¬ψ

ϕ,¬ψ,∃x.ϕ ` ⊥
ϕ,¬ψ ` ¬∃x.ϕ(x)

ϕ,¬ψ ` ⊥
ϕ ` ¬¬ψ

π

ϕ ` ϕ(ψ[−])
ϕ ` ∃X.ϕ(X)

;

π′

ϕ,¬∃X.ϕ(X) ` ¬¬ϕ(ψ[−])

ϕ,¬∃X.ϕ(X), ϕ(ψ[−]) ` ϕ(ψ[−])
ϕ,¬∃X.ϕ(X), ϕ(ψ[−]) ` ¬¬∃X.ϕ(X) ϕ,¬∃X.ϕ(X), ϕ(ψ[−]) ` ¬∃X.ϕ(X)

ϕ,¬∃X.ϕ(X), ϕ(ψ[−]) ` ⊥
ϕ,¬∃X.ϕ(X) ` ¬ϕ(ψ[−])

ϕ,¬∃X.ϕ(X) ` ⊥
ϕ ` ¬¬∃X.ϕ(X)

Figure 6 The cases of existential quantifications of Glivenko (Proof of Thm. 2.1)
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C.2 Internally Bounded Formulae
We work in the standard model N of MSO. Our goal is to show Thm. 4.9, that if a formula
ψ[X,x] can be proven to behave as a bounded formula (in the sense of Bx

X
(ψ[X,x])) then

ψ[X,x] is actually equivalent to a uniformly bounded formula.
In the following, we consider MSO-formulae over the vocabulary of [12], that is MSO-

formulae given by the grammar

ϕ,ψ ∈ Λ ::= x ∈̇ X | x <̇ y | ¬ϕ | ϕ ∨ ψ | ∃X ϕ | ∃xϕ

Following §A, defining the atomic formulae .=, S(−,−), ≤̇ and Z(−) as

x
.= y := ∀X (x ∈̇ X → y ∈̇ X)

S(x, y) := (x <̇ y ∧ ¬∃z(x <̇ z <̇ y))
x ≤̇ y := (x <̇ y) ∨ (x .= y)
Z(x) := ∀y (x ≤̇ y)

we obtain for each formula in the sense of Fig. 2 an equivalent formula in Λ. Moreover, we
write FVι(ϕ) for the set of free individual variables of the formula ϕ.

We shall make use of the following usual transfer property (see e.g. [12]).

I Lemma 3.2 (Transfer). Let ϕ ∈ Λ be a formula with free variables among x = x1, . . . , xp
and X = X1, . . . , Xq. Furthermore, let A ∈ 2ω ' P(N) be non-empty. Then for all
a1, . . . , an ∈ A and all B ∈ (2ω)q we have

N�A |= ϕ[a/x,B ∩A/X] ⇐⇒ N |= (ϕ[a/x,B/X])�[A(−)]

Lemma 3.2 gives in particular that if B0, B1 ∈ 2ω ' P(N) are disjoint, then

N |= ∃X(φ0�B0 ∧ φ1�B1) ←→ (∃X(φ0�B0) ∧ ∃X(φ1�B1)) (11)

I Lemma 3.3 (Splitting). Let ψ ∈ Λ be an MSO-formula and z be an individual variables.
For every V ⊆ FVι(ψ) with z ∈ V , one can produce natural number Nψ and two matching
sequences of length Nψ of left formulae (LV (ψ)j)j<Nψ and right formulae (RV (ψ)j)j<Nψ
sucht that the following holds:

For every j < Nψ, FVι(LV (ψ)j) ⊆ V and FVι(RV (ψ)j) ⊆ FVι(ψ) \ V .
If FVι(ψ) = {x, z, y} with V = {x, z}, then for all n ∈ N, all a ≤ n and all b > n, we
have

N |= ψ[a/x, n/z, b/y] ←→
∨
j<Nψ

LV (ψ)j [a/x, n/z]�[− ≤̇ n]∧RV (ψ)j [b/y]�[− >̇ n]

Proof. The proof proceeds by induction on ψ.
If ψ = x <̇ y, then Nψ := 1. We define suitable left and right formulae according to V :

If V = {x, y}, then LV (ψ)0 := ψ and RV (ψ)0 := >
If V = ∅, then LV (ψ)0 := > and RV (ψ)0 := ψ

If V = {x}, then LV (ψ)0 := RV (ψ)0 := >
If V = {y}, then LV (ψ)0 := RV (ψ)0 := ⊥

If ψ = X(x), then Nψ := 1. One of the produced formula is ψ and the other is >
according to whether x ∈ V or not.
If ψ = ϕ ∨ φ, then it is clear that taking the concatenation of the sequences of formulae
given by the induction hypothesis will be enough

LV (ψ)j := LV (ϕ)j RV (ψ)j := RV (ϕ)j
LV (ψ)j+Nϕ := LV (φ)j RV (ψ)j+Nϕ := RV (φ)j
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If ψ = ∃x.φ, using our induction hypothesis, we have Nφ ∈ N and sequences of formulae
(LV (φ)j , RV (φ)j , LV ∪{x}(φ)j , RV ∪{x}(φ)j)j<Nφ satisfying the conclusion of the theorem.
For i < Nφ, define

LV (ψ)j := ∃x.LV ∪{x}(φ)j RV (ψ)j := RV ∪{x}(φ)j
LV (ψ)j+Nφ := LV (φ)j RV (ψ)j+Nφ := ∃x.RV (φ)j

The disjunction is equivalent to ∃x.φ by making a case analysis over whether x ≤ n is
true.
If ψ = ∃X.ϕ, then it directly follows from (11) that we can take LV (ψ)j := ∃X.LV (ϕ)j
and RV (ψ)j := ∃X.RV (ϕ)j for j < Nϕ.
If ψ = ¬φ, using our induction hypothesis, we have a natural number Nφ and two
sequences of formulae (LV (φ), RV (φ))j<Nφ such that φ ←→

∨
j<Nφ

LV (φ)j�[− ≤̇ n] ∧
RV (φ)j�[− >̇ n]. Hence all we need to do is to add the negation, push it through the
disjunction and convert the obtained CNF into a DNF.
More explicitely (leaving the parameters implicit), we have:

¬φ ←→
∧

j<Nφ

¬LV (φ)j�[− ≤̇ n] ∨ ¬RV (φ)j�[− >̇ n]

←→
∨

f∈2J0,Nφ−1K

∧
j∈f−1(0)

¬LV (φ)j�[− ≤̇ n] ∧
∧

j∈f−1(1)
¬RV (φ)j�[− >̇ n]

J

I Remark. Note that there is a combinatorial explosion in the case of ψ = ¬φ in Lem. 3.3
since N¬φ = 2Nφ . It follows that the size of the formulae produced in Lem. 3.3 is non-
elementary in the size of ψ.

We can now prove Thm. 4.9. Recall that

Bx
X

(ψ[X,x]) := ∀z∀ZZ ′(∀y ≤̇ z[Zz ←→ Z ′z] −→ [ψ[Z/X, z/x]←→ ψ[Z ′/X, z/x]])

I Theorem 3.4 (Thm. 4.9). If N |= Bx
X

(ψ[X,x]) then there is a uniformly bounded formula
ϕ̂[X,x] which is effectivelly computable from ψ and such that N |= ∀X ∀x (ψ[X,x] ←→
ϕ̂[X,x]).

Proof. We assume ψ ∈ Λ. Using Lem. 3.3, we know that ψ[X,x] is equivalent to

ϕ[X,x] :=
∨
j

Lj(x,X)�[− ≤̇ x] ∧Rj(X)�[− >̇ x]

writting Lj as a shorthand for L{x}(ψ(x,X))j (and similarly for Rj). Then

ϕ[X,x] ←→ ϕ[X(−) ∧ − ≤̇ x, x]
←→

∨
j Lj(x,X(−) ∧ − ≤̇ x)�[− ≤̇ x] ∧Rj(X ∧ − ≤̇ x)�[− >̇ x]

Again using Lem. 3.2, we know that, for every j, Rj(X(−) ∧ − ≤̇ n)�[− >̇ n] is equivalent
to Rj(X(−) ∧ − ≤̇ n ∧ − >̇ n)�[− >̇ n]. By substitutivity, it is equivalent to R′j(n)�[− >̇ n],
where we set R′j := Rj(⊥). Lemma 3.2 moreover implies (since R′j is a sentence and since
N�[− >̇ n] ' N), that

N |=
(
R′j ←→ R′j�[− >̇ n]

)
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But now, since R′j is closed, it follows from the decidabiltiy of MSO (Thm. 2.6) that we
can decide whether N |= R′j or N |= ¬R′j . It follows that our initial ψ is equivalent to the
following formula, which is effectively computable from ψ:∨

j

Lj(n) ∧R′′j

 �[− ≤ n]

where each R′′j is either > or ⊥ according N |= R′j or N |= ¬R′j .
J

D Proofs of §5 (The Realizability Interpretation of SMSO)

D.1 Uniform Automata
We note the follwing simple fact, recorded in the Remark after Def. 5.2.

I Lemma 4.1. If B  F : A for some F , then L(B) ⊆ L(A).

Proof. Assume B  F : A and B ∈ L(B) so that R  b(B) for some R ∈ M(B)ω. Then by
definition of B  F : A, we have F (B,R)  A(B), so that B ∈ L(A). J

D.2 Constructions on Automata
I Proposition 4.2 (Prop. 5.5). For each Σ, the category AutΣ has finite products. Its
terminal object is the automaton I = (1, •,1, ∂I,1ω), where ∂I(−,−,−) = •. Binary products
are given by

A× B := (QA ×QB , (qıA, qıB) , M(A)×M(B) , ∂ , Ω)
where ∂((qA, qB), a, (u, v)) := (∂A(qA, a, u) , ∂B(qB, a, v))

and where (qn, q′n)n ∈ Ω iff ((qn)n ∈ ΩA and (q′n)n ∈ ΩB). Note that Ω is ω-regular
since ΩA and ΩB are ω-regular (see e.g. [10, Ex. I.11.3.7]). Moreover, L(I) = Σω and
L(A× B) = L(A) ∩ L(B).

Proof. The Cartesian structure is directly inherited from M and is omitted. Moreover, we
obviously have L(I) = Σω. Let us show that L(A1 ×A2) = L(A1) ∩ L(A2). The inclusion
(⊆) follows from Lem. 4.1 applied to the projection maps A1 × A2  $i : Ai induced by
the Catesian structure. For the converse inclusion (⊇), note that if Ri  Ai(B) for i = 1, 2,
then 〈R1, R2〉  (A1 ×A2)(B). J

I Proposition 4.3 (Prop. 5.6). Given A : Σ × Γ and B : Σ, the realizers B  F : ∃ΓA are
exactly the M-pairs 〈C,G〉 of synchronous functions

C : Σ×M(B) −→M Γ G : Σ×M(B) −→M M(A) (12)

such that G(B,R)  A〈B,C(B,R)〉 for all B ∈ Aω and all R  B(B).

Proof. Consider a realizer B  F : ∃ΓA, for some B : Σ with set of moves V . Then F is
a synchronous function from Σω × V ω to (Γ× U)ω ' Γω × Uω, and is therefore given by a
pair 〈C,G〉 of synchronous functions

C : Σ× V −→M Γ G : Σ× V −→M U (13)

Moreover, given B ∈ Σω and R  B(B), since F (B,R)  ∃ΓA(B), it is easy to see
that G(B,R)  A(〈B,C(B,R)〉). Conversely, given C and G as in (13), if G(B,R) 
A(〈B,C(B,R)〉) for all B ∈ Aω and all R  B(B), then we have B  〈C,G〉 : ∃ΓA. J
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I Proposition 4.4 (Prop. 5.7). Given a uniform automaton A : Σ, there is a uniform
deterministic ∼A : Σ such that B ∈ L(∼A) iff B /∈ L(A).

Proof. Let U := M(A) and consider the (usual) deterministic automaton over Σ× U with
the same states as A and with transition function ∂S defined as ∂S(q, (a, u)) := ∂A(q, a, u).
Then R  A(B) iff S accepts 〈B,R〉. Since ΩA is ω-regular, it is recognized by a non-det.
Büchi automaton C over QA. We then obtain a non-det. Büchi automaton B over Σ × U
with state set QA × QC and s.t. L(B) = L(S). It follows that B ∈ L(A) iff B ∈ L(∃̃UB),
where ∃̃UB is the usual projection of B on Σ. By McNaughton’s Theorem (Thm. 2.8),
∃̃UB is equivalent to a deterministic Muller automaton D over Σ. Then we let ∼A be the
deterministic uniform automaton defined as D but with Ω∼A the ω-regular set generated by
the Muller condition S ∈ T iff S /∈ TD (see e.g. [10, Thm. I.7.1 & Prop. I.7.4]). J

D.3 Automata for Atomic Fomulae
We give below the automaton Sing (of §5.3) and automata for the atomic formulae of
MSO. These automata are presented as deterministic Büchi automata (with accepting states
circled). As uniform automata, each of them has set of moves 1. Note that automata for
atomic formulae involving individual variables do not detect if the corresponding inputs
actually represent natural numbers. This is harmless, since all statments of §5 actually
assume streams representing natural numbers to be singletons, and since in Fig. 5, MSO-
quantifications over individuals are relativized to Sing.

Sing :

0 1 2

0

1

0

1 ∗

(x1
.= x2) :

0 1

(i, i)

(i, 1− i)
(∗, ∗)

(x1 ∈̇X1) :

0 1

(0, ∗)(1, 0)

(1, 1)
(∗, ∗)

(x1 ≤̇ x2) :

0 1 2

(0, ∗)

(1, 0)

(1, 1)

(∗, 0)

(∗, 1)
(∗, ∗)
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S(x1, x2) :

0

1

2

3

(0, ∗)
(1, 0)

(1, 1)

(∗, 1)

(∗, 0)

(∗, ∗)

(∗, ∗)

Z(x1) :

0

1

2

1

0

∗

∗

> and ⊥:

0 ∗ and 0 ∗

D.4 The Realizability Interpretation
I Theorem 4.5 (Adequacy – Thm. 5.9). Let ϕ,ϕ be MSO-formulae with variables among
x,X. From an SMSO-derivation D of ϕ ` ϕ, one can compute an M-morphism FD s.t.
ϕ x,X FD : ϕ.

Proof. The proof is as usual by induction on derivations. Note that if ϕ `SMSO ϕ, then
ϕ |=N ϕ. So in particular, for all rules whose conclusion is of the form ϕ ` δ with δ

deterministic, it follows from Prop. 5.8 and (7) that the unique M-map with codomain
M(δ) ' 1 (and with appropriate domain) is a realizer. A similar argument also shows the
adequacy of the Ex Falso rule (elimination of ⊥), but in this case the realizer of ϕ ` ϕ is not
canonical. Adequacy for synchronous comprehension is defered to §5.3.1. Concerning the
rules of Fig. 4, the first two rules follow from the fact that M is a category with finite limits
(Prop. 2.5), and the rules for conjunction (resp. existentials) follow from Prop. 5.5 (resp.
Prop. 5.6). It remains to deal with the rules ϕ ` ∃y Z(y) and ϕ ` ∃y S(x, y) of Fig. 3. For
the latter, we use the Mealy machine depicted on Fig. 1 (left) (Ex. 2.3.(b)) together with
the fact that S(−,−) is deterministic. The case of the former is similar and simpler. J

D.4.1 Realization of Synchronous Comprehension
I Lemma 4.6 (Lem. 5.11). Let x = x1, . . . , xp and X = X1, . . . , Xq. Let ϕ̂ be a formula with
free variables among y,X, and assume that ϕ̂ y-represents Cϕ̂ : 2q −→M 2. Then for all
MSO-formula ψ with free variables among x,X, there is a finite-state synchronous function

Hψ : M(ψ[ϕ̂[y]/Y ]) −→M M(ψ)
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such that for all k ∈ (2ω)p, all A ∈ (2ω)q and all R ∈M(ψ)ω, we have

R  Jψ[ϕ̂[y]/Y ]Kx,X(k,A) =⇒ Hψ(R)  JψKx,X,Y (k,A,Cϕ̂(A)) (14)

Proof. By induction on ψ, we show (14) and that for all k ∈ (2ω)p, and all A ∈ (2ω)q, we
have

(k,A) ∈ L(Jψ[ϕ̂[y]/Y ]K) ⇐⇒ (k,A,Cϕ̂(A)) ∈ L(JψK) (15)

If ψ is an atomic formula not of the form (x ∈̇ Y ), then ψ[ϕ̂[y]/Y ] = ψ. So we take the
identity for Hψ and (14) and (15) are obvious.
If ψ is of the form (xi ∈̇ Y ), then ψ[ϕ̂[y]/Y ] = ϕ̂[xi/y]. Since ψ is deterministic, we can
take for Hψ the unique map M(ϕ̂)→M M(xi ∈̇ Y ) = 1. Then by (3), for all k ∈ (2ω)p,
and all A ∈ (2ω)q, we have

C(A)(ki) = 1 iff N |= ϕ̂[ki/z,A/X]

that is

N |= ki ∈̇ C(A) iff N |= ϕ̂[ki/z,A/X]

and it then follows from Prop. 5.8 that

(k,A,C(A)) ∈ L(Jxi ∈̇ Y Kx,X,Y ) iff (k,A) ∈ L(Jϕ̂Kx,X)

from which we also get (14).
If ψ is of the form ϕ1 ∧ ϕ2 (resp. ∃X ϕ, ∃xϕ) then we conclude by induction hypothesis
and Prop. 5.5 (resp. Prop. 5.6).
If ψ = ¬ϕ, then we have M(ψ) = M(ψ[ϕ̂[y]/Y ]) = 1, and Hψ is the identity. Moreover,
property (15) follows from the induction hypothesis and Prop. 5.7, and we thus also
get (14). J

I Lemma 4.7 (Lem. 5.12). Let ψ with free variables among x,X, Y and let ϕ̂ be a formula
with free variables among y,X and which is uniformly bounded by y. Then there is a finite-
state realizer ψ[ϕ̂[y]/Y ] x,X F : ∃Y ψ, effectivelly computable from ψ and ϕ.

Proof. Let Cϕ̂ satisfying (3) be given by Lem. 4.7, and let Hψ satisfying (14) be given
by Lem. 5.11. It then directly follows from Prop. 5.6 and Len. 5.11 that ψ[ϕ̂[y]/Y ] x,X
〈Cϕ̂ ◦ [π], Hψ ◦ [π′]〉 : ∃Y ψ, where π, π′ are suitable projections. J
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